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We survey the rationale and diversity of approaches for tuning, a fundamental aspect of 

climate modeling, which should be more systematically documented and taken into account 

in multimodel analysis.

THE ART AND SCIENCE OF 
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VENKATRAMANI BALAJI, QINGYUN DUAN, DORIS FOLINI, DUOYING JI, DANIEL KLOCKE, YUN QIAN, 

FLORIAN RAUSER, CATHERINE RIO, LORENZO TOMASSINI, MASAHIRO WATANABE, AND DANIEL WILLIAMSON

A
 s is often the case in sciences that address complex  

 systems, numerical models have become central  

 in climate science (Edwards 2001). General cir-

culation models of the atmosphere were originally 

developed for numerical weather forecasting (e.g., 

Phillips 1956). The coupling of global atmospheric 

and oceanic models began with Manabe and Bryan 

(1969) and came of age in the 1980s and 1990s. Global 

climate models or Earth system models (ESMs) are 

nowadays used extensively to study climate changes 

caused by anthropogenic and natural perturbations 

(Lynch 2008; Edwards 2010). The evaluation and 

improvement of these global models is the driver 

of much theoretical and observational research. 

Publications that analyze the simulations coordinated 

at an international level in the frame of the Coupled 

Model Intercomparison Project (CMIP) constitute a 

large part of the material synthesized in the Intergov-

ernmental Panel on Climate Change (IPCC) Assess-

ment Reports. Beyond their use for prediction and 

projection at meteorological to climatic time scales, 

global models play a key role in climate science. They 

are used to understand and assess the mechanisms 

at work, while accounting for the complexity of the 
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climate system and for the spatial and temporal scales 

involved (Dalmedico 2001; Held 2005).

The development of a climate model is a long-term 

project. When releasing a new model or new version of 

a model, a series of submodels, sometimes developed or 

improved over years in separate teams, are combined 

and optimized together to produce a climate that 

matches some key aspects of the observed climate. 

While the fundamental physics of climate is generally 

well established, submodels or parameterizations are 

approximate, either because of numerical cost issues 

(limitations in grid resolution, acceleration of radiative 

transfer computation) or, more fundamentally, because 

they try to summarize complex and multiscale pro-

cesses through an idealized and approximate represen-

tation. Each parameterization relies on a set of internal 

equations and often depends on parameters, the values 

of which are often poorly constrained by observations. 

The process of estimating these uncertain parameters 

in order to reduce the mismatch between specific ob-

servations and model results is usually referred to as 

tuning in the climate modeling community.

Climate model tuning is a complex process that 

presents analogy with reaching harmony in music. 

Producing a good symphony or rock concert requires 

first a good composition and good musicians who 

work individually on their score. Then, when play-

ing together, instruments must be tuned, which is 

a well-defined adjustment of wave frequencies that 

can be done with the help of electronic devices. But 

the orchestra harmony is reached also by adjusting 

to a common tempo as well as by subjective combi-

nations of instruments, volume levels, or musicians’ 

interpretations, which will depend on the intention 

of the conductor or musicians. When gathering 

the various pieces of a model to simulate the global 

climate, there are also many scientific and technical 

issues, and tuning itself can be defined as an objective 

process of parameter estimation to fit a predefined set 

of observations, accounting for their uncertainty, and 

a process that can be engineered. However, because 

of the complexity of the climate system and of the 

choices and approximations made in each submodel, 

and because of priorities defined in each climate 

center, there is also subjectivity in climate model tun-

ing (Tebaldi and Knutti 2007) as well as substantial 

know how from a limited number of people with vast 

experience with a particular model. One goal of this 

paper is to make this knowledge more explicit.

Choices and compromises made during the tun-

ing exercise may significantly affect model results 

and influence evaluations that measure a statistical 

distance between the simulated and observed climate. 

In theory, tuning should be taken into account in any 

evaluation, intercomparison, or interpretation of the 

model results. Although the need for parameter tun-

ing was recognized in pioneering modeling work (e.g., 

Manabe and Wetherald 1975) and discussed as an 

important aspect in epistemological studies of climate 

modeling (Edwards 2001), the importance of tuning 

is probably not advertised as it should be. It is often 

ignored when discussing the performances of climate 

models in multimodel analyses. In fact, the tuning 

strategy was not even part of the required documenta-

tion of the CMIP phase 5 (CMIP5) simulations. In the 

best cases, the description of the tuning strategy was 

available in the reference publications of the model-

ing groups (Mauritsen et al. 2012; Golaz et al. 2013; 

Hourdin et al. 2013a,b; Schmidt et al. 2014). Why such 

a lack of transparency? This may be because tuning is 

often seen as an unavoidable but dirty part of climate 

modeling, more engineering than science, an act of 

tinkering that does not merit recording in the scien-

tific literature. There may also be some concern that 

explaining that models are tuned may strengthen the 

arguments of those claiming to question the validity of 

climate change projections. Tuning may be seen indeed 

as an unspeakable way to compensate for model errors.

The purpose of this paper is to help make the pro-

cess of model tuning more explicit and transparent. 

Tuning is an intrinsic and fundamental part of climate 

modeling that should be better documented and dis-

cussed as such in the scientific literature. Tuning can be 

described as an optimization step and follows a scien-

tific approach. Tuning can provide important insights 

on climate mechanisms and model uncertainties. Some 

biases in climate models can be reduced or removed 

by tuning, while others remain stubbornly resistant. It 

is important to understand why if we want to improve 

models. Below, we present a definition of tuning, docu-

ment current practices and methodologies, and address 

emerging issues. We conclude with recommendations 

on model tuning and its documentation.

DEFINITION OF CLIMATE MODEL TUN-

ING. Model tuning or calibration is neither a new 

concept nor specific to climate modeling. In statistical 

sciences, Fisher introduced three steps in the process 

of modeling (Fisher 1922; Burnham and Anderson 

2002): (i) model formulation, (ii) parameter estima-

tion, and (iii) estimation of uncertainty. This catego-

rization applies also to the wider context of numerical 

modeling. It is conceptually useful to discriminate 

between model formulation and parameter estima-

tion, even if this distinction is by no means clear-cut 

in climate model tuning, as explained below.
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Climate model development is founded on well-

understood physics combined with a number of 

heuristic process representations. The fluid motions 

in the atmosphere and ocean are resolved by the so-

called dynamical core down to a grid spacing of typi-

cally 25–300 km for global models, based on numeri-

cal formulations of the equations of motion from fluid 

mechanics. Subgrid-scale turbulent and convective 

motions must be represented through approximate 

subgrid-scale parameterizations (Smagorinsky 1963; 

Arakawa and Schubert 1974; Edwards 2001). These 

subgrid-scale parameterizations include coupling 

with thermodynamics; radiation; continental hydrol-

ogy; and, optionally, chemistry, aerosol microphysics, 

or biology. 

Parameterizations are often based on a mixed, 

physical, phenomenological and statistical view. For 

example, the cloud fraction needed to represent the 

mean effect of a field of clouds on radiation may be 

related to the resolved humidity and temperature 

through an empirical relationship. But the same 

cloud fraction can also be obtained from a more 

elaborate description of processes governing cloud 

formation and evolution. For instance, for an en-

semble of cumulus clouds within a horizontal grid 

cell, clouds can be represented with a single-mean 

plume of warm and moist air rising from the surface 

(Tiedtke 1989; Jam et al. 2013) or with an ensemble 

of such plumes (Arakawa and Schubert 1974). Similar 

parameterizations are needed for many components 

not amenable to first-principle approaches at the 

grid scale of a global model, including boundary 

layers, surface hydrology, and ecosystem dynamics. 

Each parameterization, in turn, typically depends on 

one or more parameters whose numerical values are 

poorly constrained by first principles or observations 

at the grid scale of global models. Being approximate 

descriptions of unresolved processes, there exist dif-

ferent possibilities for the representation of many 

processes. The development of competing approaches 

to different processes is one of the most active areas of 

climate research. The diversity of possible approaches 

and parameter values is one of the main motivations 

for model intercomparison projects in which a strict 

protocol is shared by various modeling groups in 

order to better isolate the uncertainty in climate 

simulations that arises from the diversity of models 

(model uncertainty).

A model configuration is determined by two 

aspects: its complexity and resolution. For global 

climate models or ESMs, the configuration re-

tained generally results from compromises between 

resolution, complexity, and length and number of 

simulations. Different modeling groups may have 

different priorities in terms of scientific questions 

and applications, thus making different judgments 

on how to best balance finite resources. The choice 

of complexity and resolution itself can be considered 

as tuning in a wide sense, since it is often motivated 

by the ability of the model to reproduce with some 

realism key aspects of the climate system.

Here, we focus on the classical definition of tuning 

that corresponds to parameter estimation in Fisher’s 

terminology. Once a model configuration is fixed, 

tuning consists of choosing parameter values in such 

a way that a certain measure of the deviation of the 

model output from selected observations or theory 

is minimized or reduced to an acceptable range. 

Defined this way, tuning is usually called calibra-

tion in other application areas of complex numerical 

models (Kennedy and O’Hagan 2001). Some climate 

modelers are reluctant to use this term, however, since 

they know that by adjusting parameters they also 

compensate, intentionally or not, for some (often un-

known) deficiencies in the model formulation itself.

Parameter tuning itself occurs at various levels 

that correspond to stages of model development. An 

initial calibration may be performed during the devel-

opment phase of a new parameterization, for instance, 

using a single-column version of the climate model. 

Although desirable in principle, this parameteriza-

tion tuning is often difficult in practice because 

processes are strongly coupled to each other and to 

the large-scale dynamics. At the next stage, a num-

ber of parameterizations are tuned together when 

assembled into components: atmosphere, ocean, 

and continental surface. This component tuning is 

performed by using standalone components with 

boundary conditions that would otherwise be pro-

vided by other components. For example, an ocean 

model with imposed surface wind stress, inputs of 

freshwater, precipitation, and radiation might be 

tuned to get sea surface temperatures or meridional 

overturning circulation that match expectations. A 

system tuning is finally required to ensure consis-

tency across the full climate system once components 

are coupled together.

COMMON PRACTICES AND TARGETS. 

Tuning of coupled Earth system models generally 

follows a common practice but with targets and pri-

orities that may vary from group to group. This was 

confirmed by a poll conducted in August–September 

2014 (see sidebar on “How do modeling centers tune 

their models?” for results). Most of the major cli-

mate modeling groups (23 model centers) submitted 
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answers to a questionnaire on why and how their 

models are tuned.

With the increasing diversity in the applications 

of climate models, the number of potential targets 

for tuning increases. There are a variety of goals 

for specific problems, and different models may be 

optimized to perform better on a particular metric, 

related to specific goals, expertise, or cultural identity 

of a given modeling center. Groups more focused on 

the European climate may give more importance 

to the ocean heat transport in the North Atlantic, 

whereas others may be more concerned with tropical 

climate and convection. Some groups may put more 

weight on metrics that measure the skill to repro-

duce the present-day mean climatology or observed 

modes of variability, while others may privilege 

process-oriented metrics targeting processes that are 

believed to dominate the climate change response to 

anthropogenic forcing.

There is, however, a dominant shared target for 

coupled climate models: the climate system should 

reach a mean equilibrium temperature close to ob-

servations when energy received from the sun is close 

to its real value (~−340 W m−2). This energy source will 

be balanced by the energy lost to space by reflected 

sunlight and thermal infrared radiation if the model 

conserves energy numerically (which cannot always 

be strictly imposed). We know indeed that the system 

is nearly in balance but for the ocean heat uptake, 

believed to be about 0.5 W m−2 in our warming 

climate, a value much smaller than the model and 

observational uncertainties. This provides a strong, 

large-scale constraint.1

A common practice to fulfill this constraint is 

to adjust the top-of-atmosphere or surface2 energy 

balance in atmosphere-only simulations exposed to 

observed sea surface temperatures (component tun-

ing) and check if the temperature obtained in coupled 

models is realistic. This energy balance tuning is 

A survey was conducted in August–

September 2014, polling 23 different 

modeling centers that develop coupled 

atmosphere and ocean models to �nd 

out how they tune models. Most centers 

had a number of people discuss the 

answers before submission (one answer 

per group). The full results can be found 

in the online supplemental information 

(http://dx.doi.org/10.1175/BAMS 

-D-15-00135.2); 22 of 23 groups report-

ed adjusting model parameters to achieve 

desired properties such as radiation 

balance at the top of the atmosphere. 

Percentages are reported based on the 

fraction of respondents; 83% of centers 

use atmosphere and land only (�xed sea 

surface temperatures or a data ocean) to 

adjust parameters and 44% use single-

column models, while 74% perform their 

adjustment with a preindustrial (1850) 

coupled atmosphere–ocean con�guration 

and 39% use coupled present-day simula-

tions. Many groups also adjust ocean 

(48%) and land (39%) model parameters 

using standalone con�gurations. In 

addition, 21% use historical twentieth-

century simulations, and 17% use slab 

ocean models.

The goals of tuning are fairly uniform. 

Groups were asked about 26 different 

metrics: a wide variety. About one-third 

(8 of 26) of the metrics were rated as 

decisive or very important by at least 

one-third (35%) of modeling centers. 

However, there was lots of agree-

ment in the decisive (most important) 

metrics: global net top-of-atmosphere 

�ux (70%) and then global-mean surface 

temperature (26%). Based on these 

goals of tuning, there are a number of 

different parameterizations adjusted to 

achieve them. Since tuning is gener-

ally focused on the top-of-atmosphere 

and surface radiation balance, the 

most common properties adjusted are 

uncertain cloud properties and then 

properties that affect surface albedo; 

29% adjusted every parameterization 

asked about occasionally or frequently. 

The most common parameterizations 

frequently adjusted are clouds in the 

atmosphere, including cloud microphys-

ics (65%), convection (52%), and cloud 

fraction (52%). The most common occa-

sionally adjusted parameters were snow 

(79%) and sea ice (57%) albedo, along 

with ocean mixing (57%), orographic 

drag (57%), and cloud optical properties 

(48%). Soil (43%) and vegetation (39%) 

properties were also adjusted. These 

adjustments are consistent with the 

feeling that atmospheric cloud phys-

ics and atmospheric convection were 

thought most likely to introduce biases 

in the model, with ocean physics and 

mixing third.

Finally, groups were asked whether 

different tuning practices were eli-

gible (justi�ed) on a �ve-point scale of 

disagree, somewhat disagree, neutral, 

somewhat agree, and agree. All groups 

agreed or somewhat agreed that tuning 

was justi�ed; 91% thought that tuning 

global-mean temperature or the global 

radiation balance was justi�ed (agreed 

or somewhat agreed). Given that these 

were groups attending a meeting on 

the subject, there is a self-selection bias. 

Using the same top two categories as 

registering agreement, the following 

were considered acceptable for tuning 

by over half the respondents: atmo-

spheric circulation (74%), sea ice volume 

or extent (70%), and cloud radiative ef-

fects by regime and tuning for variability 

(both 52%).

HOW DO MODELING CENTERS TUNE THEIR MODELS?

1 Even observations of the radiative fluxes are in fact adjusted 

using this constraint. The CERES–EBAF data stand for 

energy balance adjusted flux.
2 Top-of-atmosphere and surface energy balance should not 

differ if exact energy conservation in the atmosphere is 

ensured, which turns out not to be an easy task.
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crucial since a change by 1 W m−2 of the global en-

ergy balance typically produces a change of about 

0.5–1.5 K in the global-mean surface temperature in 

coupled simulations depending on the sensitivity of 

the given model.

In general, the parameters are given some a priori 

values and ideally a range around this value. This 

information can come from theory, from a back-of-

the-envelope estimate, from numerical experiments 

(tuning an eddy diffusion coefficient from explicit 

simulations of the turbulent process), or from obser-

vations (a mean effective cloud droplet for instance). 

Note that many internal parameters are not directly 

observable. Given this information, a common prac-

tice is to adjust the most uncertain parameters that 

significantly affect key climate metrics. Indeed, all 

parameters are not known with the same accuracy. 

There is fair consensus (see poll) that the most uncer-

tain parameters that affect the atmospheric radiation 

are those entering in the parameterization of clouds 

and of the albedo of Earth’s surface. Clouds exert a 

large net cooling effect (about −20 W m−2), but this 

effect is uncertain to within several watts per square 

meter (Loeb et al. 2009). A 1 W m−2 change in cloud 

radiative effects is only a 5% variation of the net cloud 

cooling effect and 2% of the solar (or shortwave) ef-

fect, well below observational and model uncertainty 

(L’Ecuyer et al. 2015).

Most tuning parameters are specific to submodel 

(parameterization) choices. Parameters controlling 

mixing of convective clouds with the environment 

will depend on the specific description of the convec-

tive vertical transport, parameters controlling the 

size distribution of cloud droplets will depend on 

the sophistication of the microphysics, and so on. As 

an example, Fig. 1, reproduced from Mauritsen et al. 

(2012, their Fig. 1), illustrates the various parameters 

that are used for tuning in one particular model.

Some parameterizations and associated tun-

ing parameters are, however, shared by several 

models. We show in Fig. 2 how a scaling factor on 

the ice crystal fall velocity (process h in Fig. 1) is 

used to constrain both the global shortwave and 

longwave radiation to match the observed value 

of 240 ± 4 W m−2 in climate models that share the 

same formulation for the ice crystal fall velocity 

(Heymsfield and Donner 1990). A larger fall velocity 

systematically reduces the amount of ice clouds and 

thus increases both the absorbed shortwave radia-

tion (reduced planetary albedo) and outgoing long-

wave radiation (reduced greenhouse effect). Beyond 

global values, tuning is sometimes applied to spatial 

variations of the radiative f luxes like the latitudinal 

dependency that drives the general circulation or 

land–sea contrasts that drive monsoon circulations. 

Figures 2b and 2c illustrate for two models how the 

same factor on ice crystal fall velocity affects the 

latitudinal distribution of absorbed solar radiation 

and outgoing longwave radiation.

After clouds, the most common tuning parameters 

are those entering in the parameterizations of snow 

and sea ice albedo, ocean mixing, and orographic 

drag. Soil and vegetation properties are also some-

times used for tuning.

Because of the uncertainties in observations and 

in the model formulation, the possible parameter 

choices are numerous and will differ from one model-

ing group to another. These choices should be more 

often considered in model intercomparison studies. 

The diversity of tuning choices reflects the state of 

our current climate understanding, observation, and 

modeling. It is vital that this diversity be maintained. 

It is, however, important that groups better com-

municate their tuning strategy. In particular, when 

comparing models on a given metric, either for model 

assessment or for understanding of climate mecha-

nisms, it is essential to know whether some models 

used this metric as tuning target.

FIG. 1. Example of tuning approach for the ECHAM 

model (after Mauritsen et al. 2012). The figure illustrates 

the major uncertain climate-related cloud processes 

frequently used to tune the climate of the ECHAM 

model. Stratiform liquid and ice clouds and shallow 

and deep convective clouds are represented. The gray 

curve to the left represents tropospheric temperatures, 

and the dashed line is the top of the boundary layer. 

Parameters are (a) convective cloud mass flux above 

the level of nonbuoyancy, (b) shallow convective cloud 

lateral entrainment rate, (c) deep convective cloud 

lateral entrainment rate, (d) convective cloud water 

conversion rate to rain, (e) liquid cloud homogeneity, (f) 

liquid cloud water conversion rate to rain, (g) ice cloud 

homogeneity, and (h) ice particle fall velocity.
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FIG. 2. Example of tuning of the global top-of-atmosphere energy balance with a cloud parameter for the Geo-

physical Fluid Dynamics Laboratory Climate Model, version 3 (GFDL CM3), Max Planck Institute Earth System 

Model, version 1.1 (MPI-ESM1.1), and two versions (A and B) of the L’Institut Pierre-Simon Laplace Coupled 

Model, version 5 (IPSL-CM5), that differ by the representation of the convective boundary layer, clouds, and con-

vection. (a) Global absorbed shortwave radiation (ASR, full curve) and outgoing radiation (OLR, dashed) at top 

of atmosphere. The horizontal axis corresponds to the value of a scaling parameter in the ice crystal fall velocity 

equation, Eq. (5) of Heymsfield and Donner (1990), which is shared by the four models. The simulations are run 

over several years with imposed sea surface temperature. The difference between the dashed and full curves 

gives the global energy balance. The squares and diamonds correspond to default values retained after a tuning 

phase (for GFDL and IPSL-CM they correspond to the values retained for CMIP5, but because the experiments 

were redone with recent versions of the same models, the balance is not completely satisfied with the selected 

values). For the IPSL models, we show how the tuning of the scaling parameter affects the latitudinal variation of 

cloud radiative effect computed as the difference of total and clear-sky radiation for both (b) shortwave and (c) 

longwave radiation. The thin curves correspond to the various values of the tuning parameter (the smaller the 

fall velocity, the stronger the absolute cloud radiative effect both in the longwave and shortwave radiation) and 

the thick curves to the values retained after tuning. The observations correspond to the Clouds and the Earth’s 

Radiant Energy System (CERES)–Energy Balanced and Filled (EBAF) L3b product for Loeb et al. (2009). The 

height of the gray rectangle in (a) and thickness of the gray curves in (b) and (c) correspond to an observation 

uncertainty of ±4 W m−2. Note, however, that true error bars are not available for these observations.

APPLYING OBJECTIVE METHODS. There 

exists a considerable literature on parametric tuning 

using objective approaches developed in the statistics, 

engineering, and computer science communities. By 

objective methods, one means that a well-founded 

mathematical or statistical framework is used to 

perform the model tuning, for instance, by defining 

and minimizing a cost function or by introducing 

a Bayesian formulation of the calibration problem 

(Kennedy and O’Hagan 2001). The use of objective 

methods does not, however, in any way obviate the 

requirement for subjective judgment concerning the 

priorities and targets of the tuning process. An objec-

tive algorithm merely identifies those parts of the pro-

cedure that require the subjective scientific expertise 

of the modeler. It requires that the modeler formulate 

this judgment in terms of numbers or mathematical 

formulas, which can be sometimes quite demanding 

but also contribute to making the process of tuning 

more explicit and reproducible. Objective methods 

then provide an automatic tuning procedure based 

on those judgments.

Broadly speaking, objective methods fall into one 

of two categories. The first involves fast optimiza-

tion of some cost function measuring the distance of 

model simulations to a small collection of observa-

tions. Applications of such methods in climate sci-

ence include Bellprat et al. (2012), Yang et al. (2013), 

Zou et al. (2014), and Zhang et al. (2015). The second 

class of methods represents a Bayesian approach and 
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is now part of a class of methods under the banner 

of uncertainty quantification (UQ; Kennedy and 

O’Hagan 2001). UQ, for parameter tuning, aims 

to provide uncertainty for the parameters using a 

statistical model relating the climate model to ob-

servations that explicitly quantifies the key sources 

of uncertainty present in the problem: observational 

uncertainty, initial condition uncertainty (internal 

variability), and structural uncertainty (missing or 

incorrect physics). Applications of these methods 

to climate models include Rougier (2007), Jackson 

et al. (2008), Edwards et al. (2011), and Williamson 

et al. (2013). UQ methods, for example, were used to 

provide the U.K. Climate Projections (Murphy et al. 

2009; Sexton et al. 2012).

Both classes of objective methods (optimization 

and UQ) share advantages over more arbitrary trial-

and-error approaches that focus on tuning only one or 

two parameters at a time. For example, by perturbing 

multiple parameters simultaneously and systemati-

cally, automatic methods can overcome concerns that 

a local optimum for one objective may not be a good 

solution for other objectives and may not even be a 

global optimum for the tuning metric (Qian et al. 

2015; Williamson et al. 2015).

Both classes of methods also share some of the same 

challenges. The main challenge is the computational 

cost of running the climate model with sufficient pa-

rameter choices to explore the parameter space. For 

high-resolution climate models (or even their compo-

nents), available supercomputing power and the time 

available between tuning cycles—typically on the order 

of one to a few years between two model releases—lim-

its even the best equipped institutions.

To overcome these computational issues, statisti-

cal emulators (also called metamodels) can be used. 

Developed by statisticians since the late 1980s (Sacks 

et al. 1989; Currin et al. 1991; Haylock and O’Hagan 

1996), emulators use small training ensembles to train 

statistical models that can predict the climate model 

response very quickly (Neelin et al. 2010), reporting a 

measure of uncertainty (typically offering a full prob-

ability distribution for the climate model at any choice 

of the parameters). The emulator uncertainty must 

be included in Bayesian UQ methods for parameter 

tuning, though it is ignored in some applications of 

optimization methods with the emulator mean func-

tion used directly.

For high-resolution models and models with long 

spinup time, running the model enough to build an 

emulator represents a huge challenge. Ensembles of 

shorter simulations to replace the traditional, serial-

in-time, long-term climatology simulations have been 

proposed (Wan et al. 2014), and the UQ literature has 

long proposed and demonstrated the success of linked 

models of different resolution to build emulators. For 

example, Williamson et al. (2012) built an emulator 

for the CMIP5 model the Hadley Centre Coupled 

Model, version 3 (HadCM3), using only 16 integra-

tions and a large ensemble of the low-resolution 

version Fast Met Office/U.K. Universities Simulator 

(FAMOUS). This is an active area of research in UQ.

A principal challenge for automatic tuning methods 

is that tuning to a handful of metrics may risk achiev-

ing improved performance in those metrics at the 

expense of unphysical behavior in metrics or processes 

that were not used in tuning, that is, we get some things 

“right for the wrong reasons.” This problem, known 

as overfitting or overtuning, will arise as soon as a 

minimization or parameter selection is done that does 

not properly account for the observation and model 

structural uncertainties. It will also arise when tun-

ing to partial observations (i.e., not tuning the whole 

state vector of the climate model) or overfitting data 

that are partly simply natural variability (Notz 2015). 

Then tuning may be seen as an error compensation 

process rather than as model calibration. Overtuning 

can also occur when tuning by hand, but blind trust in 

an automatic tool may be more risky in that it prevents 

us from exercising the part of the expert judgment that 

cannot easily be translated into objective functions or 

expressed mathematically as uncertainties.

Overtuning is a real concern and the raison d’être 

for Bayesian UQ methods. However, because the key 

sources of uncertainty in the tuning problem, obser-

vation uncertainty, and structural error are so poorly 

understood and difficult to quantify, automatic tun-

ing has a long way to go before it is adopted routinely 

by the major modeling centers for CMIP integrations. 

A class of UQ methods that explicitly avoids over-

tuning, called history matching, has recently been 

proposed for the climate model tuning community 

(Williamson et al. 2015). They avoid overtuning by 

changing the problem from one of searching for a 

single best value of the parameters to looking for 

unacceptable parameter values and ruling out the cor-

responding regions of the parameter space iteratively.

TUNING AND MODEL IMPROVEMENT. 

Although tuning is an efficient way to reduce the 

distance between model and selected observations, 

it can also risk masking fundamental problems and 

the need for model improvements.

There is evidence that a number of model errors are 

structural in nature and arise specifically from the ap-

proximations in key parameterizations as well as their 
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interactions. For example, some models systematically 

underestimate rainfall over monsoon regions, whereas 

others will do the opposite. Other biases are systematic 

across models, like the presence of a persistent double 

Pacific intertropical convergence zone (ITCZ) on both 

sides of the equator or warm biases over the eastern 

tropical oceans. Those model biases are indeed often 

resistant to model tuning. Tuning a model to improve 

its performance on a specific target also often degrades 

performance on other metrics. For example, tuning 

a model to improve the intraseasonal variability of 

precipitation in the tropics often comes at the cost of 

increased biases in the mean state (Kim et al. 2012).

Introduction of a new parameterization or improve-

ment also often decreases the model skill on certain 

measures. The preexisting version of a model is gener-

ally optimized by both tuning uncertain parameters 

and selecting model combinations giving acceptable 

results, probably inducing compensation errors (over-

tuning). Improving one part of the model may then 

make the skill relative to observations worse, even 

though it has a better formulation. The stronger the 

previous tuning, the more difficult it will be to demon-

strate a positive impact from the model improvement 

and to obtain an acceptable retuning. In that sense, 

tuning (in case of overtuning) may even slow down 

the process of model improvement by preventing the 

incorporation of new and original ideas. This difficulty 

has been known for decades in operational numerical 

weather prediction centers and could be overcome by 

not overweighting climate performance metrics (the 

ones that matter for the end users or for impact models) 

with respect to process-oriented ones. Process-oriented 

metrics are intended to help relate large-scale biases to 

the misrepresentation of specific subgrid-scale pro-

cesses. Process-oriented metrics include, for example, 

compositing cloud or precipitation characteristics by 

dynamical regimes (Bony et al. 2004), compositing 

relative humidity profiles based on precipitation per-

centiles to assess the sensitivity of convection schemes 

to relative humidity (Kim et al. 2014), or evaluating 

simulated cloud microphysical properties (and their 

covariability) directly from satellite measurements 

(Suzuki et al. 2013).

On the other hand, tuning may highlight where 

further model improvement is needed. If parameter 

values needed to satisfy a given metric are outside the 

acceptable range, or if different values are needed for 

different regions or climate regimes, developers may 

consider revisiting the formulation of the parameter-

ization or develop new ones. Then, the tuning process 

can be pushed back to a deeper level inside the model 

while increasing the physical realism of the model.

For clouds and convection, parameterization de-

velopment is often performed using single-column 

versions of the global model compared to explicit 

high-resolution simulations of the processes that are 

parameterized, following a strategy defined 20 years 

ago (see, e.g., Ayotte et al. 1996; Liu et al. 2001). The 

explicit simulation gives access to variables hardly 

accessible by observation (like 3D fields of tempera-

ture and humidity or vertical velocities) but also to 

estimation of parameters that have no observational 

counterpart (like entrainment and detrainment rates 

between a mean bulk plume and its environment or 

a mean fall velocity for ice crystals at the model grid 

scale). Such parameters can be derived by sampling 

and characterizing the equivalent of the parameter-

ized structures in the explicit simulations, as done, for 

example, by Couvreux et al. (2010), to derive mixing 

rates between a mean bulk plume and its environ-

ment. The parameterization development process 

can thus help constrain some parameters but also 

propose physically based submodels for some others.

One way to make the reduction of model large-

scale biases and the parameterization development 

processes more “in tune” is by deriving an acceptable 

range of parameter values instead of a single value 

from the aforementioned process studies and use this 

range when tuning global simulations. To achieve 

this goal, UQ methods could be applied to the single-

column model using explicit process simulations as 

a reference. It is important that the representation of 

turbulence, microphysics, and radiation continue to 

be improved in explicit high-resolution simulations, 

so that the parameterization can be evaluated not only 

in terms of subgrid-scale dynamics (as usually done so 

far) but also in terms of the radiative effect of clouds.

Another emerging approach consists of using ini-

tialized or nudged simulations (Zhang et al. 2014) in 

the tuning process. In nudged simulations, the model 

is forced to follow the observed trajectory by relaxing 

winds and also optionally temperature and humidity 

toward meteorological analysis, with a time constant 

of typically a few hours. With initialized or nudged 

simulations, the simulated and observed meteorol-

ogy follows the same trajectory and the comparison 

with observations can be done on a day-by-day basis. 

Wind-only nudging allows separation of parameter-

ization tuning for a given meteorological situation (as 

is done in 1D mode) from that of the coupling of pa-

rameterization with large-scale dynamics. Nudging 

with short enough time constants (typically of a few 

hours) removes the chaotic nature of the atmospheric 

large-scale circulation and slow feedbacks of that 

circulation on fast processes (such as clouds). Nudged 
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or initialized simulations may also help accelerate 

tuning for high-resolution climate models.

Whatever the approach, there is a need for relying 

more on observational studies at the process scale 

to tune the radiative budget in a more physical way. 

Progress will be made by further incorporating model 

tuning as an uncertainty analysis into the parameter-

ization development process.

TUNING TO TWENTIETH-CENTURY 

WARMING? The increase of about 1 K of the 

global-mean temperature observed from the begin-

ning of the industrial era, hereafter twentieth-century 

warming, is a de facto litmus test for climate models 

(Mauritsen et al. 2012). However, as a test of model 

quality, it is not without issues because the desired 

result is known to model developers and therefore 

becomes a potential target of the development.

The amplitude of the twentieth-century warming 

depends primarily on the magnitude of the radiative 

forcing, the climate sensitivity, and the efficiency of 

ocean heat uptake. By linearizing about a basic sta-

tionary climatic state, the global-mean temperature 

change for a gradually increasing forcing can be ap-

proximated as

 
F

T
κ λ

∆ ≈
−

, (1)

where T denotes global-mean surface temperature, F 

is an imposed radiative forcing, κ is the deep-ocean 

heat uptake efficiency, and λ is the feedback param-

eter that is inversely proportional to equilibrium 

climate sensitivity (ECS; ECS ≈ –F/λ). Climate models 

have values of λ that range from −0.6 to −1.8 W m−2 K−1 

and κ ranges from approximately 0.5 to 1.2 W m−2 K−1. 

On average, in models the denominator (κ – λ) is 

about 2 W m−2 K−1, and in the year 2003, the forcing 

is around 1.7 W m−2 (Forster et al. 2013).

The often-deployed paradigm of climate change 

projection is that climate models are developed using 

theory and present-day observations, whereas ECS is 

an emergent property of the model and the matching 

of the twentieth-century warming constituting an a 

posteriori model evaluation. Some modeling groups 

claim not to tune their models against twentieth-

century warming; however, even for model develop-

ers, it is difficult to ensure that this is absolutely true 

in practice because of the complexity and historical 

dimension of model development.

The reality of this paradigm is questioned by find-

ings of Kiehl (2007), who discovered the existence 

of an anticorrelation between the total radiative 

forcing and climate sensitivity in a model ensemble; 

high-sensitivity models were found to have a smaller 

total forcing and low-sensitivity models were found 

to have a larger forcing, yielding less cross-ensemble 

variation of historical warming than otherwise to be 

expected. Even if alternate explanations have been 

proposed and even if the results were not so straight-

forward for CMIP5 (cf. Forster et al. 2013), it could sug-

gest that some models may have been inadvertently or 

intentionally tuned to the twentieth-century warming.

There is a broad spectrum of methods to improve 

the model match to twentieth-century warming, 

ranging from simply choosing to no longer modify 

the value of a sensitive parameter when a match is 

already good for a given model (Mauritsen et al. 

2012), or selecting physical parameterizations that 

improve the match, to explicitly tuning either forc-

ing or feedback, both of which are uncertain and 

depend critically on tunable parameters (Murphy 

et al. 2004; Golaz et al. 2013). Model selection could, 

for instance, consist of choosing to include or leave 

out new processes, such as aerosol–cloud interactions, 

to help the model better match the historical warming 

or choosing to work on or replace a parameterization 

that is suspected of causing a perceived unrealistically 

low or high forcing or climate sensitivity.

An illustration of twentieth-century tuning with 

the GFDL-CM3 model is shown in Fig. 3. The model 

(green) produces a relatively weak warming over the 

twentieth century due to a strong cooling effect from 

aerosol–cloud interactions. Sensitivity tests, which 

were performed after the model was frozen, showed 

that it is possible to reduce this effect and thereby 

obtain a more realistic warming. However, this was 

achieved by lowering the threshold size for the con-

version of cloud droplets to rain to values smaller than 

supported by observations (Golaz et al. 2013; Suzuki 

et al. 2013, and references therein).

Adjusting the twentieth-century warming would 

in principle require a series of multicentury simula-

tions with the coupled ocean–atmosphere model 

because of the long spinup of the ocean state required 

before starting transient twentieth-century simula-

tions. However, it has long been known that short 

atmospheric simulations can be used to estimate 

either adjusted forcing when forced with perturbed 

atmospheric composition (Hansen et al. 2005) or ECS 

when forced with perturbed sea surface temperature 

(Cess et al. 1989; Gettelman et al. 2012). Thereby, it is 

possible to target specific values of F and λ thought to 

provide a good match to historical warming based on 

experience with previous model versions.

Any ECS tuning would need to take into account 

three main sources of uncertainties. First, as usual, 
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the uncertainty of the observation of the global-mean 

surface temperature should not be forgotten even if it 

is believed today to be much smaller than the inter-

model dispersion. Then the radiative forcing F itself 

is uncertain. It is composed of a fairly well-known 

greenhouse gas forcing that is partly compensated 

by an uncertain aerosol forcing and modified by a 

series of other less important forcing agents. Tuning 

of the twentieth century could, for instance, be ob-

tained with an overly large ECS balancing an overly 

strong aerosol radiative forcing. In such a case, and 

because the effect of greenhouse gases will dominate 

in the future, this would result in an overestimate of 

future global warming. The third important source 

of uncertainty comes from the internal climate vari-

ability that can cause variations among realizations 

with different initial conditions of typically ±0.1 K 

to centennial warming; since the observed only rep-

resents one such realization, a model need not be 

closer than this to match the target. Trying to match 

the twentieth-century global warming without ac-

counting for sources of uncertainty would inevitably 

lead to overtuning.

The question of whether the twentieth-century 

warming should be considered a target of model 

development or an emergent property is polariz-

ing the climate modeling community, with 35% of 

modelers stating that twentieth-century warming 

was rated very important to decisive, whereas 30% 

would not consider it at all during development. 

Some view the temperature record as an independent 

FIG. 3. Simulations of the twentieth-century tempera-

ture with the CMIP5 model ensemble (gray curves). 

Each curve corresponds to a 5-yr running mean of the 

anomaly of the global-mean temperature at 2 m above 

surface. The anomaly is computed using as a reference 

period years 1850–99. The black curve corresponds to 

the version 4 of the Hadley Centre/Climatic Research 

Unit (HadCRUT) observations. The colored curves 

correspond to three configurations of the GFDL CM3 

model. CM3 denotes the CMIP5 model, while CM3c 

and CM3w denote alternate configurations with large 

and smaller, respectively, cooling from cloud aerosol 

interactions.

evaluation dataset not to be used, while others view it 

as a valuable observational constraint on the model 

development. Likewise, opinions diverge as to which 

measures, either forcing or ECS, are legitimate means 

for improving the model match to observed warming. 

The question of developing toward the twentieth-

century warming therefore is an area of vigorous 

debate within the community.

However, the capability to control the modeled 

twentieth-century warming also offers new oppor-

tunities to explore the bounds of modeled climate 

sensitivity (Golaz et al. 2013); by combining altered 

ECS and aerosol forcing, it is technically possible to 

construct outlier low- and high-sensitivity models 

that match the observed warming. Evaluating such 

models with other observed aspects, such as midcen-

tury warming or modes of variability, and running 

them in prehistoric climates, such as the Last Glacial 

Maximum or the Pliocene, could potentially allow 

us to rule out extreme values of ECS and/or aerosol 

forcing.

The fact that some models are explicitly, or im-

plicitly, tuned to better match the twentieth-century 

warming, while others may not be, clearly complicates 

the interpretation of the results of combined model 

ensembles such as CMIP. The diversity of approaches 

is unavoidable as individual modeling centers pursue 

their model development to seek their specific sci-

entific goals. It is, however, essential that decisions 

affecting forcing or feedback made during model 

development be transparently documented.

CONCLUSIONS, IMPLICATIONS, AND 

RECOMMENDATIONS. There was a debate 

among authors on the idea of using the word art in 

the title of the paper. Tuning is seen by some model-

ers more as a pure engineering calibration exercise, 

which consists of applying objective or automatic 

tools based on purely scientific considerations. Others 

see it as an experienced craftsmanship or as an art: 

“a skill that is attained by study, practice, or obser-

vation.”3 As in art, there is also some diversity and 

subjectivity in the tuning process because of the 

complexity of the climate system and because of the 

choices made among the equally possible represen-

tations of the system. It is essential to maintain this 

diversity in model approaches and tuning because 

of the approximate nature of models, the lack of 

observational counterparts for many internal model 

parameters, and the importance of climate change 

predictions, for which no observation exist.

3 www.ahdictionary.com/word/search.html?q=art
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This subjectivity does not contradict the funda-

mental and twofold scientific nature of climate tun-

ing. On one side, the tuning process involves many 

scientific issues like the physical understanding of the 

phenomena to be modeled, algorithmic formulation 

of physical laws, mathematical basis of optimization, 

and the statistics of internal variability. In turn, the 

understanding of climate mechanisms can be in-

spired by the act of tuning that is based intrinsically 

on a large exploration of possible climates through 

sensitivity experiments. It allows us to identify and 

understand the role of the various modeled processes 

and feedbacks involved. Tuning may also help identify 

model structural errors, for instance, if the optimal 

value of a parameter falls outside the acceptable range 

or if different values of the same parameter are opti-

mal for different situations. In this sense, tuning is a 

form of uncertainty analysis.

Because tuning will affect the behavior of a climate 

model, and the confidence that can be given to a par-

ticular use of that model, it is important to document 

the tuning portion of the model development process. 

We recommend that for the next CMIP6 exercise, 

modeling groups provide a specific document on their 

tuning strategy and targets that would be referenced 

when accessing the dataset. We recommend distin-

guishing three levels in the tuning process: individual 

parameterization tuning, component tuning, and 

climate system tuning. At the component level, em-

phasis should be put on the relative weight given to 

climate performance metrics versus process-oriented 

ones and on the possible conflicts with parameter-

ization level tuning. For the climate system tuning, 

particular emphasis should be put on the way energy 

balance was obtained in the full system: was it done 

by tuning the various components independently 

or was some final tuning needed? The degree to 

which the observed trend of the twentieth century 

was used or not for tuning should also be described. 

Comparisons against observations and adjustment 

of forcing or feedback processes should be noted. At 

each step, any occasion where a team had to struggle 

with a parameter value or push it to its limits to solve 

a particular model deficiency should be emphasized. 

This information may well be scientifically valuable 

as a record of the uncertainty of a model formulation.

It would also be valuable to produce and document 

two or more versions of the same model that would dif-

fer only by their tuning. One can imagine changing a 

parameter that is known to affect the sensitivity, keep-

ing both this parameter and the ECS in the anticipated 

acceptable range and retuning the model otherwise 

with the same strategy toward the same targets.

Finally, development of new methodologies is 

strongly encouraged. Some of the most promising 

ideas include 1) the systematic use of the single 

column versus explicit simulations approach for pa-

rameterization tuning, 2) the use of process-oriented 

metrics, and 3) nudged simulations to fill the gap 

between parameterization and component tuning. 

The systematic use of objective methods at the pro-

cess level in order to estimate the range of acceptable 

parameters’ values for tuning at the upper levels is 

probably one strategy that should be encouraged and 

may help make the process of model tuning more 

transparent and tractable.

There is a legitimate question of whether tuning 

should be performed preferentially at the process 

level and the global radiative budget and other climate 

metrics used for a posteriori evaluation of the model 

performance. It could be a good way to evaluate our 

current degree of understanding of the climate sys-

tem and to estimate the resulting uncertainty in ECS. 

Restricting adjustment to the process level may also be 

a good way to avoid compensating model structural 

errors in the tuning procedure. However, because of 

the multiapplication nature of climate models, because 

of consistency issues across the model and its com-

ponents, because of the limitations of process studies 

metrics (sampling issues, lack of energy constraints), 

and also simply because the climate system itself is 

not observed with sufficient fidelity to fully constrain 

models, an a posteriori adjustment will probably 

remain necessary for a while. This is especially impor-

tant for the global energy constraints that are a strong 

and fundamental aspect of global climate models. 

Adjustment will be done usually by tuning the most 

uncertain parameters involved in the representation 

of processes that most affect radiation such as cirrus 

clouds or low clouds within acceptable ranges. Tuning 

will probably induce some compensation of short-

comings or errors in the model parameterizations or 

configuration. However, this error compensation is 

probably unavoidable and desirable for current models, 

because of the importance of the energetic tuning for 

a reasonable simulation of most aspects of the climate 

system. The level of accuracy required for the global 

energy tuning (of a few tenths watts per square meter) 

is, for instance, smaller than the error arising from not 

computing radiation at every time step, as is often done 

to save computational means (on the order of several 

watts per square meter; see, e.g., Balaji et al. 2016). It is 

recommended, however, to ensure that the final global 

tuning is not obtained for a set of parameter values that 

would not be acceptable in terms of process studies and 

process-oriented metrics.
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The use of objective methods could also be promot-

ed at all the stages of model tuning in order to render 

the process more efficient. However, objective tuning 

approaches should be used with caution. Because of 

the approximate nature of models and because of ob-

servations’ uncertainties, it is impossible to retain one 

unique parameter set as an objective criteria. Formal-

izing the question of tuning addresses an important 

concern: it is essential to explore the uncertainty com-

ing both from model structural errors by favoring the 

existence of tens of models and from parameter uncer-

tainties by not overtuning. Either reducing the number 

of models or overtuning, especially if an explicit or 

implicit consensus emerges in the community on a 

particular combination of metrics, would artificially 

reduce the dispersion of climate simulations. It would 

not reduce the uncertainty but only hide it.

We end by expressing the hope that this article will 

encourage both a systematic effort by the community 

to document this arcane aspect of model construc-

tion and for more people to join a vigorous debate on 

model tuning and evaluation.
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