The Art of Error Correcting Coding
 Robert H. Morelos-Zaragoza Second Edition, John Wiley \& Sons, 2006
 ISBN: 0470015586

Errata (Updated 12/4/2007)

Chapter 1

Page 13: In equation (1.27) the limit of the summation should be t and not n :

$$
\sum_{i=0}^{t}\binom{n}{i}(q-1)^{i} \leq q^{n-k}
$$

Chapter 3
Page 70: The parameters of the BCH codes in problems 8 and 9 need to be exchanged. Namely, $(15,7,5)$ for problem 8 and $(15,5,7)$ for problem 9 , as follows:
8. Show that the $(0,2)$-order EG code of length 15 is a binary $\mathrm{BCH}(15,7,5)$ code.
9. Show that the $(1,1)$-order EG code of length 15 is a binary $\mathrm{BCH}(15,5,7)$ code.

In problem 14, part (a), the problem is number 6 (not 2).
Chapter 4
Page 78: In Equation (4.7), the argument of $\mathrm{z}(\mathrm{x})$ the exponent is negative. (The inverse of the position, eq. (10.14) of Berlekamp (1984)):

$$
e_{j_{\ell}}=\frac{\left(\alpha^{j_{\ell}}\right)^{1-b} z\left(\alpha^{-j_{\ell}}\right)}{\prod_{\substack{i=1 \\ i \neq \ell}}^{\nu}\left(1+\alpha^{j_{i}-j_{\ell}}\right)}
$$

Page 85: In problem 4 and 5, the primitive polynomials are $p(x)=x^{3}+x+1$ and $p(x)=x^{5}+x^{2}+1$, respectively.

Chapter 5

Page 117: In problem 8 , the free distance is 3 . For problem 9 , use the most significant term of the polynomial in (5.20). This values of this term are $\left\{3 x^{6}, 42 x^{5}, 92 x^{4}\right\}$ for rates $\{2 / 3,3 / 4,5 / 6\}$, respectively. (Appendices A and C of (Lee 1997)).

Chapter 6
Page 141: In problem 9 use a " $|u| v+w \mid "$ construction (and not construction \mathbf{X}), with u, v and w denoting codewords in C_{1}, C_{2} and C_{3} respectively.

Chapter 7

Page 160: Figure 7.11 is not correct and needs to be modified as do the soft outputs (one per information bit, excluding the tail bits) which should be: $+18,+14,-4,-2$. The correct figure is shown below.

Transmitted	$-1,-1$	$+1,-1$	$+1,-1$	$+1,+1$	$-1,+1$
Received	$-4,-1$	$-1,-3$	$+2,-3$	$+3,+3$	$-3,+3$

Page 162: The subindex of γ in (7.25) is $i+1$ and its argument $\left(m, m^{\prime}\right)$, as in (7) of Bahl et al. (1974):

$$
\beta_{i}(m)=\sum_{m^{\prime}} \beta_{i+1}\left(m^{\prime}\right) \cdot \sum_{j=0}^{1} \gamma_{i+1}^{(j)}\left(m, m^{\prime}\right)
$$

Page 168: Assume that $N_{0}=10$ in problem 9. In problem 10, by zero-tail it is meant that all trellis paths terminate at the all-zero state.

Chapter 8

Page 201: In problem 2, you may approximate the LLR value of a parity-check bit as "the negative of the product of the signs times the minimum amplitude (reliability)" similar to (12) of (Hagenauer et al. 1996).

$$
\Lambda\left(x_{1} \oplus x_{2} \oplus \cdots \oplus x_{\ell}\right) \approx-\left[\prod_{j=1}^{\ell}(-1)^{\operatorname{sgn}\left(\Lambda\left(x_{j}\right)\right)}\right] \cdot \min _{1 \leq j \leq \ell}\left\{\left|\Lambda\left(x_{j}\right)\right|\right\}
$$

Page 202: The function in question is $G(x)=\log (F(x))$ and not $F(x)$. Prove that $G(G(x))=x$.

Chapter 9

Page 212: The values in FIgure 9.12 should be the squared Euclidean distances: $a=4, b=0.586, c=2$ and $d=3.414$.

