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Systems biology has developed in recent years from a technology-driven enterprise to a new strategic

tool in Life Sciences, particularly for innovative drug discovery and drug development. Combining the

ultimate in systems phenotyping with in-depth investigations of biomolecular mechanisms will enable

a revolution in our understanding of disease pathology and will advance translational medicine,

combination therapies, integrative medicine, and personalized medicine. A prerequisite for deriving

the benefits of such a systems approach is a reliable and well-validated bioanalytical platform across

complementary measurement modalities, especially transcriptomics, proteomics, and metabolomics,

that operates in concert with a megavariate integrative biostatistical/bioinformatics platform. The

applicable bioanalytical methodologies must undergo an intense development trajectory to reach an

optimal level of reliable performance and quantitative reproducibility in daily practice. Moreover, to

generate such enabling systems information, it is essential to design experiments based on an

understanding of the complexity and statistical characteristics of the large data sets created. Novel

insights into biology and system science can be obtained by evaluating the molecular connectivity

within a system through correlation networks, by monitoring the dynamics of a system, or by measuring

the system responses to perturbations such as drug administration or challenge tests. In addition, cross-

compartment communication and control/feed-back mechanisms can be studied via correlation network

analyses. All these data analyses depend critically upon the generation of high-quality bioanalytical

platform data sets. The emphasis of this paper is on the characteristics of a bioanalytical platform that

we have developed to generate such data sets. The broad applicability of Systems Biology in

pharmaceutical research and development is discussed with examples in disease biomarker research,

in pharmacology using system response monitoring, and in cross-compartment system toxicology

assessment.
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Introduction

A holistic view, or in contemporary words, systems-based

thinking, has been an undercurrent through the existence of

mankind. In science, however, a reductionist focus has been

the Holy Grail from the time of Descartes and Newton.

Furthermore, for political and/or religious reasons, it was

convenient in the past to separate mind from matter, and a

dominant mechanistic view of the world around us has

developed on that basis.

By following reductionist principles, enormous scientific and

technological achievements have certainly been made and, in

the last century, the exploration of the subatomic world has

been a mind-boggling example of the fruits of reductionism.

Surprisingly, quantum physics, which appears from a distant

perspective to be the ultimate form of reductionism, has

stimulated systems thinking. Contextualization and connectiv-

ity have been key drivers for this change in approach, a change

which is reflected in studies ranging from nonlocality in

quantum physics to universal connections in cosmology.

The emergence of systems-based thinking across different

scientific domains has occurred in the last century seemingly

independently and often unnoticed by the mainstream. In the

natural sciences, systems approaches emerged slowly but

steadily in the last century with, among others, Bertalanffy1

being recognized as an important initiator. From a broader

perspective, Capra,2 Laszlo,3-5 and many others have contrib-

uted to a more comprehensive systems worldview. The desire
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to move to holism has, perhaps, always been an undercurrent

in science and society throughout time. For example, Louis Bolk

(1866-1930), who was a professor in anatomy at the University

of Amsterdam, remarked “How much broader our view of life

would be if we could study it through reducing glasses!”

Furthermore, a remarkable systems view was beautifully out-

lined, as early as 1926, in the book Holism and Evolution by

Jan Christiaan Smuts,6 a statesman in South Africa and a great

nature philosopher. The observations and insights in this book

still serve as important inspiration for system research as

implemented, for example, in the Biomatrix concept.7,8

In medicine, tremendous scientific advancements have been

made in understanding diseases from a reductionistic view-

point. The current mainstream understanding of diseases and

drug treatments encompasses the “1 disease-1 target-1drug”

and the “1-drug-fits-all” concepts which emerged as a result

of successes in drug discovery during the 20th century.9 In

medicine and medical technology, many accomplishments

have been realized from that basis but have led to the current

situation whereby the success formula built on reductionism

seems to have reached its limits and the pharmaceutical

industry faces enormous challenges with productivity decreas-

ing and development costs rapidly increasing.

How can the tide of decreasing productivity and increasing

costs be turned and what might be the role of a systems

approach to Health and Disease in the future? A better

understanding of biology is obviously a first important step,10,11

and systems biology offers such a possibility. Understanding

biology requires knowledge of connectivity in systems and their

self-organization.4 Homeostasis, as a self-organization process,

was emphasized some time ago by Claude Bernard, who stated

that constancy of the internal environment is the condition for

free life (1872). Walter Canon also described homeostasis as

key principle of life in 1922. In today’s clinical practice,

however, the concept is largely used in a strict reductionistic

mode.12 Intervention is often based on regulating a single

element such as cholesterol or glucose back into the statistical

range found in “normal” people. Interdependence, nonlinear-

ity, and multilevel dynamics, as basic principles from a systems

regulatory viewpoint, have not yet penetrated medical practice.

Moreover, an understanding that new properties emerge within

a system at different levels of complexity, clearly underlines

the need to study the behavior of an entire system, rather than

focus on studying its components in isolation. As a result, in

forward-looking medical systems science, connectivity13 and

network biology are becoming a focal point of research efforts.

In network biology, important steps are made to better

understand the structure and function of networks. However,

the concept of scale-free networks and the importance of hubs

(nodes with large number of edges) in disease and intervention

are still the subjects of vigorous debate,14,15 and more detailed

examples need to be gained. In dynamic system studies, a shift

in focus is needed from objects to relationships and from single

quantities to the integration of quantities into a view on system

quality. As a result, the need to map patterns of relationship is

surfacing, as demonstrated in mammalian systems based on

de novo measurements across transcriptomics, proteomics, and

metabolomics.16-18 To achieve this crucial understanding of

complex relationships in an intact system, there is a great need

for reliable, high-quality experimental data beyond the cellular

level. From our point of view, correlation networks might be a

useful approach to make progress in this area.

An understanding of organizing principles within a complex

system opens up options for novel system-based intervention

strategies. Systems theory19 proposes that the scale and com-

plexity of a problem (disease state) should be matched by the

scale and complexity of the solution (intervention). This

proposal, and the realization that biological processes are

regulated via patterns of different molecules, lead naturally to

the concept of combinatorial drug intervention for the most

effective treatment of diseases.20-22

However, the design of such a combinatorial intervention is

challenging. It entails multiple target selection in multiple

compartments and matching different dynamics. In fact, the

“target modulation” becomes the perturbation of biochemical

pathways23 or, more correctly, system regulation.24 The current

simplistic drive to get “the right drug to the right patient, in

the right dose at the right time, via the right route” becomes

more complex in such a multidimensional pharmacology

setting. Recent progress in Medicinal Chemistry reveals such

a trend toward multitarget drugs. Formerly known as “dirty

drugs” with unknown off-target effects, these compounds have

become of interest again in light of this new perspective.25

Furthermore, novel drugs with activities at multiple targets are

now being synthesized, and multiple drugs are being combined

based on different target activities (polypharmacy). The latter

case, although more complex from a regulatory perspective,

provides opportunities to design combinations more precisely

than might be possible via single compounds. New strategies

of screening chemicals via multiple target readouts to obtain

biological spectra26,27 are a step toward a multidimensional

pharmacology concept. However, in designing optimum com-

binations, the resulting drug target profiles are indicative of a

compound’s possibilities, but rather limiting, because syner-

getic effects cannot be detected via screening of single com-

ponents in high-throughput target screening. Combinatorial

screening in cellular assays is a step up the ladder, but still

limits the discovery of the “best” compounds as system-wide

synergies are not detectable. Reversed-pharmacology28 on

natural products24 might become an attractive source for the

discovery of synergetic effects and lead to a renaissance of the

abandoned natural product research domain. Natural product

research almost vanished when combinatorial chemistry was

introduced into pharmaceutical discovery, but the latter ap-

proach is still challenged to deliver its hoped-for potential.

In forward-looking system science experiments, a change will

be needed in experimental design whereby experiments will

be performed using complex input perturbations followed by

the measurement of system-wide responses. In addition, a

desire to move to preventive health care and personalized

medicine will create an opportunity for a systems approach.

This might seem to be a great challenge in western societies,

but the concept and practice have existed already for centuries

in other oriental medical systems. Integration or fusion of

different philosophies and practical approaches to healthcare

across various medical systems is an attractive way for moving

forward. Clinical trial designs need to be changed considerably

to meet these goals and even moving toward N ) 1 clinical

trials in the future might become desirable.29

Critical for Systems Biology research is a sophisticated

bioanalytical platform integrated with advanced biostatistical/

bioinformatics methodologies. Reliability, combined with high-

quantitative analytical quality (precision, accuracy, inter/

intraday variability, etc.), is critical for success.30 In general, to

analyze complexity in systems biology research, high-resolution
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separation methods combined with high-resolution mass

spectrometric detection is a key factor. Moreover, sensitivity

and comprehensiveness can be obtained via combined plat-

forms with less peak capacity on each individual platform.

It is important to appreciate that translating materials and

methods from a research environment to a production-focused,

application environment requires considerable effort. The

availability of validated commercial analytical components and

instruments among others is often not recognized. The wealth

of published bioanalytical papers dealing with cutting-edge

research often obscures the lack of well-developed reliable and

validated methodology. Without proper QA/QC procedures,

which provide a basis for intra- and interlaboratory compari-

sons, it is impossible to compare data sets over time and

between different laboratories, resulting in a considerable waste

of human efforts and research budgets. It is encouraging to

see new initiatives in the proteomics and metabolomics field

toward such standardization goals. The same arguments hold

for multivariate statistical approaches, for which proper valida-

tion of results is often lacking, and for experimental design,

for which the implications of multivariate biostatistics as final

data analysis methodology are not considered.

The fervent debate on the value of “random fishing” experi-

ments, as suggested to be typical for systems biology, in

contrast to hypothesis/target-driven strategies is fading away.

Given the complexity of the biology and the limitations of

bioanalytical systems to provide comprehensive analysis, an

approach using as much prior knowledge as possible is a

necessity to make decisions on sample types and the analytical

technology. However, old dogmas should not restrict an

attempt to discover new things. In addition, generating high-

dimensionality data, for instance by transcriptomics, often

results in zooming in only on the known gene-relations as a

confirmatory tool of existing hypothesis or, often even worse,

reporting new observations without examining false discovery

rates.31

Nature is a magnificent teacher of optimization strategies.

As illustrated in Figure 1, a sound systems-analytical strategy

is illustrated by the black skimmer. In contrast to birds like

kingfishers or terns, who have a targeted final fishing strategy,

the black skimmer (Rhynchops niger) flies just above the water

surface with the lower mandible of its open bill slicing through

the water. The skimmer closes its bill as soon as a fish is hit.

From a distant perspective, the skimmer’s strategy appears

to be a random fishing experiment. However, studying the

behavior more closely reveals that the “random fishing” part

is either imbedded in a strategy based on prior knowledge of

the best fishing grounds or is instantaneously optimized when

successes by other birds such as terns is observed nearby.

Conversely, the fishing behaviors of kingfishers and terns look

very targeted, but they either select strategic positions and wait

to see what passes or hover around to find positions to initiate

the final targeted stage of fishing. In other words, an effective

strategy combines a certain amount of discovery/exploratory

behavior with prior knowledge on the ecosystem. The task of

setting up systems-based experiments should follow a similar

strategy and focus on increasing the chance of making new

discoveries using prior knowledge without limiting new dis-

coveries by following old paradigms. Optimal search strategies

for nonreplenishable/nonrevisitable targets at unknown posi-

tions have been described33,34 from an operations-research

perspective. Such strategies range from those used to search

for submarines, to Levy flights with fractal patterns, as those

used by albatrosses searching for food. Although the boundaries

for systems biology experiments are clearly different, in any

probability-based research problem, adding information pro-

vides important values for conditional probabilities, emphasiz-

ing the detrimental impact of adding wrong information.

Systems-wide bioanalysis using mass spectrometric tech-

nologies combined with pattern recognition techniques has a

considerable history. The system-characterization concept

using pyrolysis-mass spectrometry (PyMS) and pattern rec-

ognition (PARC) proved to be powerful in the seventies,35 but

was limited to nonvolatile components (DNA, biopolymers

such as carbohydrates, and proteins) and also by the pyrolysis

process generating complex pyrograms. Direct chemical

ionization,36-38 in a special setup using temperature program-

ming, combined with PARC was capable of capturing both

Figure 1. Black skimmer (Rhynchops niger) fishing in the Pantanal, Brazil32 by slicing through the water with the lower mandible of

the open bill, illustrating an optimal systems biology experiment. Although at first sight it appears as a random fishing experiment, it

is not. An optimal success discovery is obtained, by selecting the best fishing grounds based on prior ecosystem knowledge or

information obtained during action.
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volatile and nonvolatile parts of systems as demonstrated by

the molecular characterization of entire bacteria. The resulting

information contained metabolite and various biopolymer

levels. In fact, this approach was in concept similar to system

biology today; however, the technology did not allow a high

resolution at the protein/biopolymer level, making interpreta-

tion difficult, but its systems fingerprints were highly significant.

In the past decade, the novel, “-Omics” technologies have

opened-up a window to investigate unexplored biology.

In this paper, we describe the current status of a fully

integrated and fully operational systems biology production

platform. This platform has resulted from a 6-year effort which

has incorporated multiple expertises over a wide scientific

domain. Several improvements to the platform have been

implemented based on practical experience during this period

with internal research projects and pharmaceutical company

collaborations involving up to hundreds of samples per project.

Some examples are presented to highlight the application

of this platform to pharmaceutical research and development.

A Systems Biology Technology Platform

1. Systems Biology Workflow. The challenge of building a

comprehensive systems biology platform is substantial as such

a platform should address different sample types, especially

blood (plasma, serum), cerebrospinal fluid, urine, and various

tissues or organs. The platform should also be able to prepare

and profile more unique samples, such as bile acid, saliva,

synovial fluid, pleural fluid, pericardial fluid, peritoneal fluid,

sweat, feces, nasal fluid, ocular fluid, intracellular fluid, inter-

cellular fluid, lymph urine, liver cells, epithelial cells, endothelial

cells, kidney cells, prostate cells, blood cells, lung cells, brain

cells, adipose cells, tumor cells, and mammary cells. In addi-

tion, the platform must be capable of handling various sample

numbers, amounts, and spatial- or time-resolved sampling.

Analytical sciences play a major role in the development of

a standard routine and reliable platform, as will be outlined in

separate sections below for proteomics and metabolomics.

High-quality data generation, as well as the normalization and

integration of data from different sources, is crucial. Further-

more, in addition to advanced statistical capabilities, the

platform must encompass visualization tools and bioinformat-

ics approaches in order to move from data sets to information

and knowledge.

The general workflow used for systems biology experiments

is depicted in Figure 2.

2. Proteomics Platform. The application of proteomics

within a discovery-focused systems biology workflow places

significant constraints on the type of approaches that are

practical to implement. The discovery-focused proteomics

method must support the analysis of hundreds of primary

samples. This requires reliable methodology, reproducible

measurements, and relative quantification coupled with through-

put matched to the complementary measurement platforms.

Finally, the results must be of a form that can be integrated

with data from other omic as well as non-omic measurements/

observations to enable a system-wide analysis.

The primary proteomics workflow we have adopted for

plasma and tissue proteomics is based on a multidimensional

liquid chromatography-MS/MS analysis of peptides labeled

with the four-plex iTRAQ reagent (trademark of Applied Bio-

systems).39 Advantages of this approach include the parallel

relative quantification of up to four samples in a single

experiment, an insensitivity of quantification to changing

chromatographic behavior of the sample during a long series

of sample runs in a single project, and the fact that every

identified peptide component is quantified at the same time.

This latter attribute, since not just “differential features” are

identified, allows a very detailed quality control of the work-

flow: efficiency and reproducibility of protein extraction from

the primary sample, alkylation, digestion, and labeling.

In the iTRAQ method, enzymatic digests from protein

samples are treated with the reagent (an N-hydroxysuccinimide

Figure 2. Systems biology workflow. Data are produced by different platforms (transcriptomics, proteomics, and metabolomics) followed

by integration into a master data set. Different biostatistical strategies are pursued: clustering, modeling, and correlation analysis.

Integration with extensive bioinformatics tools and expert biological knowledge is key to the creation of meaningful knowledge.
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[NHS] ester) that derivatizes the free primary amino groups of

peptides: the N-terminus (if not blocked) and the lysine

residues. Four different varieties of the reagent are character-

ized by having the same mass but different positioning of the

stable isotope labels. Therefore, in MS mode, where the ion

signal reflects the molecular weight of the peptides, all four

differently labeled peptides appear as a single component. In

MS/MS mode, the subtle differences in the structure of the label

become visible, and whereas the peptide backbone fragments

(so-called a, b, and y) are still isobaric, four different reporter

fragments are generated corresponding to m/z 114, 115, 116,

and 117, respectively. Relative quantification of the peptides

from four different samples is accomplished through the

determination of relative intensities of these reporter ions.

In the systems pathology/pharmacology process, it is im-

portant to be able to compare any pair of samples. To achieve

this goal for each project, a global proteomics reference sample

is created, and a processed aliquot of this sample is a member

of each iTRAQ mixture (arbitrarily the 117-labeled sample).

Every primary sample is quantified against this global reference

sample. To maximize analytical accuracy, the global reference

sample is pooled from equal aliquots of each primary sample

in the study and re-aliquoted into N/3 tubes where N is the

number of primary samples. These reference aliquots are

processed along with the other members of the same iTRAQ

mix. The concept is illustrated in Figure 3.

One of the major challenges for a peptide-based proteomics

approach (or shotgun proteomics) is to ensure the consistency

of peptide and protein sets measured from sample to sample.

As illustrated in Figure 4, there is a decreasing coverage of

proteins with an increasing number of measured samples. This

effect is observed in all discovery proteomics efforts indepen-

dent of mode of ionization. To preserve a good statistical power

for systems pathology/pharmacology projects, it is imperative

to work against this unfavorable trend. On-line LC-Electro-

spray (ESI) MS/MS is not very well suited for this task because

of the limited control over a real-time precursor selection

process. Off-line LC-MALDI MS/MS has proven a reliable

approach to exerting control over the precursor selection for

identification and quantification.

The off-line nature of the LC-MS coupling combined with

MALDI-MS and MS/MS coupling allows:

• Optimization of LC parameters independent of MS and MS/

MS (for instance, use fast chromatography instead of long LC

gradients);

• Analysis of entire (multidimensional) LC separations in MS

mode before committing to MS/MS; and

• Optimization of MS/MS precursor selection from a (mul-

tidimensional) LC-MS peak list to facilitate nonredundant MS/

MS analysis and the design of multipass MS/MS experiments

over the same LC separation

In the broader scheme, inclusion and exclusion lists, respec-

tively, containing peptides that are to be systematically mea-

sured or systematically skipped in MS/MS, play a key role. The

inclusion list is populated by components suitable for quan-

tification: fully alkylated, iTRAQ-labeled peptides from relevant

proteins (i.e., not contaminants like trypsin or keratins). The

exclusion list contains precursors not suitable for quantifica-

Figure 3. Multiplex plasma proteomic workflow. This workflow utilizes an isotope-coded reagent, iTRAQ, that enables the multiplexing

of the workflow. Three study samples and one control sample are analyzed in a single MALDI MS and MS/MS experiment. The samples

are processed in parallel until they are labeled with the coded iTRAQ reagent. Once labeled, the samples are mixed together, separated

by two dimensions of liquid chromatography, spotted onto MALDI plates, and analyzed in the MS mode for molecular weight

determination and in the MS/MS mode for quantification.
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tion: incompletely labeled peptides, chymotryptic fragments,

unidentified components, chemistry byproducts, and so forth.

There is also a third class of precursors that has not been

observed in previous iTRAQ mixes.

Implementing this approach to systems-wide proteomic

projects starts with establishing a peptide catalog from a sample

similar to the primary samples (extra aliquots of the global

reference sample are good choice). From the analysis of this

sample, initial inclusion and exclusion lists are created. The

next iTRAQ mix in the analysis queue uses the initial inclusion/

exclusion list and also allows the MS/MS of new (opportunistic)

precursors. New identifications are sorted into the inclusion

or exclusion sets, so these lists are dynamically updated before

the next iTRAQ mix is analyzed. After data acquisition is

completed for the last sample, a second pass MS/MS is

designed to backfill precursors in iTRAQ mixes for which

analysis preceded the instance the precursor was placed on

the inclusion list.

In our platform, mass spectrometric data are generated on

an AB4800 MALDI ToF/ToF platform. The instrument is very

well suited to generate iTRAQ fragments with good ion statistics

while producing high-quality backbone fragments for confident

peptide identification. The data system, based on an Oracle

architecture, lends itself well to integration into a pipelined

environment supporting automated creation of LIMS entries,

MS jobs, precursor selection, and MS/MS jobs, followed by a

number of data processing steps leading to complete qualitative

and quantitative results on the iTRAQ experiments.

For systems experiments it is important to have reliable

processes in place to identify peptides, assign them to the

correct proteins, and determine the correct relative expression

value for the proteins. For identification, a three-pronged

approach is used with the Mascot search engine (Matrix

Science, Inc.), expert data curation, and MS/MS spectral

matching procedures. The first pass is always a search with

Mascot. In-house-developed acceptance criteria are used to

autovalidate the matches returned by Mascot, considering ion

scores, score differences, whether other peptides from the same

protein were found, and whether the protein or peptide had

been identified in previous experiments. To minimize or

eliminate false positives and negatives, data from the entire

project (many iTRAQ mixes) are utilized. First, all identifications

that are sparse (as defined by statistical considerations) across

the sample set are discarded. This set may contain numerous

correct identifications; however, these are useless for statistical

analysis. Most of the false positives are eliminated this way.

False identifications consistently made throughout the project

are discarded by expert curation, also relying on statistical tests

of mass errors, chemical modifications, and so forth. False

negatives can be rescued by MS/MS spectral matching: the

best instance of the MS/MS spectrum of a peptide can be used

as a template to find other measurements of the same peptide

in different iTRAQ samples which may not have had the quality

to pass autovalidation. Optionally, these spectra can be sub-

mitted into a second pass MS/MS job in an attempt to generate

higher-quality data.

Once the peptide data set is complete for the project, an in-

house tool is used to create the minimum data set of protein

sequences which explains, or accounts for, all the peptides.

Software packages, similar to this in-house tool, such as

ProteinProphet,40 are publicly available. An important consid-

eration is that, based on quantitative behavior of the constitu-

ent peptides, decomposition of proteins into their differentially

processed subforms might be necessary. In addition, it might

be necessary to consider cases of peptides harboring polymor-

phic sites where the “host” protein would logically be resolved

into three entities: the two polymorphic variant peptides and

the rest of the protein. Other considerations to factor into the

creation of the protein data set include inactive and active

forms of plasma zymogens of the complement and coagulation

systems.41 With these considerations in mind, we seek to derive

a minimum protein data set from the peptide data set, provided

there is no quantitative evidence indicating otherwise.

Quantification of peptides is done by calculating the relative

peak intensities with respect to the global reference sample

(m/z 117). There are several alternative ways to roll up peptide

Figure 4. Experimentally observed protein coverage in a multiplex iTRAQ proteomics study. The number of observed proteins is

plotted as a function of the number of samples (N) analyzed in the study. In this study, more than 300 proteins were detected in a

single sample, approximately 230 are detected in 90 samples (approximately half of the total study size), and only 100 proteins are

detected in every analysis. On the basis of the statistical power calculations, when a protein is detected in 50% or more of the samples,

this will represent a good assignment in the study.
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measurements into protein measurements, typically yielding

very similar results. All distinct forms of a fully labeled peptides

are used as independent estimates of the protein result, and

finally, the median of all peptide estimates is accepted as the

protein measurement.

2.1. Application to Plasma Proteomics. One of the key

differences between the analysis of tissue and plasma samples

is the enormous background represented by the abundant

plasma proteins (albumin, immunoglobulins, etc.). To address

this challenge, a number of depletion techniques can be used.

In our platform, for human plasma samples, a chicken IgY

antibody column is used to deplete the samples of 12 abundant

proteins. The protein pool not retained on the antibody column

is recovered on a reversed-phase column, and subsequently,

this protein pool is reduced, alkylated, and digested by trypsin.

The resulting peptide mixture is labeled with the iTRAQ reagent

and combined with the three other samples designated for the

same iTRAQ mix. The combined four-plex mixes are fraction-

ated first on strong-cation exchange chromatography. The

resulting fractions are analyzed further, after pooling some of

the fractions, using HPLC-MALDI-MS/MS.

The experimental design implemented in our workflows has

the following main objectives:

•The generation of a sample randomization scheme where

different cohorts are unbiased in iTRAQ mixes and labels (114,

115, 116).

•The design of batches of sample preparation so each

member of an iTRAQ mix is processed “same place, same

time”. For sustained operation, batches of 12 samples have

worked well (9 primary samples and 3 reference samples).

•The optimization of separation and mass spectrometry

strategies so that each single iTRAQ mix (2D LC-MS/MS

experiment) can be run in 24 h or less on a sustained basis.

•The ability to follow data quality (QC reporting) as closely

as possible to ensure that mass spectrometry results can be

effectively fed back to the earlier stages in the workflow, and

sample loss due to problems in sample preparation can be

minimized.

The initial step in the design of the bioanalytical strategy is

the sorting and distribution of the primary samples into four-

plex iTRAQ mixes. As mentioned above, to compare the results

derived from any of the primary samples, a common reference

sample is generated and included in each iTRAQ mix. This

sample is referred to as QCR and, ideally, is composed of a

pool of material from the study samples. A secondary choice

is a pool of samples or a single sample from the study, but not

involved in the analysis, and a third choice is a pool of samples

or a single sample of the same type obtained from another

source/study. The result of this approach is that each iTRAQ

mix contains three primary samples and one QCR sample. In

our workflow, we use the iTRAQ labels with the 114-116

reporter fragments for the primary samples, and the 117 label

is reserved for the QCR sample. The randomization of the

primary samples ensures that in the individual iTRAQ mixes

different sample cohorts are distributed in an unbiased way.

Since each mix has one reference sample in it, this level of

randomization is adequate.

Considering the large number of samples and length of time

involved in the data generation phase of this discovery-focused

proteomics workflow, it is critical to continuously monitor the

performance of the overall process. Some of the QC steps focus

on determining that the products of one step in the process

are of sufficient quality to warrant advancing them to the next

stage of processing; other QC steps are applied after the

completion of the sample-analysis phase to assess the quality

of the overall process. Several of the steps and variables that

are monitored in these steps are listed in Table 1.

An example of one of the key steps that is monitored during

the workflow is the extent of underacylation in the iTRAQ

labeling step (Figure 5). The objective of this analysis is to

ensure that incomplete labeling is limited to less than 10%. In

the example shown in Figure 5, there are a total of 87 four-

plex iTRAQ mixes, and a significant deviation in the labeling

efficiency was observed at mix S46. This change in labeling

resulted from cross-contamination of the sample by the glycine

buffer used for the column elution step and led to a failed

iTRAQ labeling. The samples that showed this characteristic

were submitted to reanalysis.

Quantitative performance is assessed through the consis-

tency of the ratios of peptides matching to the same protein.

The relative standard deviations of these peptide measurements

indicate the accuracy of the protein measurement (as an

average of the matching peptide measurements). Medians of

these relative standard deviations for each sample are plotted

in Figure 6. During our studies, if a sample exhibits a high

degree of quantification error, it is subjected to reanalysis. In

the study highlighted in this figure, the primary source of

problems is protein reduction. This level of QC enables us to

update the workflow and improve the overall consistency of

the results.

Table 2 summarizes the proteomic analysis results for a

recent project that involved 189 primary samples and illustrates

the extent of coverage of plasma proteins, as well as presents

the coefficient of variation of quantification for this project.

3. Metabolomics Platform. The symbiosis and integration

of chemometrics and metabolomics has been a crucial step

and described from a historical perspective.42 Comprehensive

analysis of the metabolome requires analytical instruments and

techniques that offer high sensitivity, resolving power, and

dynamic range. Mass spectrometry is the technique of choice

Table 1. QC Metrics in the iTRAQ Plasma Proteomic Workflowa

workflow step QC metrics

Sample Acquisition Incoming sample inspection with photographic capture
Lipid Removal Protein content and recovery
Abundant Protein Removal Protein content, column performance based on defined criteria
Digestion/iTRAQ Labeling pH monitoring, reproducibility and efficiency of chemistry based on MS data
Peptide Separation (SCX) Column performance based on defined criteria
LC-MS/MS Measurements Column performance based on defined criteria, MS sensitivity
Peptide Ratios Descriptive statistics of peptide ratios
Protein Ratios Consistency of peptide ratios mapping to the same protein

a Several critical steps in the iTRAQ proteomic workflow are monitored to ensure the overall quality of the final results. There are several steps of digestions,
labeling, and separation that must be repeated with a high degree of consistency to ensure good quantification and protein coverage within a study.
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in most cases, as it combines all of these aspects. Resolution

improves dramatically by using high-resolution systems based

on ToF, but especially Fourier Transform (FT-ICR and Orbitrap)

technology. The combination of mass spectrometry with

separation methods, such as various modes of Liquid Chro-

matrography, Gas Chromatography, and Capillary Electro-

phoresis, strengthens the dominant role of mass spectrometry

in metabolomics as “hyphenation” (a colloquial term for linking

of the separation method with the mass spectrometry method,

e.g., LC-MS) increases the resolving power and dynamic range,

and, in the correct setup, also increases sensitivity. Sensitivity

is extremely important for two reasons: (1) for including low-

abundance metabolites in a metabolic profile and (2) for

working with limited sample volumes. Compared with NMR,

hyphenated MS methods have, beyond their excellent coverage,

Figure 5. Percentage of incomplete iTRAQ labeling throughout a project. Red bars represent iTRAQ mixes where one or more member

samples were re-run in the later phase of the project.

Figure 6. Distribution of “quantification errors” across the study samples. Samples where quantification failed for the first time have

been replaced with their re-runs. The median of these error estimates is 0.16.

Table 2. Summary of Key Performance Metrics for a 189

Sample iTRAQ Plasma Proteomic Studya

Number of primary samples 189
Number of iTRAQ mixes 64
Total number of unique peptides 4050
Total number of protein classes 201
Total number of protein exemplars 241
Total number of protein nodes 347
Median CV peptide/protein ratio 16%

a A total of 347 protein nodes were assigned with a median ratio of 16%.

Scheele Award Overview on SysBio research articles

Journal of Proteome Research • Vol. 6, No. 4, 2007 1547



two main challenges: (1) hyphenated MS does not provide

universal detection and (2) quantification is not very straight-

forward.

3.1. Comprehensiveness. With regard to universal detection,

any combination of separation conditions and ionization

methods limits the number of metabolites detected and results

only in submetabolome information. The chemical diversity

of the total metabolome exceeds the span of any LC-MS or

GC-MS method. This limitation is mainly caused by the

separation method. Therefore, it is mandatory to combine a

few diverse methods, each addressing a submetabolome, into

an overall metabolomics platform to increase coverage.

Figure 7 illustrates our current metabolomics platform

consisting of global profiling methods based on NMR, LC-MS,

GC-MS, and a collection of class-targeted LC-MS and GC-

MS methods including two-dimensional separation approaches

(GC×GC). A number of these methods have been published

previously43-45 as well as the concept and performance of an

earlier version of a metabolomics platform.28

A majority of these methods are being applied to metabolic

profiling of the biological samples mentioned previously, for

example, plasma, serum, urine, Cerebrospinal fluid (CSF),

synovial fluid, and tissue homogenates. The selection of

methods to apply is driven by prior knowledge and sample

volume, time schedule, and budget constraints. The measure-

ment by GC-MS global profile, a LC-MS global profile, lipid

LC-MS, and bile acid LC-MS requires 100 µL of plasma (30,

10, 10, and 50 µL, respectively). This set of methods covers a

wide range of metabolites, including organic acids, amino acids,

many sugars, various lipid classes, fatty acids, bile acids, and

steroids, and thus provides a very rich metabolic profile. The

total number of distinct metabolites (not features) observed

with this “standard” platform is in the order of 600-800. This

broad-spectrum strategy is chosen to measure across many

different classes at different concentrations versus in-depth

analysis of a selected region of the metabolome. A focus on a

selected region of the metabolome can be achieved by includ-

ing more targeted approaches in the platform. This broad-

spectrum strategy has advantages over straightforward profiling

by NMR of a 100 µL of plasma sample, but in practice, NMR

profiling (Carr-Purcell-Meiboom-Gill (CPMG) and diffusion

edited (DE)) is typically used as well because it provides both

complementary and confirmatory information. Total analysis

time for this strategic approach is slightly longer than for NMR,

mainly because GC-MS is relatively slow. LC-MS methods are

performed on parallel instruments to reduce total analysis time,

and currently, methods are transferred to Ultra Performance

Liquid Chromatography (UPLC) technology to increase the LC-

MS throughput.

Important aspects, which are crucial for any project, are a

proper experimental design and data preprocessing; these

aspects have been discussed in detail elsewhere and are

therefore not addressed in this review.46-49

3.2. Quantitative Aspects of LC-MS and GC-MS. The major

challenge of LC-MS and GC-MS in a comprehensive profiling

setting is the achievement of quantitative performance. This

in sharp contrast to target compound analysis, where the use

of calibration standards and (stable-isotope-labeled) internal

standards results in excellent precision and accuracy. Com-

prehensive profiling is, in essence, nothing more than recording

the response of, often unidentified, substances in a set of

samples. The response is a measure of concentration. However,

the response is not only determined by the actual metabolite

concentration, but also determined by the following factors:

• Experimental Conditions, Mainly Instrument Related:

Intrabatch drifting and batch-to-batch differences in response

are quite common in LC-MS and GC-MS and are caused by

a variety of factors, including ion source contamination, GC

injection device contamination, instrument maintenance be-

tween batches, and the use of multiple instruments in parallel

with a set of samples. These factors lead to poor repeatability

and reproducibility and have a major negative impact on data

quality.

• Chemical Structure: Different compounds have different

response characteristics, and especially in LC-MS, a minor

difference in structure may have a considerable effect on the

response, for example, factors of 2 or 3 orders of magnitude

are not uncommon. This makes it impossible to quantify the

metabolite in concentration units, which would require the

Figure 7. Schematic overview of a mixed global and targeted metabolomics platform using NMR, LC-MS, and GC-MS for

comprehensive metabolic profiling.
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analysis of calibration standards. From a biomarker discovery

perspective, this is not a real problem.

• Sample Composition: Large differences in sample com-

position influence the response of one or more metabolites,

for example, ion suppression effects in ESI and impaired

chromatographic performance in GC-MS (also leads to incor-

rect response). Variations in the concentration of high-

abundance substances, such as glucose and urea, influence the

responses of other compounds. For plasma and various tissues,

this is typically not a major problem because the sample

composition with respect to these highly abundant compounds

is quite constant across subjects.

The magnitude of the first problem and its impact on data

quality is proportional to the scale of a study. Small-scale

studies, which employ only a single batch of a relatively small

number of samples, only suffer from drift. If drift is small

compared with random variation, it is often not even necessary

to consider drift as an important negative factor for data quality.

Large-scale studies, in which the number of samples exceeds

the batch size limit, typically suffer from systematic differences

between multiple consecutive batches. Achieving good repro-

ducibility is even more challenging if:

• large time intervals (e.g., months to years in long-term

studies) occur between the analyses of different batches of

samples from the same study sample set;

• parallel instruments of the same type are used even in the

same laboratory;

• instruments of the same type are employed in distinct

laboratories;

• different instrument types are used; and

• all combinations of the above.

Metabolomics is rapidly engaging the challenges presented

by large-scale applications,46 but it only does so if platform

reliability, encompassing repeatability and especially reproduc-

ibility, is excellent. Such reliability can be achieved in 2 ways.

The first is to be fully in control of all the experimental

conditions, but this is very difficult to achieve (if not impos-

sible). The second way is calibration. It is important to point

out that ‘calibration’, in the context of our platform, only refers

to quantitative scaling of response and not quantification in

SI units (but this is in fact only a very small step for identified

compounds).

There are a number of ways to calibrate metabolomics data,

but discussing all of them is beyond the scope of this paper.

We have developed a calibration procedure for metabolomics

data sets, similar in principle to the QCR strategy mentioned

before for proteomics data sets, based on repeated analysis of

a biological calibration sample (not a standard). The calibration

sample(s) is(are) ‘identical’ to the real samples, either made

by pooling (part of the) samples, or obtained from other

sources. As mentioned above, the first type of calibration

samples is preferred, but is sometimes not a viable option

because of sample volume limitations.

These calibration samples have a number of favorable

characteristics.

• Their biochemical diversity is very similar to the real

samples.

• The metabolites are present at relevant concentrations.

• The calibration samples are very simple to make or obtain.

The calibration method requires a standardized sequence

and batching design which is shown in Figure 8.

We employ this approach for all metabolomics methods,

LC-MS (multiple methods), GC-MS, and also NMR. The

number of CAL samples per analysis batch and their location

in a measurement series is determined by the method perfor-

mance for all metabolites. Critical aspects of the sample

analyses that can influence this approach are drifting and

precision. When more drifting is observed, more CAL samples

are required to model and correct for it. The better the

precision, the lower the number of CAL samples required. This

standardization does not compromise optimal sample ran-

domization schemes; that is, full flexibility in randomization

is maintained (actually improved).

In summary, the calibration methods consist of the following

4 steps:

1. Selection of the best internal standard for all metabolites

(statistical evaluation of CAL sample data and study sample

replicates). This results in metabolite-IS pairs matching in

physicochemical properties.

Figure 8. Standardized analysis design for metabolomics involving the analysis of calibration standards (STD) for quantification of

specific metabolites, biological calibration samples (CAL) for correcting intrabatch temporal trends and interbatch differences, and

randomized study samples. Mixed with the study sample are a number of independent quality control samples.
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2. Scaling of all metabolites with the optimal internal

standard.

3. Determination of the temporal trends in CAL sample data

per analysis batch and the correction of these trends (curve

fitting).

4. Removal of systematic batch-to-batch differences.

Figure 9 demonstrates the effects of this calibration proce-

dure. The data were obtained with the derivatized LC-MS

global method. Samples were derivatized in 2 sessions (lots),

and the samples of each derivatization lot were measured in 4

analysis batches (LC-MS, in total 8 batches). The figure shows

the PCA score plots of (a) the raw data, (b) the data after scaling

each metabolite with its optimal internal standard, and (c) after

the full procedure (optimal IS scaling, within batch trend

removal and between batch offset removal). This example

demonstrates that the calibration method effectively removes

systematic differences in response due to variation of extrac-

tion/derivatization conditions and LC-MS instrumentation

conditions, and results in very high quality data. A second

example in Figure 10 demonstrates the effectiveness of this

procedure by evaluating the correlation between plasma

glucose levels determined with a validated reference method

and plasma glucose levels determined with GC-MS.

The GC-MS data was obtained by the duplicate analysis of

366 human plasma samples in 17 batches. The calibration

method results in a very good correlation between the 2

methods. Similar effects and performance were obtained for

other metabolites.

The calibration method can also be applied to calibrate data

obtained from 2 or more parallel instruments and data

obtained with large time intervals between analyses. The latter

can be achieved by storing ample CAL samples in a -70 °C

freezer for future use (not shown here). Storage of the CAL

samples also opens up the possibility of doing absolute

quantification in concentration units by the standard addition

method to determine the concentration of a particular me-

tabolite in the CAL sample. With this concentration in hand, it

is fairly simple to obtain the concentration of the metabolite

in the project samples by single point calibration. This can only

be done if the identity of the metabolite is known and if it is

available as reference material.

In summary, the LC-MS and GC-MS bioanalysis methods

of our platform generate very rich metabolomic data and can

do so at a throughput very similar to NMR. The use of the

calibration method described here results in reliable and

reproducible quantitative data. The need for standardization,

on an international level, for experimentation, validation, and

reporting of metabolomics data57 is recognized. Fortunately,

initiatives are underway to achieve such standardization;

otherwise, data generated from different sources will have little

universal significance and will contribute little to our overall

understanding of complex biological systems.

4. BioSystematics. Among the challenges inherent in data

analysis and interpretation for systems biology in medical

applications are the heterogeneity and volume of data which

are generated by modern high-throughput methods in tran-

scriptomics, proteomics and metabolomics, including those

methods presented in the preceding sections. Such data present

challenges from at least three perspectives: (i) statistical

analyses, (ii) data integration, and (iii) bioinformatics.

From a statistical analysis perspective, the primary challenge

is that the total number of measured analytes, Na, is typically

much larger than the number of available distinct samples, Ns.

This regime of Na . Ns is an opposite extreme to that

confronting statisticians analyzing results from, for example,

large clinical trials in which a single or a few endpoints are

assessed across hundreds or thousands of subjects. In typical

systems biology data sets where Na . Ns, the meaning of

statistical significance as embodied in the alpha level or p-value

of a result must be carefully considered, due to the issue of

multiple hypothesis testing.31 A given alpha value, while ap-

propriate for comparisons of individual analyte levels, is not

appropriate for the set of all Na concurrent statistical compari-

sons in a systems biology analysis; at an alpha value of 5%, for

example, the number of spurious, false positives in a systems

biology data set consisting of 10 000 variables would be 500,

which is often too large to be acceptable. To avoid a large

number of false positives, approaches to adjusting alpha and

p-values to account for the number of comparisons being

performed have been developed. These include the classical

Bonferroni correction, which is the most conservative, to the

more recently developed False Discovery Rate31 and q-value50

methods.

In addition to the statistical false positive challenge, working

in a regime of Na . Ns presents a number of difficulties and

pitfalls in exploring the data for patterns and classifiers, such

as would be done for a biomarker analysis. Among the most

difficult challenges is avoidance of ‘overfitting’ in statistical

models developed for analyzing multidimensional systems

biology data sets. Overfitting can occur when, because the

number of variables is much larger than the number of

samples, it becomes trivial to separate two groups by any

number of combinations of multivariate analyses. Ideally, to

avoid overfitting, one would have at least two independent

groups of samples to work with, and would use a separate one

for fitting the statistical model and a distinct set(s) for testing

the specificity and sensitivity of the result. In lieu of multiple,

independent sample sets, methods such as cross-validation and

bootstrapping can be used, but must be use with a high degree

of care in order not to overestimate the performance of a

statistical model in biomarker classification applications.51

The integration of data from large, multidimensional systems

biology data sets also presents the challenge of data hetero-

geneity. For example, data sets from metabolomics, proteomics,

and transcriptomics need to be standardized and combined

for subsequent analyses. A particularly interesting aspect of

these bioanalytical platforms is that the number of analytes

profiled by each will not necessarily be similar; for example,

while a transcript hybridization microarray may measure 10 000

or more gene transcripts, a mass spectrometry proteomic or

metabolomic platform may profile a few hundred endogenous

proteins or metabolites. Such asymmetry among platform

yields not only presents statistical issues which need to be

properly addressed, but also requires different approaches to

deal with varying coefficients of variation, sources of variance,

and other platform-specific parameters. The latter aspects of

integrating disparate data sets are particularly important when

using data from multiple platforms to construct statistical

models for biomarker discovery and validation, in that high

variability within one platform data set may unduly penalize

all analytes within that platform at the expense of other data.

An especially attractive approach to data integration is the

consideration of correlation analyses, which will be discussed

below.

Bioinformatics, in the context of systems biology, aims to

interpret the large, disparate data sets and ultimately to provide
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insight into biological mechanisms which underpin the experi-

mental observations. A classical bioinformatics approach is to

begin by mapping experimental results onto a priori ‘known’

biochemical pathways, as curated by previous research and

literature. A complementary activity is to analyze results at a

more granular level, namely, at the level of biochemical

Figure 9. PCA score plots of LC-MS global data obtained by analysis of human plasma samples in 2 extraction/derivatization lots and

8 analysis batches: (a) raw data indicating systematic differences between derivatization lots, analysis batches, and also within batch

drifting, (b) data after scaling each metabolite with the best matching internal standard, which removes some of the within and between

batch differences, and (c) after correction of temporal trends and calibration which effectively removes all systematic error from the

data, including major difference between the two derivatization lots.
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reactions, and to attempt to fit the observations into known

reaction models. Yet a third approach is to process the data in

an empirical, statistical manner and generate de novo hypoth-

eses about the mechanistic origins of the observations. In

general, all of these methods are applied by the practitioner

and are relevant to our platform. The challenge of incomplete

or inaccurate biochemical pathway data is compounded by the

fact that much curation and literature is oriented primarily to

genes and proteins, and databases for the roles of endogenous

metabolites remain relatively scarce, particularly at the highly

detailed level of metabolite molecular structure which methods

such as mass spectrometry or NMR afford. Another challenge

which bioinformatics faces is that system biology experiments

often profile molecules which may have dramatically different

temporal and spatial characteristics. For example, the time scale

for the synthesis and degradation of proteins can be much

different from the time scale for gene transcription or for

metabolite synthesis, and these processes further have different

spatial subcellular locations. The dynamics of biomolecular

phenomena, and their localization, are contexts which are often

difficult to discern in high-throughout profiling experiments,

without a substantial effort in, for example, subcellular frac-

tionation or temporally dense sample collection. Nevertheless,

data obtained from systems biology studies offer a rich picture

reflecting the underlying metabolism of the cell and the

organism and is immensely valuable in understanding, at an

unprecedented level of biomolecular specificity and coverage,

the system under study.

A number of research groups, including our own, have found

that the computation of correlations between pairs of analytes

and the construction of correlation networks are useful ap-

proaches to examine the behavior of molecular systems.52-55

Such an approach generates graphs that represent the associa-

tions between molecules without preconception of their in-

volvement in biochemical pathways.52-54 Figure 11 shows a

typical example of a graphical representation of a correlation

network. As illustrated in this case, the correlation network is

displayed as a graphical representation of sets of pairwise

mathematical correlations between intensity values of mea-

sured features. Measured features are represented by ‘nodes’,

and correlations between pairs of analytes are represented by

links, or ‘edges’, which connect the corresponding nodes.

Graph edges represent the pairwise relationships between

nodes. Each node is assigned a coordinate in the two-

dimensional plane, such that the pairwise distances ap-

proximately reflect the similarity given by the correlation

matrix; an edge is drawn between two nodes if their correlation

exceeds a given quantitative threshold. Correlations can be

derived for pairs of features measured either within or across

tissues or biological compartments. Correlation networks in a

systems biology setting can be very large, for instance, for

([20 000 genes + 1000 proteins + 500 metabolites] × 3 tissues

× 3 methods × 3 states)2
≈ 3.37 × 1011 correlations. Further-

more, calculations of correlation values for any two-analyte pair

can be undesirably and trivially influenced by one or a few

samples which have anomalous measurement values for one

or both members of the analyte pair that are different from

the rest of the measurements. To minimize such occurrences,

each correlation calculation can be evaluated by a jack-knifing,

cross-validation routine. Such a process is useful in identifying,

for example, levels of correlation which are spuriously high

because of a measurement error or the like. Interpretation of

correlation networks needs to be undertaken with care52,53 but

provides a straightforward tool that can substantially enable

disease diagnostic and intervention studies as outlined in the

examples below.

Practical Illustrations of the Performance of the Systems
Biology Platform

1. Systems Pathology. Systems pathology is based on

biomarker pattern discovery, which in recent years has become

an important focus within the pharmaceutical industry. It is

recognized that biomarker research is complex and that valida-

tion of initial findings is a tedious process and needs a high-

level of design of clinical trials. Typically, biomarker research

is performed on readily available samples from clinical trials

which are not designed for biomarker research in terms of

available sample types, longitudinal sampling, or number of

patients. Often, a single biochemical level is selected for

biomarker discovery, typically proteomics or metabolomics, as

blood (plasma, serum) or urine are most frequently available.

Finding biomarkers is only the first step; understanding them

is a major task. Moving from data via information toward

system knowledge is typically only achieved by integration of

different biological levels. Also, biomarker patterns describing

disease pathology can often be more effective if data sets from

proteomics and metabolomics are combined (see later). Of

course, depending on a project’s objective, the selection criteria

can be optimized. An example is shown in Figure 12; in a small

clinical study, the optimal combination of proteins and me-

Figure 10. Correlation between glucose concentration obtained with GC-MS (arbitrary units) and a reference method. Data was obtained

in 17 analysis batches, and the raw GC-MS data shows no correlation with the reference method as result of within and between

batch differences. After calibration, a near perfect correlation between the two methods is obtained.
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tabolites was derived using our platform from plasma samples

to obtain a separation of 3 classes: control, mild cognitive

impairment (MCI), and Alzheimer (AD). In fact, a set of 32

proteins and metabolites was found to be the optimal classifier.

Further analyses, using correlation networks combined with

the objective of a given project, are the next approach to

reducing the number of components of a biomarker to the

most efficient and practical number. In different development

stages of a disease, different markers appear, some of which

can be very indirect markers, and without understanding the

role in the whole system, the value of such markers is hard to

predict.

2. Systems Pharmacology. In systems pharmacology, re-

sponses are measured after perturbation with drugs, drug

Figure 11. A correlation network created from an integrated tissue and body fluid data set comprising approximately 3400 analyte

measurements (the nodes of the graph) and nearly 17 000 empirical correlations measured among these analyte measurements (solid

lines). Analytes include proteins, endogenous metabolites, and gene transcripts. Clear, large-scale structure is evident in this two-

dimensional network rendition, reflecting the underlying metabolic processes in the tissue and body fluid samples, and striking in its

revelation of groups of analytes which exhibit high degree of correlation, and which are as such likely involved in distinct biochemical

processes.

Figure 12. Principal components-discriminant analysis of plasma metabolomics and proteomics data from an Alzheimer’s disease

study. The abscissa represents the first principal component, and the ordinate represents the second principal component. Each

annotated data point in this two-dimensional projection represents an individual human subject from the study. Three major groupings

are seen to emerge from this multivariate projection, corresponding to physician-diagnosed controls, Alzheimer’s disease patients,

and patients diagnosed with mild cognitive impairment. Solid lines circumscribing groups are for visual aid only.
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Figure 13. (Continued)
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combinations, nutraceuticals, natural products, or extracts

thereof. Although various other forms of systems response

profiling can be used, in our platform, correlation networks

function as the preferred readout to understand multitarget and

network effects as well as to study spatial/temporal effects. In

this way, drug-target effect monitoring is replaced by drug-

system effect monitoring. Correlation networks can also serve

as a tool for optimizing new generations of drugs, selecting the

best in class, or generating new combinatorial options in drug

rescue programs. Such a scheme has been described previ-

ously54 and includes translation and reversed-translation be-

tween the preclinical and clinical phase of research based on

systems comparisons. This scheme allows the selection of the

best animal model and/or to determine which part of the

animal disease correlation network best represents the human

situation.

Understanding disease and drug action, using such a cor-

relation networks strategy, is illustrated in Figure 13. The three

boxes illustrate correlation networks for the control “healthy”

animals, the “metabolic disorder” disease model animals, and

the drug response in the disease model animals. In this

example, adipose tissue was selected, and correlation networks

between various molecules profiled with our systems biology

platform are shown. A comparison of the network for the

control animals with that for the disease model animals reveals

that certain correlations still exist but that a change from

positive to negative correlation has taken place. Changes in

correlation might indeed be a sensitive tool for evaluating

systems changes. The drug clearly restores part of the original

correlation and illustrates the functional response in this

compartment. It is also clear that an unmet biochemical need

is still present, and a new correlation network is formed. The

latter is a side effect from the disease perspective and should

be further analyzed for possible toxicological implications.

With the use of such an approach, it would be possible to

compare a series of drugs and to generate a system compart-

ment activity profile for each and evaluate the possible effects

of combination therapies on a system. In addition, cross-

compartment links for various drugs can also be established;

see below under systems toxicology.

3. Systems Toxicology. Figure 14 illustrates the integration,

via a correlation network, of disparate types of data, namely,

metabolomic, proteomic, and transcriptomic data, from both

plasma and liver tissue. Drug-induced organ toxicity is an area

of active investigation by the pharmaceutical and life sciences

communities, and particularly useful are specific biomarkers

of potential organ injury which are based in easily accessible

biological fluids such as blood. The analytes represented in the

correlation network figure interestingly are not the ones which

show the largest ‘mean fold-change’ between treated and

untreated groups, but rather are the ones which exhibit the

largest correlations among themselves in tissue, and across the

blood-to-tissue demarcation. Such correlation networks, which

are generated in an unsupervised manner solely from empirical

data, are useful in revealing important molecules acting in the

organ tissue as well as potential circulating molecules which

may be sensitive and specific surrogates for the drug-induced

biochemistry occurring in the organ.

If correlation networks have a high node and edge count,

generally above a few hundred of each, then they are examined

for subnetworks or network motifs. This network motif analysis

can focus on a few principles: (1) important a priori known

Figure 13. Correlation networks including multiple analytes in three distinct groups of animals: (A) control (healthy) phenotype, (B)

disease phenotype, and (C) disease phenotype treated with a therapeutic compound (bottom). Each node in the graphs represents an

LC-MS analyte as measured in post-necropsy adipose tissue. Red lines denote statistically significant positive pairwise correlations

between analytes, and green lines denote statistically significant negative (inverse) pairwise correlations between analytes. The

topological layout of the graphs is determined by an algorithm and is the same in the three panels; distance between analytes contains

no information.
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analytes in the disease state and their neighboring nodes are

areas of focus; (2) correlations which exhibit change upon

disease or treatment (such “state-change” networks are of

interest, because they may be revealing disease or drug

processes); and, (3) highly interconnected nodes (e.g., those

characterized by high node degree or high clustering coef-

ficient) and their neighbors, both potential properties of “hubs”

in scale-free networks, which are of interest as they may expose

novel insights into disease or treatment mechanisms55.

In the systems toxicology case illustrated here, administra-

tion of the toxic compound induced myriad changes which

were detected across all bioanalytical platforms and in plasma

and tissue. The correlation analysis serves to filter these findings

to those for which the data provides evidence of a consistent

relationship across plasma and organ tissue. The analytes and

correlations depicted in the portion of the correlation network

in the tissue compartment were subsequently mapped onto

known biochemical pathways and reactions, and many were

confirmed to correspond to drug metabolism and related

biochemical processes in liver. However, many of the empiri-

cally observed relationships remained unexplained by existing

pathway maps or literature, and, as such, offer the potential

opportunity to explore novel biochemistry in this context.

Future Perspectives

Systems biology studies clearly are heavily dependent on the

reliability of the technology platform. Extending the current

platforms in more comprehensive formats can only be realized

if reproducible and repeatable, novel protocols are being

developed. Table 3 presents some data on the results of a recent

system study using our platform of 190 primary plasma samples

to illustrate the analyte coverage and data quality that is

achievable.

Collaboration on a large scale, as initiated recently by

funding agents, will be mandatory, but will only be successful

if sufficient support for the analytical expertise for developing

production-quality platforms appropriate for the applications

is included in the funding programs.

Although the direction toward a systems approach to health-

care is clear and the potential for systems biology56 is also well-

appreciated, the main issue remains how to successfully

implement such a strategy in a highly regulated environment,

such as that of the pharmaceutical industry. It has been argued

that implementation, from the market side in terms of applica-

tions, is most likely to occur, for instance, by drug rescue

programs or development of combinatorial approaches.22 In

addition, systems toxicology based on metabolomics as in the

COMET initiative57 in animal models or systems biology

supported by the FDA Critical Path Initiative for drug evaluation

might be important steps.

Systems pathology, pharmacology, and toxicology will all find

different implementation paths within pharmaceutical industry,

but given the complexity and the high reliability requirements

for the platform technology, a more centralized function for

in-depth studies is more likely with satellite applications using

simplified platforms within different research domains. Trans-

lational medicine could become an important focal point to

improve the preclinical to clinical transition, and systems

Figure 14. Correlation network of analytes across blood plasma (top of figure) and liver tissue (bottom of figure). Analytes include

proteins, endogenous metabolites, and gene transcripts. Not only is structure evident among analytes profiled from liver tissue, but

there are also a number of correlations to analytes profiled in plasma in this case. Such analytes can serve as useful circulating biomarkers

for the tissue-based biochemical processes occurring in the organ.

Table 3. Number of Analytes Profiled in a Recent Human

Plasma Study, Indicating the Number of Analytes Detected

and Coefficient of Variation Metrics, by Bioanalytical Platforma

platform

number of

analytes

coefficient of variation (CV)

median (25-75th percentile)

Lipid LC-MS 219 7% (4-13%)
GC-MS 182 7% (4-12%)
Polar LC-MS 165 15% (9-23%)
Proteomicsa 223 16% (12.5-20%)

a Proteomics represents multidimensional liquid chromatrography coupled
with mass spectrometry approaches.
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biology is ideally suited to evaluate animal models using system

biomarker profiling and reveal the overlap with the human

situation. New drugs can be optimized using such a transla-

tional and reversed-translational strategy.54

The most important step forward however is the paradigm

shift needed to become a system thinking organization. The

existence of Systems Biology as a scientific endeavor does not

necessarily lead directly to a systems approach in healthcare.

New intervention strategies need to be designed from this new

perspective, and given the limitations of the technology,

innovative routes need to be created. Such a paradigm shift

will occur when a critical mass of global intelligence has

embraced this concept of systems thinking.

An appreciation of complex connectivity is already making

some impact on how “drug designers” think, and a shift from

treating a target to treating pathways to treating an individual

person has begun. For instance, connectivity in metabolic

syndrome is moving toward understanding and modeling the

gut-brain-pancreas-liver-adipose-etc. interaction and balanc-

ing.58,59 The importance of integrating the study of gut flora

has also been pointed out from a systems perspective.60

The acceptance of systems biology in the scientific domain

has been very fast and is expected to grow even more rapidly.

When the concept for our systems biology platform initiative

was born in 1999 and effectuated in 2000 by establishing the

first commercial Systems Biology entity to generate momentum

in development of the concept, skepticism was high, but within

5 years, worldwide initiatives have been born and are underway

in academia, industry, and via collaboration networks such as

in the U.S., Europe, and China. The impact on global and

personal health will become substantial as many people

become aware that healthcare requires an integrative approach

including psychology, lifestyle, nutrition, and therapeutic

medicines.

Personalized medicine can benefit from a knowledge of the

unique system characteristics of every person; systems biology

suits this purpose well, and as has been described, innovative

combination of the elements of intervention can provide such

an approach, especially when, instead of disease management,

the step to health promotion can be realized. Preventive

medicine needs new diagnostic tools at the systems level, and

as changes in the early phases of disease are hard to detect,

changes in dynamics of the system, especially after a challenge

test, might be the direction to enable a revolution in this area.

The dynamical disease concept, as outlined from a nonlinear

dynamics point of view, is illustrative.61 Fusion of Eastern and

Western medicine has been proposed on the basis of systems

biology and is recommended in the 2029 project62 by a group

of very prominent scientists in the U.S. Our experiences also

point to systems biology as an ideal bridge between the two

cultural perspectives.24 A solution-based study of biology

starting with observed system improvements by perturbations

with herbal medicine, followed by a reversed pharmacology

strategy, might yield new insights in disease pathology as well

as lead to the discovery of novel synergistic system targets. This

approach is also used in theoretical modeling to grasp an all-

encompassing model in cosmology that comprises nowadays

both bottom-up and top-down approaches.63

A major next hurdle, but essential for the future, is the (re)-

integration of the mind (psychology) into systems thinking. As

outlined in the introduction, separation of mind and body in

science was the beginning of reductionism. Realizing that it

cannot be separated and that we are dealing with a mind-

body system is crucial for a major step forward. Of course, the

effects of stress are well-documented, and the effects of chronic

low stress conditions are hardly understood, but for many

diseases, stress plays an important if not dominant role.

Neuropeptides are a beautiful illustration of system-wide action

and reveal the importance of the connectivity between emo-

tions and our physiology, explained by molecule-receptor-

based research.64

The success of reductionistic and mechanistic biomedical

research is clear, but relates primarily to acute and short-term

problems. Systems approaches, by taking the myriad of con-

nectivities into account, are more suited for addressing chronic,

long-term improvements. This is a challenge for commercial

activities aiming at short-term returns, but represents a major

commercial opportunity for building sustainable models and

addressing major challenges in health care. In many chronic

diseases, such as type 2 diabetes, prior to the appearance of

symptoms, the body system may have been out of a healthy

state for over 10-20 years. Short-term improvements can be

obtained by aiming at a particular subsystem related to the

symptoms, but overall improvements can only be obtained by

a systems approach which will act slowly, but in a way in which

the system (human body) can follow the change and the self-

healing properties, including homeostatic mechanisms, can

take over. Instead of disease management, health promotion

becomes the aim of the intervention.

Also, a systems analysis of the total healthcare system points

to bottlenecks19 and reveals new approaches to improve the

current situation of the ever-increasing healthcare cost almost

equivalent to the exponential cost trend in pharmaceutical

Research and Development (R&D). In fact, a systems view on

how we live will be crucial to make progress in the world we

live in and will make an enormous impact on the future of

medicine or, more importantly, global personal health.65,4
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