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THE ART OF FRAME THEORY

Peter G. Casazza

Abstract. The theory of frames for a Hilbert space plays a fundamental
role in signal processing, image processing, data compression, sampling
theory and more, as well as being a fruitful area of research in abstract
mathematics. In this “tutorial” on abstract frame theory, we will try to
point out the major directions of research in abstract frame theory and
give some sample techniques from each of the areas. We will also bring
out some of the important open questions, discuss some of the limitations
of the existing theory, and point to some new directions for research.

1. Introduction

Although the Fourier transform has been a major tool in analysis for over
a century, it has a serious lacking for signal analysis in that it hides in its
phases information concerning the moment of emission and duration of a sig-
nal. What was needed was a localized time-frequency representation which
has this information encoded in it. In 1946, D. Gabor [83] filled this gap
and formulated a fundamental approach to signal decomposition in terms of
elementary signals. Gabor’s approach quickly became a paradigm for the spec-
tral analysis associated with time-frequency methods. Today, Gabor’s ideas
are still at the center of the myriad of applications of Gabor (Weyl-Heisenberg)
frames. Gabor went on to receive the Nobel Prize in Physics in 1971 for his
development of holography.

Frames for a Hilbert space were formally defined by Duffin and Schaeffer
[62] in 1952 to study some deep problems in nonharmonic Fourier series. Ba-
sically, Duffin and Schaeffer abstracted the fundamental notion of Gabor for
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studying signal processing. The ideas of Duffin and Schaeffer did not seem to
generate much general interest outisde of nonharmonic Fourier series however
(see Young’s book [138]) until the landmark paper of Daubechies, Grossmann
and Meyer [56] in 1986. After this groundbreaking work, the theory of frames
began to be more widely studied, although not to the extent of the extremely
rapid development of wavelets.

Traditionally, frames have been used in signal processing, image processing,
data compression and sampling theory. Today, ever more uses are being found
for the theory such as optics, filterbanks, signal detection, as well as the study
of Besov spaces, in Banach space theory etc. In the other direction, powerful
tools from operator theory and Banach space theory are being introduced
to the study of frames producing deep results in frame theory. At this very
moment, the theory is beginning to grow rapidly with the host of new people
entering the area. We will try to take a look at some of the current directions of
research in abstract frame theory with an emphasis on the available techniques
and unsolved problems. Some parts of the theory are so extensively developed,
such as exponential (Fourier) frames, that we have chosen not to delve into
them since even a small introduction which contains the essential tools and
important results would be excessively long. This does not mean that these
areas are not important, but to the contrary, they are so important as to
require their own survey. Also, the bulk of the work on frame theory until
recently has been in the applied directions, and we are not covering these
areas at all (see the Remark below).

One of the nice things about frame theory is the fact that big portions
are still underdeveloped - such as frames for finite-dimensional Hilbert spaces,
wavelet frames etc. Also, many of the extensively developed areas, such as
Weyl-Heisenberg frames and exponential frames, still have many fundamen-
tal open questions to challenge anyone - such as the complete classification
of Weyl-Heisenberg frames or the classification of exponential frames. An-
other interesting feature of the area is the broad spectrum of people working
in different parts of it including biologists, engineers, mathematicians (with
backgrounds in functional and harmonic analysis, Banach space theory, op-
erator theory etc.), physicists and more. Although each group has its own
interests, there is an opportunity here to interact with a broad spectrum of
researchers.

Now let us discuss the organization of the material. Section 2 contains
all the background material needed throughout the paper, including results
from harmonic analysis, Banach space theory, operator theory, and Hilbert
space theory. Section 3 contains a (historical) introduction to frames through
the work of Gabor and Duffin and Schaeffer. Section 4 is an introduction to
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abstract frame theory. This is one of the most extensive sections. It includes
most of the fundamental results on abstract frame theory. Here we also make
our case for treating frames as operators on a Hilbert space. That is, for bring-
ing the power of operator theory into the frame theory arena. Section 5 is an
introduction to Weyl-Heisenberg frames, one of the most important applica-
tions of frame theory. Here we look at the standard material on WH-frames
including the important Zak Transform and its use to produce examples. This
topic is taken up again in Section 9 where we look at some recent results in
this area. Section 6 is a small introduction to perturbation theory containing
some of the basic perturbation results. Section 7 is an introduction to wavelet
frames. Section 8 concerns frames of translates and the related notions of ex-
ponential frames and sampling theory. Section 10 covers some selected topics
in abstract frame theory including the projection methods, frames containing
Riesz bases, and frames for Banach spaces.

There is a very well written introduction to WH-frames due to Heil and
Walnut [95] which includes many of the results in this area through 1990. The
author used this paper to enter the area of Weyl-Heisenberg frame theory and
its influence can be seen throughout these notes. Also, the author wishes to
thank Chris Heil for his careful reading of these notes and his many recom-
mendations for improvements. Let us also remark that until recently, many
results in this area were “folklore” and therefore it is sometimes difficult or
impossible to give proper credit for them.

Remark. These notes present a survey of modern abstract frame theory.
However, until recently the majority of the work in frame theory was in the
applied directions. Therefore, someone who only reads these notes will not be
adequately introduced to the traditional major figures and traditional major
topics in this area. We strongly recommend supplementing these notes with
the excellent books by Daubechies [55], Feichtinger and Strohmer [73] and
Young [138]. For a more accessible introduction to Weyl-Heisenberg frames,
the forthcoming book of Gröchenig [87] is perfect. For a yet more applied
approach to the area, we recommend Coifman and Zeevi [51]. The above ref-
erenced material will give one a more balanced view of this important subject.

2. Background Material

We use N,Z, R,C, Q to denote the natural numbers, integers, real num-
bers, complex numbers, and rational numbers respectively. If we want to
choose a number a which may come from either R or C, we just call a a
scalar. The torus group is denoted by T and is given by

T = {z ∈ C : |z| = 1}.
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We identify the circle T with the interval [0, 1) via the standard map ζ 7→ e2πiζ .
Sequences and series with undefined limits are taken to be over Z and

integrals with undefined limits are taken to be over R. Integration is always
with respect to Lebesgue measure. All functions will be assumed to be
measurable. A property is said to hold almost everywhere, denoted a.e.,
if the set of points in R (or C) where it does not hold has Lebesgue measure
zero. All functions (unless otherwise indicated) have domain the real line and
take values in C. The characteristic function of a set E ⊂ R is

χE(x) =

{
1 : x ∈ E,
0 : x /∈ E.

The Kronecker delta defined for m, n ∈ Z is

δmn =

{
1 : m = n,
0 : m 6= n.

The essential supremum of a function f is

‖f‖∞ = ess supx∈R|f(x)| = inf{λ ∈ R : f(x) ≤ λ a.e.}.

We will work in general with the Banach spaces Lp(R), 1 ≤ p ≤ ∞. For
p = ∞, this is the space (with norm ‖ · ‖∞)

L∞(R) = {f : R → C : ‖f‖∞ < ∞}.

For 1 ≤ p < ∞, we have the Banach space (with norm ‖ · ‖p)

Lp(R) =

{
f : R → C : ‖f‖p =

(∫

R
|f(x)|pdx

)1/p

< ∞
}

.

For any set of vectors E in a linear space X, we write span E to denote the
family of finite linear combinations of elements of E. Or if E is a sequence of
elements, say (xn), we write span E = spann(xn). The closure of the span of
E will be denoted span E. If the span of (xn) is dense in X we say that (xn)
is complete. We will also need the atomic version of L2(R) denoted `2. This
is the space of all sequences of scalars (an) for which

‖(an)‖`2 =

(∑
n

|an|2
)1/2

< ∞.

Since we are working only in separable spaces, we can consider all infinite
dimensional Hilbert spaces as L2(R) or `2 and will denote it abstractly as
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the Hilbert space H. For a natural number n, we denote an n-dimensional
Hilbert space by Hn. We assume the reader is familiar with the basic properties
of a Hilbert space. We will denote the inner product for H by 〈·, ·〉 and recall
that ‖x‖2 = 〈x, x〉, for all x ∈ H. Given E ⊂ H and F ⊂ H, we say that E
is orthogonal to F (and write E ⊥ F ) if 〈x, y〉 = 0, for all x ∈ E, y ∈ F . If
E ⊂ H, we denote the orthogonal complement of E by

E⊥ = {x ∈ H : 〈x, y〉 = 0, for all y ∈ E}.

If (xn) is a sequence of vectors in H, we say (xn) is an orthogonal sequence if
〈xn, xm〉 = 0, for all n 6= m. If moreover, ‖xn‖2 = 〈xn, xn〉 = 1, we call (xn) an
orthonormal sequence. We generally denote an orthonormal sequence by
(en). If furthermore the sequence is complete, we call (xn) an orthonormal
basis for H. A pair of sequences (xi), (yi) in H is called a biorthogonal
system if 〈xi, yj〉 = 0, for all i 6= j.

For an orthonormal sequence (en) in a Hilbert space H, the following are
equivalent:

(1) (en) is complete.

(2) We have the Plancherel formula:

‖x‖2 =
∑
n

|〈x, en〉|2,

for all x ∈ H.

(3) x =
∑

n〈x, en〉en, for all x ∈ H.

In this case we call (〈x, en〉) the Fourier coefficients of x (with respect
to the orthonormal basis (en)). It follows that the coefficients (〈x, en〉) in (3)
are unique. This is in contrast to a frame which we will see may have infinitely
many different representations in general.

Let H, K be Hilbert spaces with inner products 〈·, ·〉H , 〈·, ·〉K and norms
‖·‖H , ‖·‖K respectively and let T : H → K. We define the following properties.

(1) T is linear if T (ax + by) = aTx + bTy, for all scalars a, b and all
x, y ∈ H.

(2) T is one-to-one (or injective) if Tx 6= Ty, for all x 6= y.

(3) The range of T is Rng T = {Tx; x ∈ H} and the rank of T is the
dimension of Rng T . The co-rank of T is the dimension of (Rng T )⊥.

(4) The kernel of T is ker T = {x : Tx = 0} and the nullity of T is the
dimension of ker T .
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(5) T is onto (or surjective) if Rng T = K.

(6) The norm of T is

‖T‖ = sup0 6=x∈H
‖Tx‖
‖x‖ = sup‖x‖H=1‖Tx‖.

We say that T is bounded if ‖T‖ < ∞. A linear operator T is bounded if
and only if it is continuous.

From here on we will assume that T is a bounded linear operator.

(7) The adjoint of T is the unique operator T ∗ : K → H satisfying

〈Tx, y〉K = 〈x, T ∗y〉H , for all x ∈ H, y ∈ K.

It is a simple calculation to show that ‖T‖ = ‖T ∗‖.
(8) We say that T is an isomorphism if it is one-to-one, continuous and it

has an inverse T−1 (defined on Rng T ) which is continuous. This is equivalent
to the existence of a constant M > 0 satisfying:

1
M
‖x‖ ≤ ‖Tx‖ ≤ M‖x‖, for all x ∈ H.

If T is also onto, we say that T is an invertible operator. If T : H → H
satisfies ‖I − T‖ < 1, then T is invertible and its inverse can be represented
by the Neuman series [119]

T−1f =
∞∑

n=0

(I − T )nf.

(9) T is an isometry if ‖Tx‖K = ‖x‖H , for all x ∈ H. It can be shown
that T is an isometry if and only if 〈Tx, Ty〉K = 〈x, y〉H , for all x, y ∈ H. T
is a co-isometry if its adjoint is an isometry.

(10) T is a unitary map if it is an invertible isometry.

(11) T is a partial isometry if T is an isometry on the orthogonal com-
plement of its kernel.

From here on, we will let H = K and let T, S : H → H be bounded linear
operators and let (en) be an orthonormal basis for H.

(12) T is self-adjoint if T = T ∗. This is equivalent to:

〈Tx, y〉 = 〈x, Ty〉, for all x, y ∈ H.
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(13) T is positive, denoted T ≥ 0, if 〈Tx, x〉 ≥ 0, for all x ∈ H. Positive
operators are self-adjoint.

(14) We write T ≥ S if T − S ≥ 0. If T is positive and T ≤ I then we can
write

T =
1
2
(W + W ∗),

where W is a unitary operator.

(15) There exists a partial isometry U on H and a positive operator P on H
such that T = UP . We can find the operators U,P so that ker U = ker P , and
this additional condition uniquely determines them. This representation of T
is called the polar decomposition of T . A necessary and sufficient condition
that U be an isometry is that T be 1-1, and a necessary and sufficient condition
that U be a co-isometry is that Rng T be dense in H.

(16) The trace of T is given by: Tr T =
∑

n〈Ten, en〉.
(17) The Hilbert-Schmidt norm of T is

‖T‖HS =

(∑
n

‖Ten‖2

)1/2

.

If P is a projection of rank n, then

‖P‖2
HS =

∑

i

‖Pei‖2 =
∑

i

〈Pei, P ei〉

=
∑

i

〈Pei, ei〉 = Tr T = n.

For a function f on R, we define the operators:

Translation: Taf(x) = f(x− a), a ∈ R,
Modulation: Eaf(x) = e2πiaxf(x), a ∈ R,

Dilation: Daf(x) = |a|−1/2f(x/a), a ∈ R− {0}.
We also use the symbol Ea to denote the exponential function Ea(x) =

e2πiax. The two-dimensional exponentials are Ea,b(x, y) = e2πiaxe2πiby.
Each of the operators Ta, Ea, Da are unitary operators on L2(R) and they
satisfy:

TaEbf(x) = e2πib(x−a)f(x− a);
EbTaf(x) = e2πibxf(x− a);
TbDaf(x) = |a|−1/2f(x−b

a );
DaTbf(x) = |a|−1/2f(x

a − b);
EbDaf(x) = e2πibx|a|−1/2f(x

a );
DaEbf(x) = e2πibx/a|a|−1/2f(x

a ).
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The Fourier transform of a function f ∈ L1(R) is

f̂(γ) =
∫

R
f(x)e−2πiγxdx, for all γ ∈ R.

We define the Fourier transform of functions f ∈ L2(R) by observing that the
above definition works on a dense subspace of L2(R) and continuing it to the
closure. We have

T̂af = E−af̂ ; Êaf = Taf̂ ; D̂af = D1/af̂ .

We also have the Plancherel formula

‖f‖2 = ‖f̂‖2, for all f ∈ H,

and the Parseval formula

〈f, g〉 = 〈f̂ , ĝ〉, for all f, g ∈ H.

We end with a discussion of the types of convergence we will be working
with. These results can be found in [61, 108]. Given two sequences (xi), (yi)
spanning (Banach) Hilbert spaces X,Y , respectively, we say the sequences
are equivalent and write (xi) ≈ (yi) if setting Txi = yi uniquely extends
to a well-defined invertible operator from X onto Y . We say that (xi) is a
Schauder basis (or just a basis) for X if every element x ∈ X has a unique
representation in the form,

x =
∑

i

aixi,(2.1)

where (ai) is a sequence of scalars. Associated to a basis (xi)i∈N is the basis
projections (Pn) given by:

Pn

( ∞∑

i=1

aixi

)
=

n∑

i=1

aixi.

We define the basis constant of (xi) to be supn ‖Pn‖. If the series in (2.1)
converges unconditionally (see below) for all x ∈ X, we call (xi) an uncondi-
tional basis for X. There is also an unconditional basis constant which
we will not define in general. The basis (xi) is bounded if there is a constant
M > 0 so that M−1 ≤ ‖xi‖ ≤ M , for all i. A Riesz basis for a Hilbert space
H is a bounded, unconditional basis for H. It is known (see [108]) that (xi)
is a Riesz basis for H if and only if (xi) ≈ (ei), where (ei) is an orthonormal
basis for H. In this case, we define the Riesz basis constants for (xi) to be
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the largest number K and the smallest number M satisfying, for all sequences
of scalars (ai),

K

(∑

i

|ai|2
)1/2

≤ ‖
∑

i

aixi‖ ≤ M

(∑

i

|ai|2
)1/2

.

We will be working with several different forms of convergence for series
in a (Banach) Hilbert space X. We say that a series

∑
i xi of elements of X

converges unconditionally if every rearrangement of (xi) converges to an
element of X (and therefore to the same element of X). The following theorem
is known (see for example [54, 109]).

Theorem 2.1. For xi in a Banach space X, the following are equivalent:
(1)

∑
i xi converges unconditionally in X.

(2) For every increasing sequence of natural numbers (ni), we have that∑
i xni converges in X.
(3)

∑
i θixi converges for every choice of θi = ±1.

Moreover, in this case, there is a constant M > 0 so that for all choices of
scalars (ai) we have

‖
∑

i

aixi‖ ≤ M sup
i
|ai| · ‖

∑

i

xi‖.

We will also work with weak convergence in our spaces. In a Hilbert
space, we say that (xi) converges weakly to x ∈ H if

lim
i
〈y, xi〉 = 〈y, x〉, for all y ∈ H.

Again, if for every rearrangement (xσ(i)) of (xi) the series
∑

i xσ(i) converges
weakly to an element of H, we say that

∑
i xi is weakly unconditionally

convergent. The celebrated Orlicz-Pettis Theorem says that weak uncondi-
tional convergence is the same as unconditional convergence in every Banach
space.

Theorem 2.2 (Orlicz-Pettis Theorem). In a (Banach) Hilbert space
H, a series is weakly unconditionally convergent if and only if it is norm
unconditionally convergent.

Sometimes it is useful to know that a series is convergent without knowing
what it is converging to. This is the notion of “Cauchy sequences” in R. In a
Banach space, this becomes wuC. A series

∑
xi in a (Banach) Hilbert space

H is said to be weakly unconditionally Cauchy if given any permutation
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σ of N ,
∑n

i=1 xσ(i) is a weakly Cauchy sequence in H. Recall the Banach space
c0:

c0 = {(ai) : ‖(ai)‖c0 = sup
i
|ai| < ∞, and lim

i
ai = 0}.

The following theorem clearly holds for a Hilbert space.

Theorem 2.3. If c0 does not embed into a Banach space X, then every
series

∑
i xi which is wuC is also unconditionally convergent in X.

3. Historical Development of Frames

To give us a frame of reference, we will start by attending a concert. Sup-
pose, for a moment, you are sitting in the audience at a piano concert. You
are enjoying the sound of the piano filling up the concert hall. What you
are hearing is a continuous acoustical signal (if we ignore some technicalities
such as the “striking” of the keys). But to the pianist, this is something else
altogether. To this person, “the concert” is a book of sheet music which con-
sists of sheets of paper with special lines and artistically placed black dots
representing notes. The sheet music is a “discretization” of the musical piece,
localized in time and frequency. The vertical direction represents frequencies
and the horizontal direction represents time broken into equally spaced in-
tervals. The sheet music tells the pianist which notes to play in which time
intervals. Technically, if you were musically gifted, you could sit in the au-
dience and write the sheet music for the piece you were hearing. Then you
could bring this home and play the piece back (called “reconstruction of the
signal”). More importantly, if you found something in the music irritating (like
“noise” to your ear) you could erase those dots from the sheet music then play
(reconstruct) a variation of the music with the “noise” removed. Although
it would be difficult to read and play, technically we could write our sheet
music by placing a number from {0, 1, 2, 3} in each note position vertically,
equally spaced in time. These values would represent the “intensity” of that
note as being: (0) don’t play it, (1) play it, (2) play it flat, or (3) play it sharp
respectively. We can interpret all of our work on (at least Weyl-Heisenberg)
frames in the context of writing sheet music. Our sheet music will be a little
more sophisticated in that time will continue forever through the past and the
future. Also, we will have infinitely many choices of frequencies (which now
will be called “elementary signals”), and for each frequency we may have any
complex number for its intensity.

In 1946, D. Gabor [83] formulated a fundamental approach for signal de-
composition in terms of elementary signals. Gabor’s approach quickly became
a paradigm for the spectral analysis associated with time-frequency methods,
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such as the short-time Fourier transform and the Wigner transform. Gabor’s
idea required a tiling of the time-frequency domain (also called the information
plane or phase space depending upon the area you work in) by non-overlapping
half open rectangles. Gabor reasoned that certain “optimal” elementary sig-
nals should provide an efficient decomposition of the information plane. This
decomposition should determine countably many components of the informa-
tion plane with each component sufficiently localized in time and frequency
so that a coefficient c associated with a component R would characterize the
amount of information from R in the signal. Moreover, it should not require
smaller components to distinguish different types of information from R.

So Gabor needed to find a countable collection of “optimal” elementary
signals with small associated areas in the information plane. Gabor chose mod-
ulates and translates of Gaussians as elementary signals because the product
of their time and frequency variances are optimal relative to the Classical
Uncertainty Principle Inequality (see Section 5).

So how does Gabor’s scheme work? Gabor let

g(t) = π−1/4e−t2/2 ∈ L2(R).

The function g is called the window function. We fix a, b ∈ R+. Our
elementary signals are then

(EmbTnag)m,n∈Z .

We choose a signal f (i.e., a function f ∈ L2(R)) and compute the intensity
of each elementary signal in f . To do this, we fix n = 0 and compute the inner
products

〈f, Embg〉 = 〈f · g,Emb〉, for all m ∈ Z.

So we are just computing Fourier coefficients for f ·g (or the “weighted” Fourier
transform of f). These coefficients give an indication of the frequency content
of the signal f in a neighborhood of 0. Now, translate the window by, say,
n = 1 and do it all over again,

〈f, EmbTag〉 = 〈f · Tag,Emb〉, for all m ∈ Z.

We continue to compute these Fourier coefficients for all n ∈ Z. Now we have
a set of coefficients (cmn)m,n∈Z associated with the elementary signals which
should be unique to our signal (the exact requirements on g, a, b for uniqueness
is a deep question which is covered in detail in Sections 5, 9). To return to
our opening example, the elementary signals are our “notes” and the cmn’s
are the intensities of these notes in our signal. This association is unique and
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allows us to work with the signal as just a discrete set of intensities associated
with the elementary signals.

We can view Gabor’s method as a sampled short time Fourier transform
(i.e., a set of inner products of f with elementary signals (EmTng) with discrete
labels in the lattice aZ×bZ). Recall that the short time Fourier transform
of f ∈ L2(R) (with respect to a window function g) is

νg(t, γ) =
∫

R
f(s)g(t− s)e−2πiγs ds = 〈f, TtMγg〉.

Also, we can recover f from its short time Fourier transform by the inversion
formula

f(t) =
1

‖g‖2
L2

∫

R×R
νgf(s, γ)g(t− s) e2πiγt dt dγ.

In light of this, the sampled short time Fourier transform is also referred to as
the Gabor transform.

Gabor’s use of Gaussians has both advantages and disadvantages which
will be discussed in detail later. We will not go any further with this example
at this time since we will cover these frames in full generality in Sections 5
and 9.

In 1952, Duffin and Schaeffer [62] were working on some deep problems in
nonharmonic Fourier series. Much of the work in nonharmonic Fourier series
was initiated by the fundamental results of Paley and Wiener [120]. Duffin
and Schaeffer were working with families of exponentials (eiλnt)n∈Z trying to
determine when they are complete or form a Riesz basis for L2[a, b] etc. This
led them to define

Definition 3.1. A sequence (fn)n∈Z of elements of a Hilbert space H is
called a frame if there are constants A,B > 0 such that

A‖f‖2 ≤
∑

n∈Z

|〈f, fn〉|2 ≤ B‖f‖2, for all f ∈ H.(3.1)

One of Duffin and Schaeffer’s main results (see [62, Theorem 1]) is that
(e−2πiλnt)n∈Z is a frame for L2[−γ, γ] if (λn)n∈Z is uniformly dense with uni-
form density greater than 2γ. Uniform density and the role played in irregular
sampling is discussed in [15]. These frames are called exponential frames
or Fourier frames and will be discussed again in Section 8.

For some reason, the notion of a frame introduced by Duffin and Schaeffer
was not followed up on outisde of nonharmonic Fourier series. However, it was
brought back to life in 1986 by Daubechies, Grossman and Meyer [56] right at
the dawn of the Wavelet era.
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4. An Introduction to Frame Theory

Good references for this section are [92] and [138]. The numbers A,B
in the definition of a frame, Definition 3.1, are called the lower and upper
frame bounds respectively. The largest number A > 0 and smallest number
B > 0 satisfying the frame inequalities for all f ∈ H are called the optimal
frame bounds. The frame is a tight frame if A = B and a normalized
tight frame if A = B = 1. A frame is exact if it ceases to be a frame when
any one of its elements is removed. As we will see, a frame is exact if and only
if it is a Riesz basis. A non-exact frame is called overcomplete in the sense
that at least one vector can be removed from the frame and the remaining
set of vectors will still form a frame for H (but perhaps with different frame
bounds).

It is immediate that an orthonormal basis (en) for H is a normalized tight
frame for H. But the following sequences are also normalized tight frames for
H:

{e1, 0, e2, 0, e3, 0 . . .},
{

e1√
2
,

e1√
2
,

e2√
2
,

e2√
2
, · · ·

}
,

{
e1,

e2√
2
,

e2√
2
,

e3√
3
,

e3√
3
,

e3√
3
· · ·

}
.

If (fn) is any sequence with a finite upper frame bound, then (en, fn) is a
frame for H. It is obvious that (en/n) fails to have a lower frame bound while
(nen) fails to have a finite upper frame bound.

For the n-dimensional Hilbert space Hn with orthonormal basis (en
i )n

i=1,
a direct calculation shows that the following sequence is a normalized tight
frame for Hn:

fn
j = en

j −
1
n

n∑

i=1

en
i for j = 1, 2, . . . , n,

fn
n+1 =

1√
n

n∑

i=1

en
i .

(4.1)

We can also see that (fn
j )n+1

j=1 is a normalized tight frame for Hn by applying
Theorem 4.10 below. That is, if P is the rank-one orthogonal projection on
Hn given by:

P

(
n∑

i=1

aie
n
i

)
=

(
n∑

i=1

ai

n

)
n∑

i=1

en
i ,

then P⊥en
j = fn

j .
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One fruitful approach to frame theory for infinite-dimensional Hilbert spaces
is to view frames as operators. We feel that this is the best approach since
it brings the tremendous power of operator theory, C∗-algebras etc. to bear
on the subject. A good introduction to this approach can be found in the
Memoir of Han and Larson [92]. To formulate this approach, let (en) be an
orthonormal basis for an infinite-dimensional Hilbert space H and let fn ∈ H,
for all n ∈ Z. We call the operator T : H → H given by Ten = fn the
preframe operator associated with (fn). Now, for each f ∈ H and n ∈ Z
we have 〈T ∗f, en〉 = 〈f, Ten〉 = 〈f, fn〉. Thus

T ∗f =
∑
n

〈f, fn〉en, for all f ∈ H.(4.2)

It follows that the preframe operator is bounded if and only if (fn) has a finite
upper frame bound B. Also, by (4.2),

‖T ∗f‖2 =
∑
n

|〈f, fn〉|2, for all f ∈ H.

Comparing this to Definition 3.1, we have

Theorem 4.1. Let H be a Hilbert space with an orthonormal basis (en).
Also let (fn) be a sequence of elements of H and let Ten = fn be the preframe
operator. The following are equivalent:

(1) (fn) is a frame for H.
(2) The operator T is bounded, linear and onto.
(3) The operator T ∗ is a (possibly into) isomorphism (called the frame

transform).
Moreover, (fn) is a normalized tight frame if and only if the preframe

operator is a quotient map (i.e., a partial isometry).

The dimension of the kernel of T is called the excess of the frame. It fol-
lows that S = TT ∗ is an invertible operator on H, called the frame operator.
Moreover, we have

Sf = TT ∗f = T

(∑
n

〈f, fn〉en

)
=

∑
n

〈f, fn〉Ten =
∑
n

〈f, fn〉fn.

A direct calculation now yields

〈Sf, f〉 =
∑
n

|〈f, fn〉|2.

Therefore, the frame operator is a positive, self-adjoint invertible op-
erator on H. Also, the frame inequalities (3.1) yield that (fn) is a frame with
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frame bounds A,B > 0 if and only if A · I ≤ S ≤ B · I. Hence, (fn) is a
normalized tight frame if and only if S = I. Also, a direct calculation yields

f = SS−1f =
∑
n

〈S−1f, fn〉fn

=
∑
n

〈f, S−1fn〉fn =
∑
n

〈f, S−1/2fn〉S−1/2fn.
(4.3)

We call (〈S−1f, fn〉) the frame coefficients for f . It follows

Theorem 4.2. Every frame (fn) (with frame operator S) is equivalent to
the normalized tight frame (S−1/2fn).

Note that equation (4.3) is our “reconstruction formula” for an element
f ∈ H. This points out one of the major problems encountered in applications
of frame theory. In order to reconstruct a vector we need to find its frame
coefficients, i.e., we first have to find S−1f . This requires inverting an infinite
matrix – no simple task. Since S is an isomorphism on H, (S−1fn) is a frame
equivalent to the frame (fn) and is called the (canonical) dual frame.

Remark. This approach to frame theory for infinite-dimensional spaces
also works, with a slight variation, for finite-dimensional spaces. A sequence
(fn) in an m-dimensional Hilbert space Hm is a frame if and only if the oper-
ator T : `2 → Hm given by Ten = fn is bounded, linear and onto, where (en)
is any orthonormal basis for `2. We will almost exclusively work in infinite-
dimensional separable Hilbert spaces except in a few cases where we will make
it clear that we are working in Hm.

Now we will consider some of the basic properties of frames.

Proposition 4.3. Let (fn) be a frame for a Hilbert space H. Then the
following are equivalent:

(1) (fn) is exact.
(2) (fn) is a Riesz basis.
(3) (fn) is a frame which is ω-independent.
Moreover, in this case, the Riesz basis constants for (fn) are the numbers√

A,
√

B, where A,B are the frame bounds.

Proof. (1) ⇔ (2) We note that (fn) is exact if and only if the preframe
operator T is one-to-one. But since T is bounded, linear and onto, this happens
if and only if T is an invertible operator – which makes (fn) a Riesz basis.

(1) ⇔ (3): This is similar.
We leave the moreover part of the theorem to the reader.
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Kim and Lim [105] have given equivalent conditions for a frame to be a
Riesz basis and compute the bounds in terms of the eigenvalues of the Gram
matrices of finite subsets.

There is a simple method for showing that two frames are equivalent.

Proposition 4.4. Let (fi) and (gi) be frames for a Hilbert space H with
preframe operators T1, T2 respectively with respect to a fixed orthonormal basis
(ei). For each finitely nonzero sequence of scalars (ai), let L(

∑
i aifi) =

∑
i aigi

be a relation. The following are equivalent:
(1) L is a function.
(2) L is a bounded linear operator.
(3) ker T1 ⊂ ker T2.

Proof. (1) ⇒ (3): Since L is linear, L is a function implies L(0) = 0.
(3) ⇒ (2): We get immediately from (3) that L is a function which is

clearly linear. To see that L is bounded, we note that

‖L
∑

i

aifi‖= ‖
∑

i

aigi‖ = ‖T2

(∑

i

aiei

)
‖ ≈ ‖P(ker T2)⊥

(∑

i

aiei

)
‖

≤ ‖P(ker T1)⊥
∑

i

aiei‖ ≈ ‖T1

(∑

i

aiei

)
‖ = ‖

∑

i

aifi‖.

(2) ⇒ (1): This is obvious.

Corollary 4.5. If (fi) and (gi) are frames for a Hilbert space H with
preframe operators T1, T2 respectively, the following are equivalent:

(1) (fi) ≈ (gi).
(2) ker T1 = ker T2.
(3) For all sequences of scalars (ai), we have that

∑
i aifi = 0 if and only

if
∑

i aigi = 0.

Our next proposition shows the relationship between the frame elements
and the frame bounds.

Proposition 4.6. Let (fn) be a frame for H with frame bounds A,B. We
have for all n ∈ Z that ‖fn‖2 ≤ B and ‖fn‖2 = B implies fn ⊥ spanj 6=nfj . If
‖fn‖2 < A, then fn ∈ span(fj)j 6=n.

Proof. If we replace f in Definition 3.1 by fn, we see that

A‖fn‖2 ≤ ‖fn‖4 +
∑

j 6=n

|〈fn, fj〉|2 ≤ B‖fn‖2.
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The first part of the result is now immediate. For the second part, assume to
the contrary that E = span(fj)j 6=n is a proper subspace of H. Replacing fn in
the above inequality by PE⊥fn and using the left-hand side of the inequality
yield an immediate contradiction.

As a particular case of Proposition 4.6, we have for a normalized tight
frame (fn) that ‖fn‖2 ≤ 1 and ‖fn‖ = 1 if and only if fn ⊥ spanj 6=nfj . If (fn)
is an exact frame, then 〈S−1fn, fm〉 = 〈S−1/2fn, S−1/2fm〉 = δnm (where δnm

is the Kronecker delta) since (S−1/2fn) is now an orthonormal basis for H.
That is, (S−1fn) and (fn) form a biorthogonal system. Also, it follows that
(en) is an orthonormal basis for H if and only if it is an exact, normalized
tight frame. Another consequence of Proposition 4.6 is

Proposition 4.7. The removal of a vector from a frame leaves either a
frame or an incomplete set.

Proof. By Theorem 4.2, we may assume that (fi) is a normalized tight
frame. Now, by Proposition 4.6, for any n, either ‖fn‖ = 1 and fn ⊥
spanj 6=nfj , or ‖fn‖ < 1 and fn ∈ spanj 6=nfj .

Since a frame is not ω-independent (unless it is a Riesz basis), a vector in
the space may have many representations relative to the frame besides the nat-
ural one given by the frame coefficients. However, the natural representation
of a vector is the unique representation of minimal `2-norm as the following
result of Duffin and Schaeffer [62] shows.

Theorem 4.8. Let (fn) be a frame for a Hilbert space H and f ∈ H. If
(bn) is any sequence of scalars such that

f =
∑
n

bnfn,

then

∑
n

|bn|2 =
∑
n

|〈S−1f, fn〉|2 +
∑
n

|〈S−1f, fn〉 − bn|2.(4.4)

Proof. We have by assumption
∑
n

〈S−1f, fn〉fn =
∑
n

bnfn.

Now, taking the inner product of both sides with S−1f , we get
∑
n

|〈S−1f, fn〉|2 =
∑
n

〈S−1f, fn〉bn,
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and (4.4) follows easily.

A major advantage of frames over wavelets (see Section 7) is that orthog-
onal projections take frames to frames but do not map wavelets to wavelets.

Proposition 4.9. Let (fn) be a frame for H with frame bounds A, B, and
let P be an orthogonal projection on H. Then (Pfn) is a frame for P (H) with
frame bounds A, B.

Proof. For any f ∈ P (H) we have
∑
n

|〈f, Pfn〉|2 =
∑
n

|〈Pf, fn〉|2 =
∑
n

|〈f, fn〉|2.

The result is now immediate.

It follows that an orthogonal projection P applied to an orthonormal basis
(en) (or just a normalized tight frame) yields a normalized tight frame (Pen)
for P (H). The converse of this is also true and is a result of Han and Larson
[92].

Theorem 4.10. A sequence (fn) is a normalized tight frame for a Hilbert
space H if and only if there is a larger Hilbert space K ⊃ H and an orthonor-
malbasis (en) for K so that the orthogonal projection PH of K onto H satisfies
Pen = fn for all n = 1, 2, . . . .

Proof. The “only if” part follows from Proposition 4.9. For the “if”
part, if (fn) is a normalized tight frame for H, then the preframe operator
T : `2 → H is a partial isometry. Let (en) be an orthonormal basis for `2 for
which T (en) = fn is our frame. Since T ∗ is an into isometry, we can associate
H with T ∗(H). Now let K = `2 and P be the orthogonal projection of K onto
T ∗(H). Then for all n = 1, 2, . . . and all g = T ∗f ∈ T ∗(H), we have

〈T ∗f, Pen〉 = 〈T ∗f, en〉 = 〈f, Ten〉 = 〈f, fn〉 = 〈T ∗f, T ∗fn〉.
It follows that Pen = T ∗fn, and by our association of H with T ∗(H), (T ∗fn)
is our frame.

Casazza, Han and Larson [41] have generalized Theorem 4.10 to show that
any sequence (fn) in a Hilbert space H is a frame for H if and only if there
is a larger Hilbert space K ⊃ H, an orthonormal basis (en) for K and a (not
necessarily orthogonal) projection P : K → H for which Pen = fn, for all n.

Another interesting consequence of considering frames as operators, in the
finite-dimensional case, is the following finite-dimensional result.
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Proposition 4.11. If (fn) is a normalized tight frame for an m-dimensional
Hilbert space Hm, then ∑

n

‖fn‖2 = m.

Hence, if (fn) is a normalized tight frame for an infinite-dimensional Hilbert
space H, then for all finite-rank orthogonal projections P on H, we have that

∑
n

‖Pfn‖2 is a natural number.

Proof. By Theorem 4.10, there is a larger Hilbert space K ⊃ H and an
orthogonal projection P taking an orthonormal basis (en) for H to Pen = fn.
Now, ∑

n

‖fn‖2 =
∑
n

‖Pen‖2 = ‖P‖2
HS = dim Hm,

where ‖ · ‖HS denotes the Hilbert-Schmidt norm of P .

Proposition 4.11 can be generalized to an arbitrary frame. Recall that a
subspace of codimension 1 in a Hilbert space is called a hyperplane.

Proposition 4.12. Let (fi) be a sequence in a Hilbert space H. The
optimal lower (respectively, upper) frame bound A (resectively, B) for (fi) is
given by:

A = inf

{∑

i

‖PE⊥fi‖2; E is a hyperplane in H

}
,

B = sup

{∑

i

‖PE⊥fi‖2; E is a hyperplane in H

}
.

Proof. For any f ∈ H with ‖f‖ = 1, let E = [f ]⊥. Then

|〈f, fi〉|2 = ‖PE⊥fi‖2, for all i.

It follows immediately that

A ≥ inf

{∑

i

‖PE⊥fi‖2; E is a hyperplane in H

}
,

and

B ≤ sup

{∑

i

‖PE⊥fi‖2; E is a hyperplane in H

}
.
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Conversely, if E is any hyperplane in H, choose f ∈ E⊥ with ‖f‖ = 1 to get

|〈f, fi〉|2 = ‖PE⊥fi‖2, for all i.

It follows that

A ≤ inf

{∑

i

‖PE⊥fi‖2; E is a hyperplane in H

}
,

and

B ≥ sup

{∑

i

‖PE⊥fi‖2; E is a hyperplane in H

}
.

An inductive procedure applied to Proposition 4.12 yields the following
corollary.

Corollary 4.13. Let (fi) be a sequence in a Hilbert space H. The following
are equivalent:

(1) (fi) is a frame for H with optimal frame bounds A, B.
(2) For every hyperplane E ⊂ H, we have

A ≤
∑

i

‖PE⊥fi‖2 ≤ B,

and A (resp. B) is maximal (resp. minimal) with respect to these two inequal-
ities.

(3) For every subspace En ⊂ H of codimension n, we have

nA ≤
∑

i

‖PE⊥fi‖2 ≤ nB,

and A (resp. B) is maximal (resp. minimal) with respect to these two inequal-
ities.

The reader should compare this corollary to Proposition 4.6. Also, give
some thought to what this says for normalized tight frames.

A big advantage of treating frames as operators is that theorems about
bounded linear operators on a Hilbert space become theorems about frames.
For example, a deep question in wavelet theory [137] concerns which families
of wavelets are arcwise connected. But the corresponding question for frames
has an immediate answer. We just need to recall [91, p.66] that each pair
of partial isometries with the same rank, co-rank and nullity can be joined
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by a continuous curve of partial isometries with the same rank, co-rank and
nullity (and these two partial isometries cannot be connected without these
assumptions). This answers the second part of the following proposition. The
first part follows by applying the second part to the polar decomposition of
the preframe operator. The deficiency of a frame is the dimension of the
kernel of the preframe operator (i.e., the codimension of the range of the
frame transform).

Proposition 4.14. The family of frames of deficiency n is connected, for
all natural numbers n. The family of normalized tight frames of deficiency n
is connected, for all natural numbers n.

Another example of the power of treating frames as operators is in repre-
senting frames as sums of “better objects”. This is the underlying idea behind
the phase space Wannier functions used in solid state physics [136, 106, 123]
and the Wilson bases [57, 136]. The idea here is to decompose a frame as a sum
of two orthonormal bases. In general, Casazza [28] shows that every frame can
be written as a sum of three orthonormal bases. This is a consequence of a
result from operator theory.

Theorem 4.15. Every bounded operator T on an infinite-dimensional
complex Hilbert space H can be written in the form T = a(U1 + U2 + U3),
where each Uj is a unitary operator and a is a positive real number.

Proof. Fix 0 < ε < 1 and let

S =
1
2
I +

1− ε

2
T

‖T‖ .

Then a calculation shows that ‖I − S‖ < 1, so S is an invertible operator. If
we write the polar decomposition of S as S = V P , then since S is invertible,
V is a unitary operator. Also, we can write (see [91]) P = 1

2(W + W ∗), where
W, W ∗ are unitary. Hence,

S =
1
2
(V W + V W ∗),

where V W, V W ∗ are unitary. Finally,

T =
‖T‖
1− ε

(V W + V W ∗ − I),

is a sum of three unitary operators.
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Kalton (see [28]) observed that a bounded, onto, linear operator on H can
be written as a linear combination of two unitary operators if and only if it is
invertible. In frame language, Theorem 4.15 and Kalton’s result become.

Theorem 4.16. Every frame (for an infinite-dimensional complex Hilbert
space H) is (a multiple of) a sum of three orthonormal bases. Moreover, a
frame is a linear combination of two orthonormal bases if and only if it is a
Riesz basis.

If we weaken slightly the requirements on the objects we are adding to
get a frame, then we can drop down to two. For example [28], every frame is
a sum of two normalized tight frames, or an orthonormal basis and a Riesz
basis.

As we have seen, if (fn) is a frame with frame operator S, then (S−1fn) is
a frame called the dual frame. Moreover, if we let gn = S−1fn, then we have
by (4.3) that

f =
∑
n

〈f, gn〉fn, for all f ∈ H.(4.5)

In light of (4.5) we define:

Definition 4.17. If (fn) is a frame for a Hilbert space H, a frame (hn)
for H is called an alternate dual frame (or a pseudo-dual) for (fn) if

f =
∑
n

〈f, hn〉fn, for all f ∈ H.(4.6)

We call (S−1fn) the canonical dual of (fn). If (fn) is a normalized tight
frame, then S = I and so the frame equals its canonical dual. The converse
of this clearly holds also. However, in general, a frame may have many dual
frames. A simple example would be to let our frame be {e1, e1, e2, e2, . . .} where
(en) is an orthonormal basis for H and observe that each of the following is
an alternate dual for this frame:

{e1, 0, e2, 0, e3, 0, · · ·},

{0, e1, 0, e2, 0, e3, · · ·}.
The canonical dual for this frame is

{e1/2, e1/2, e2/2, e2/2 · · ·}.
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In Definition 4.17, we assumed that the sequence (hn) is a frame for H. The
reason is that there might be sequences satisfying (4.6) which are not frames.
For example, {

e1,
1√
2
e2,

1√
2
e2,

1√
3
e3,

1√
3
e3,

1√
3
e3, · · ·

}

is a normalized tight frame for H and the non-frame sequence

{e1,
√

2e2, 0,
√

3e3, 0, 0,
√

4e40 · · ·}
satisfies (4.6). For the basic properties of alternate dual frames we refer the
reader to [92, 102, 107, 125]. Han and Larson [92] have shown that two alter-
nate dual frames are equivalent if and only if they are equal. Also, a frame
has a unique alternate dual if and only if it is a Riesz basis. Li [107] has given
a characterization of the family of all alternate duals for a given frame. We
will return to this topic in the setting of Weyl-Heisenberg frames in the next
section.

Later in Section 10 we will return to explore the recent developments in
abstract frame theory. For now, we will look at the important specific case of
Weyl-Heisenberg frames.

5. An Introduction to Weyl-Heisenberg Frames

An excellent “tutorial” on Weyl-Heisenberg frame theory up to 1991 is
the paper of Heil and Walnut [95]. A user-friendly introduction to Weyl-
Heisenberg frames is the forthcoming book of Gröchenig [87]. The new book
edited by Feichtinger and Strohmer [73] is devoted entirely to Gabor (Weyl-
Heisenberg) frames. Besides being required reading for anyone who wants to
work in this area, [73] also has extensive historical developments concerning
all of the notions used here. One should also read the fundamental works of
Daubechies [54], and Daubechies, Grossman and Meyer [56]. Also, most of
the results here have analogues for L2(Rd) for natural numbers d. We will not
work in this generality, but the basics can be found in a paper of Benedetto
[22]. The frames introduced by Gabor [83] are called Gabor frames or Weyl-
Heisenberg frames. The later terminology (introduced in [56]) comes from
the representation of the Weyl-Heisenberg group T × R × R̂ acting on L2(R)
by

W (x, a, b)f(t) = x · e2πib(t−a)f(t− a).

Letting x = 1 gives our Weyl-Heisenberg frame.

Definition 5.1. If a, b ∈ R and g ∈ L2(R), we call (EmbTnag)m,n∈Z a
Weyl-Heisenberg system (WH-system for short) and denote it by (g, a, b). We
call g the window function.
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If the WH-system (g, a, b) forms a frame for L2(R), we call this a Weyl-
Heisenberg frame (WH-frame for short). The numbers a, b are the frame
parameters with a being the shift parameter and b being the modulation
parameter.

There is a longstanding question concerning WH-frames.

Problem 5.2. Find all a, b ∈ R and g ∈ L2(R) so that (g, a, b) forms a
frame for L2(R).

Although WH-frame theory is a very applied area, Problem 5.2 seems to
be fundamental to a complete understanding of the field – even if it turns out
not to be too useful for specific applications. Later we will see some special
cases of this problem which have been solved. There are many variations of
this problem which are open. Given a function g, what can be said about the
set of a, b ∈ R for which (g, a, b) has a finite upper frame bound, or forms a
frame?

Problem 5.3. Identify those (g, a, b) which have finite upper frame bounds.

The following problem is interesting because of its relationship to the ex-
tended zero divisor conjecture for the case of the Heisenberg group.

Problem 5.4. Given g ∈ L2(R), g 6= 0, and any finite set Λ ⊂ R×R, is
the set (EbTag)(a,b)∈Λ linearly independent?

Using C∗-algebras, Linnell [109] has shown that Problem 5.4 has a positive
answer for Λ ⊂ aZ × bZ, for any a, b. Also, Heil, Ramanthan and Topiwala
[94] use the ergodic theorem to show that there is a positive answer for any
set containing 3 elements as well as a host of other related results.

It can be shown by direct calculation that the frame operator S for a WH-
frame (g, a, b) commutes with translation by a and modulation by b. Namely,
just inner product both sides of the equality in Proposition 5.5 below with an
element h ∈ L2(R) and simplify.

Proposition 5.5. If (g, a, b) is a WH-frame with frame operator S, then
for all h ∈ L2(R) we have:

S(EmbTnah) = EmbTnaSh, S−1(EmbTnah) = EmbTnaS
−1h.

In particular, the canonical dual frame of a WH-frame is another WH-frame.

Another question which could simplify some arguments is



The Art of Frame Theory 153

Problem 5.6. Find necessary and sufficient conditions for two WH-
frames (EmbTnag) and (EmdTnch) to be equivalent.

The author asked this question recently at a meeting and in a wonderful
display of speed, power and finesse, Balan and Landau [10] answered it in
a day. They first showed that if two WH-frames (g, a, b) and (h, c, d) are
equivalent, then ab = cd and one can deduce from this that the only case that
needs to be handled is the case where b = d and a = c. Their theorem then
states:

Theorem 5.7. Let (g, a, b) and (h, a, b) be two WH-frames. The following
are equivalent:

(1) (g, a, b) is equivalent to (h, a, b).
(2) The linear spans of (g, 1

b ,
1
a) and (h, 1

b ,
1
a) are equal.

(3) If S−1g is the dual frame generator for (g, a, b), then

‖h‖2 =
∑
m

∫
h(x)h(x−ma)

∑
n

g(x− n/b)(S−1g)(x− (n/b)−ma).

Because this characterization uses the dual frame generator, it is difficult
to apply until one answers the following important problem:

Problem 5.8. Given a WH-frame (g, a, b), give an explicit representation
of the dual frame generator S−1g.

We point out that Janssen [101] has given a representation for S−1g. If H
is a matrix with entries Hk,`;k′,`′ given by

〈E`bTkag, E`′bTk′ag〉,

then (g, a, b) is a WH-frame if and only if H represents an invertible operator
on `2(Z2). Moreover, in this case,

S−1(g) = ab
∑

k,`∈Z

(H−1)k,`;0,0Ek/bT`/ag.

Finally, Theorem 4.16 states that every WH-frame can be written as a
sum of three orthonormal bases (two if ab = 1; see below). The problem with
Theorem 4.16 is that it uses heavy decomposition results from operator theory,
and hence in practice is often not usable. So we ask:

Problem 5.9. For a Weyl-Heisenberg frame (g, a, b), give an explicit rep-
resentation of this frame as a sum of three orthonormal bases.
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We will be interested in when there are finite upper frame bounds for a
WH-system. We call this class of functions the preframe functions and
denote this class by PF. We now have

Proposition 5.10. The following are equivalent:
(1) g ∈ PF.
(2) The operator

Sf =
∑
n

〈f, EmbTnag〉EmbTnag

is a well-defined bounded linear operator on L2(R).

Proof. If (enm)n,m∈Z is an orthonormal basis for L2(R), let Tenm =
EmbTnag. Then S = TT ∗, and (1) is equivalent to T being a bounded linear
operator which, in turn, is equivalent to TT ∗ being a bounded linear operator.

For the rest of our work, we will be performing sums of products of certain
translates of functions. We will now observe that these sums always exist and
ignore this convergence question hereafter.

Proposition 5.11. If f, g ∈ L2(R), and a, b ∈ R, then for all k ∈ Z the
series ∑

n∈Z

f(t− na)g(t− na− k/b)

converges absolutely a.e. t ∈ R.

Proof. Since f, Tk/bg ∈ L2(R), we have that f · Tk/bg ∈ L1(R). Hence,

‖f · Tk/bg‖L1 =
∫

R
|f(t)(Tk/bg)(t)|dt

=
∑

n∈Z

∫ a

0
f(t− na)g(t− na− k/b)|dt < ∞.

=
∫ a

0

∑

n∈Z

|f(t− na)g(t− na− k/b)|dt < ∞,

where the last equality follows from the Monotone Convergence Theorem. This
is all we need.

Our next goal is to find some reasonable conditions which guarantee that
(g, a, b) forms a WH-frame. Daubechies [54] developed a criterion which led
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Walnut [133] to use Wiener Amalgam space criterion to produce WH-frames.
However, we will first present a much stronger criteria given recently by
Casazza and Christensen [36]. To develop this approach, we will make ex-
tensive use of the WH-frame identity due to Daubechies [54]. Our proof is due
to Heil and Walnut [95].

Theorem 5.12 (WH-Frame Identity). If
∑

n |g(t−na)|2 ≤ B a.e. and
f ∈ L2(R) is bounded and compactly supported, then

∑

n,m∈Z

|〈f, EmbTnag〉|2 = F1(f) + F2(f),

where

F1(f) = b−1
∫

R
|f(t)|2

∑
n

|g(t− na)|2dt,

and

F2(f)= b−1
∑

k 6=0

∫

R
f(t)f(t− k/b)

∑
n

g(t− na)g(t− na− k/b)dt

= b−1
∑

k≥1

2Re
∫

R
f(t)f(t− k/b)

∑
n

g(t− na)g(t− na− k/b)dt.

Proof. We are assuming that f is bounded and compactly supported so
that all the summations, integrals and interchanges of these below are justified.
We define

Hn(t) =
∑

k

f(t− k/b)g(t− na− k/b).

Now, Hn is 1/b-periodic, Hn ∈ L2[0, 1/b] and

∫

R
f · EmbTnag(t)dt=

∫

R
f(t)g(t− na)e−2πimbtdt

=
∫ 1/b

0
Hn(t)e−2πimbtdt.

Since (b1/2Emb)m∈Z is an orthonormal basis for L2[0, 1/b], the Plancherel for-
mula yields

∑
m

|
∫ 1/b

0
Hn(t)e−2πimbtdt|2 = b−1

∫ 1/b

0
|Hn(t)|2dt.
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Now we compute

∑
n

∑
m

|〈f,EmbTnag〉|2 =
∑
n

∑
m

|
∫

R
f(t)g(t− na)e−2πimbtdt|2

= b−1
∑
n

∫ 1/b

0
|
∑

k

f(t− k/b)g(t− na− k/b)|2dt

= b−1
∑
n

∫ 1/b

0

∑

`

f(t− `/b)g(t− na− `/b) ·
∑

k

f(t− k/b)g(t− na− k/b)dt

= b−1
∑
n

∑

`

∫ 1/b

0
f(t− `/b)g(t− na− `/b) ·

∑

k

f(t− k/b)g(t− na− k/b)dt

= b−1
∑
n

∫

R
f(t)g(t− na) ·

∑

k

f(t− k/b)g(t− na− k/b)dt

= b−1
∑

k

∫

R
f(t)f(t− k/b) ·

∑
n

g(t− na)g(t− na− k/b)dt

= b−1
∫

R
|f(t)|2 ·

∑
n

|g(t− na)|2dt

+b−1
∑

k 6=0

∫

R
f(t)f(t− k/b) ·

∑
n

g(t− na)g(t− na− k/b)dt.

This completes the first part of the WH-Frame Identity. The equality in the
last line follows by a simple change of variables.

To simplify the notation a little, we introduce the following auxiliary func-
tions:

Gk(t) =
∑

n∈Z

g(t− na)g(t− na− k/b), for all k ∈ Z.(5.1)

Note that the Gk are periodic functions on R of period a. During our
study of WH-frames, the reader will become aware that the Gk above contain
most of the important information about a Weyl-Heisenberg frame. The trick
is to see how it applies to a given situation.

There are several important consequences of the WH-frame identity which
we now examine. The first consequence of the WH-frame identity comes from
[38].

Corollary 5.13. Let a, b ∈ R with ab ≤ 1 and g ∈ L2(R) and assume that
∑

k

|Gk(t)|2 ≤ B, a.e.



The Art of Frame Theory 157

Then for all bounded, compactly supported functions f ∈ L2(R), the series

Lf = b−1
∑

k

(Tk/bf)Gk

converges unconditionally in norm in L2(R). Moreover,

〈Lf, f〉 =
∑

m,n∈Z

|〈f, EmbTnag〉|2.

Finally, if g ∈ PF , so that the series

Sf =
∑

m,n∈Z

〈f, EmbTnag〉EmbTnag

also converges unconditionally in L2(R), we have that Lf = Sf .

Proof. First we check that the series for Lf converges unconditionally
for all bounded compactly supported f ∈ L2(R). But these functions are
finite sums of bounded functions supported on intervals of the form In =
[na, (n+1)a]. So we assume f is supported on In with uniform upper bound D.
Now, since a ≤ 1/b, we have that the functions ((Tk/bf)Gk)k∈Z are disjointly
supported. Since the Gk are periodic of period a, a simple calculation yields

‖
∑

k∈M

(Tk/bf)Gk‖L2(R) =
∫ a

0
|f(t)|2

∑

k∈M

|Gk(t)|2dt ≤ D2
∫ a

0

∑

k∈M

|Gk(t)|2dt.

Since
∑

k |Gk(t)|2 ≤ B a.e., an application of the Monotone Convergence The-
orem yields that our series (even every subseries) converges. So the series for
Lf converges unconditionally in L2(R).

For the moreover part, we check

〈Lf, f〉= 〈b−1
∑

k∈Z

(Tk/bf)Gk, f >= b−1
∑

k∈Z

〈(Tk/bf)Gk, f〉

= b−1
∑

k∈Z

∫

R
f(t)f(t− k/b)Gk(t)dt =

∑

m,n∈Z

|〈f, EmbTnag〉|2,

where the last equality follows from the WH-Frame Identity.
To see that Sf = Lf , we redo the proof of the WH-Frame Identity to see

that for all h ∈ L2(R), we have

〈Sf, f〉 =
∑

m,n∈Z

〈f,EmbTnag〉〈EmbTnag, h〉 = 〈b−1
∑

k

(Tk/bf) ·Gk, h〉.
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Our next consequence of the WH-Frame Identity is a necessary condition
for (g, a, b) to generate a WH-frame.

Corollary 5.14. If (g, a, b) generates a WH-frame with frame bounds A,B
then

Ab ≤ G0(t) =
∑
n

|g(t− na)|2 ≤ Bb, a.e.

In particular, g must be bounded.

Proof. For any bounded function f supported on an interval I of length
≤ 1/b, we have that F2(f) = 0 in the WH-Frame Identity and so

A‖f‖2 ≤
∑

n,m∈Z

|〈f,EmbTnag〉|2 = b−1
∫

R
|f(t)|2G0(t)dt ≤ B‖f‖2.

The result follows easily from here.

It can be shown that the condition A ≤ G0(x) ≤ B a.e. is equivalent to
(Em/ag) is a Riesz basic sequence (i.e., a Riesz basis for its span) (see Theorem
9.2 below).

Since the Fourier transform is a unitary operator on L2(R) which takes
EmbTnag to TmbE−naĝ, it follows that (g, a, b) generates a WH-frame if and
only if (ĝ, b, a) generates a WH-frame. Hence, by Corollary 5.14 both g and
ĝ must be bounded functions. Although the conditions in Corollary 5.14 are
considered basic for WH-frames, Casazza and Christensen [36] studied WH-
systems which are frames for subspaces of L2(R) and showed that in this case,
the lower inequality is no longer necessary for the existence of a frame sequence.
Gabardo and Han [81] have generalized these results to Weyl-Heisenberg uni-
tary systems.

Corollary 5.15. If g ∈ L2(R), a, b ∈ R and supp g ⊂ I ⊂ R, where I
is an interval of length ≤ 1/b, then (g, a, b) forms a WH-frame if and only if
there are constants A,B > 0 so that

A ≤ G0(t) ≤ B, a.e.

Proof. Since g is supported on an interval of length 1/b, we have that
Gk(t) = 0 a.e. for all k 6= 0. Now, by the WH-Frame Identity we have that
F2(f) = 0 for all bounded, compactly supported f ∈ L2(R) and so

∑

m,n∈Z

|〈f,EmbTnag〉|2 = b−1
∫

R
|f(t)|2G0(t)dt.
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It follows that we have the frame inequalities (3.1) for all bounded, compactly
supported f ∈ L2(R). It is an instructive problem to show that a squence (fn)
satisfying the frame inequalities for a dense set of vectors in H must satisfy
these inequalities on the whole space H.

We give one more consequence of the WH-frame identity.

Corollary 5.16. Let a, b ∈ R and assume that g is supported on an
interval I with |I| ≤ 1/a. If

∑

m∈Z

|g(t− nb)|2 = a, a.e.,

then (EmbTnaĝ) is a normalized tight WH-frame consisting of non-compactly
supported functions.

Proof. From the WH-frame identity, one can easily check that (EmaTnbg)
is a normalized tight WH-frame for L2(R). Taking the Fourier transform of
this yields the result.

We have just seen that there are some restrictions on which functions
g ∈ L2(R) can form WH-frames. Another restriction is given by the important
Balian-Low Theorem (proved independently by Balian [9] and Low [110]). The
original proofs contained a technical gap which was later filled in by Coifman
and Semmes (see [54] for this corrected proof). There is also a proof of this
theorem by Battle [12] for the orthonormal basis case based on the Heisenberg
Uncertainty Principle. There are other related proofs due to Daubechies and
Janssen [58] and by Benedetto, Heil and Walnut [17].

Theorem 5.17 [Balian-Low]. If g ∈ L2(R), ab = 1 and (g, a, b) generates
a WH-frame, then either tg(t) /∈ L2(R) or g′ /∈ L2(R).

It follows that if ab = 1, and (g, a, b) is a WH-frame for L2(R), then either
g does not decay very rapidly, or g is not smooth. In particular, the Gaussian
functions used by Gabor in his original work cannot yield frames when ab = 1,
despite the fact that this WH-system is complete in L2(R).

It is instructive to compare the Balian-Low Theorem to the Classical Un-
certainty Principle Inequaltiy. The elegent proof below is due to Wiener and
can most easily be found in Benedetto, Heil and Walnut [17].

Theorem 5.18 (Classical Uncertainty Principle Inequality). Let
(t0, γ0) ∈ R×R. Then for every f ∈ L2(R) we have
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‖f‖2
2 ≤ 4π‖(t− t0)f(t)‖2‖(γ − γ0)f̂(γ)‖2.(5.2)

Moreover, there is equality in (5.2) if and only if f(t) = CEγ0e
−s(t−t0)2 , for

some complex number C and s > 0.

Proof. The mapping f(t) 7→ E−γ0T−t0f(t) shows that we only need to
verify (5.2) for (t0, γ0). Now we just compute for this case,

‖f‖4
2 =

(∫

R
r|f(t)2|′dt

)2

≤
(∫

R
|t| |f(t)2|′dt

)2

≤ 4
(∫

R
|tf(t)f ′(t)|dt

)2

≤ 4‖tf(t)‖2
2‖f ′(t)‖2

2 = 16π2‖tf(t)‖2
2‖γf̂(γ)‖2

2.

The above works for “nice” f . We then extend to all f by standard duality
arguements. We leave it for the reader to check the “moreover” part of the
theorem.

For some signals, inequality (5.2) does not provide useful information. For
example, if f ∈ L2(R) behaves like |t|a as t → ∞, where a ∈ [−3/2,−1/2),
then the right-hand side of the inequality is infinite. Also, by the Balian-Low
Theorem, if ab = 1 and (g, a, b) gives a WH-frame, then the right side of (5.2)
is infinite if f is replaced by g. That is, the Balian-Low Theorem maximizes
the Classical Uncertainty Principle Inequality. To relate this to our original
piano concert example, inequality (5.2) asserts that if a sound f is emitted at
time t0 and lasts a very short time (so t− t0 is very small) then the frequency
range for f is quite broad. That is, f cannot be very close to a pure tone
of frequency γ0 (for if it were, then both ‖(t − t0)f(t)‖2

2 and ‖(γ − γ0)f̂(γ)‖2
2

would be small in contrast to the “loudness” ‖f‖2
2).

The above results put restrictions on g in order that (g, a, b) yield a WH-
frame. There are also some restrictions on a, b.

Proposition 5.19. Let g ∈ L2(R) and a, b ∈ R.
(1) If (EmbTnag) is complete, then ab ≤ 1.
(2) If (g, a, b) is a WH-frame and

(i) ab < 1, then (g, a, b) is overcomplete.
(ii) ab = 1, then (g, a, b) is a Riesz basis.

Part (1) of Proposition 5.19 has a complicated history (see [54] for a dis-
cussion) which derives from the work of Rieffel [124]. Today, there is a simpler
proof using Beurling density due to Ramanathan and Steger [122]. Moreover,
the results of Remanathan and Steger [122] combined with an important ex-
ample of Benedetto, Heil and Walnut [17] shows that the form of the lattice in
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the Rieffel result [124] is quite important to the conclusion. There are many
derivations available for (2) [38, 54, 55, 92, 100, 101]. A proof of (2) will be
given later in Remark 9.4. For now we ask

Problem 5.20. Given g ∈ L2(R) and ab > 1, write down explicitly a
function f ∈ L2(R) for which f ⊥ span EmbTnag. In fact, we would conjecture
that if n < ab ≤ n + 1, then there are functions (fi)n

i=1 in L2(R) so that

H = (span EmbTnag)⊕
n∑

i=1

⊕(span EmbTnafi),

where the sums above are orthogonal sums.

For ab = 2, Daubechies [54] gives the explicit representation for the func-
tion f requested in Problem 5.20. Just before this article went to print, Balan
and Landau [10] and independently Gabardo and Han [82] answered it posi-
tively.

It can be checked by direct calculation that a necessary condition for
(g, a, b) to form a WH-frame is that

∑
k |Gk(t)|2 ≤ B a.e.. This condition

is not sufficient however (see Example 5.35). We are now ready to pass to the
CC-condition [36] which is sufficient for (g, a, b) to have a finite upper frame
bound.

Theorem 5.21 (CC-Condition). If g ∈ L2(R), a, b ∈ R and

∑

k∈Z

|
∑

n∈Z

g(t− na)g(t− na− k/b)| =
∑

k∈Z

|Gk(t)| ≤ B, a.e.,(CC)

then g ∈ PF . Moreover, if we also have
∑

k 6=0

|Gk(t)| ≤ (1− ε)G0(t) a.e.,(5.3)

for some 0 < ε < 1, then (g, a, b) is a WH-frame.

Proof. We first observe that
∑

k 6=0

|T−k/bGk(t)|=
∑

k 6=0

|T−k/b

∑

n∈Z

Tnag(t)Tna+k/bg(t)|

=
∑

k 6=0

|
∑

n∈Z

Tna−k/bg(t)Tnag(t)|

=
∑

k 6=0

|
∑

n∈Z

Tna+k/bg(t)Tnag(t)|

=
∑

k 6=0

|
∑

n∈Z

Tna+k/bg(t)Tnag(t)|

=
∑

k 6=0

|Gk(t)|.
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Now,

|
∑

k 6=0

∫
f(t)f(t− k/b)

∑

n∈Z

g(x− na)g(x− na− k/b)dt|

≤
∑

k 6=0

∫
|f(t)| · |Tk/bf(t)| · |Gk(t)|dt

≤
∑

k 6=0

(∫
|f(t)|2|Gk(t)|dt

)1/2

·
(∫

|Tk/bf(t)|2|Gk(t)|dt

)1/2

≤

∑

k 6=0

∫
|f(t)|2|Gk(t)|dt




1/2

·

∑

k 6=0

∫
|Tk/bf(t)|2|Gk(t)|dt




1/2

=




∫
|f(t)|2

∑

k 6=0

|Gk(t)|dt




1/2

·



∫
|f(t)|2

∑

k 6=0

|T−k/bGk(t)|dt




1/2

=
∫
|f(t)|2

∑

k 6=0

|Gk(t)|dt.

Combining this with a simple application of the triangle inequality to the
WH-Frame Identity yields the result.

The first condition in Theorem 5.21 is called the CC-condition and plays
an important role in Weyl-Heisenberg frame theory [39] which we will explore
further in Section 9. It is known (see Example 5.35 below) that the CC-
condition is not necessary for having a finite upper frame bound or a WH-
frame. A natural open question concerns the CC-condition and the dual frame.

Problem 5.22. If (g, a, b) satisfies the CC-condition, does the canonical
dual (S−1g, a, b) also satisfy the CC-condition?

There is also a uniform CC-condition which is slightly stronger than the
CC-condition and does pass to the dual frame – at least in the case where ab
is rational (see [39, Theorem 4.14]). We say that (g, a, b) satisfies the uniform
CC-condition if for every ε > 0 there is a natural number K > 0 so that for
a.e. t we have

∑

|k|≥K

|Gk(t)| < ε.(UCC)

There are WH-frames (g, a, b) which satisfy the CC-condition but fail the
uniform CC-condition (see Example 5.34 below). Even the uniform CC-
condition is a fairly weak assumption since the condition of Tolimieri and Orr



The Art of Frame Theory 163

(see [102, Subsection 1.4.3]) is strong enough to imply it (see [39, Proposition
4.12]).

Until now, our WH-frames (g, a, b) have been heavily dependent on the
values of a and b in the sense that a small change in either one of these values
may cause our family to cease to be a frame. Now we will consider some results
of Daubechies [54] and Walnut [133] which guarantee that certain functions
will form WH-frames for a fixed value of a and all small values of b. To do
this we define the Wiener amalgam space W (L∞, `1) to be the set of all
measurable functions g on R for which there is some a > 0 such that

‖g‖W,a =
∑

n∈Z

‖g · χ[an,a(n+1))‖∞ =
∑

n∈Z

‖Tnag · χ[0,a)‖∞ < ∞.(5.4)

It is easily checked that W (L∞, `1) is a Banach space with the norm ‖·‖W,a.
Straightforward calculations (see, e.g., [95]) yield the following proposition.

Proposition 5.23. For a function g ∈ W (L∞, `1), we have:
(1) If ‖g‖W,a is finite for one value of a > 0, then it is finite for all a > 0.
(2) If m is a natural number and 0 < b ≤ ma, then ‖g‖W,a ≤ 2m‖g‖W,b.

The following result is a generalization by Walnut [133] of a result of
Daubechies [54]. The proof of Daubechies uses the Poisson summation for-
mula. Our proof is due to Heil and Walnut [95].

Theorem 5.24. Let g ∈ L2(R) and a > 0 be such that:
(1) there exist constants A,B such that 0 < A ≤ G0(t) ≤ B a.e. t ∈ R,
(2) we have g ∈ W (L∞, `1).
Then there exists a b0 > 0 so that (g, a, b) is a WH-frame for all 0 < b ≤ b0.

To prove Theorem 5.24, one just checks that the CC-condition and the
equation following it holds for all small values of b (see, e.g., [95, Theorem
4.1.5]). Some important examples related to Theorem 5.24 are due to Fe-
ichtinger and Janssen [72]. They show that WH-frame bound conditions de-
pend heavily on the lattice parameters. They show in particular that the
family of parameters a, b for which (g, a, b) forms a WH-frame need not be
intervals, and can vary greatly for rational vs. irrational parameters.

We end this section by introducing the Zak transform (also known as the
Weil-Brezin map). This is one of the most powerful tools in WH-frame theory
for producing examples, especially in the case ab = 1. This operator was
introduced by Zak [139] in the 1960s (calling it the kq-representation) when
he was working in solid state physics. However, the transform was around prior
to this (see the introduction of [73] for a detailed account of the history). Since
then, it has been extensively used in WH-frame theory, especially by Janssen
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(alone and with various co-authors) [23, 98, 99, 38, 39]. A good introduction to
the Zak transform is [99]. For extensive examples using the Zak transform, see
[39]. We start with the operator-theoretic definition for the case a = b = 1.
In this case, (EmTnχ

[0,1]) forms an orthonormal basis for L2(R).

Definition 5.25. The Zak Transform is the map Z : L2(R) → L2(Q)
(Q = [0, 1)× [0, 1)) given by

Z(EmTnχ
[0,1]) = Em,n.

Normally, the following definition is used for the Zak Transform. As we
will see afterwards, these two definitions are equivalent.

Definition 5.26. For λ > 0, the Zak transform of a function f ∈ L2(R)
is

(Zλf)(t, ν) = λ1/2
∑

k∈Z

f(λ(t− k))e2πikν , a.e. t, ν ∈ R,(5.5)

where the right-hand side has to be interpreted in the L2
loc(R) sense. If no

confusion will arise, we will write Z for Zλ.

We check that the series in the Zak transform converges for the case λ = 1
(the general case follows with only notational changes). We choose f ∈ L2(R)
and k ∈ Z and set

Mk(t, ν) = f(t− k)e2πikν .

Now we compute

‖Mk‖2
2 =

∫ 1

0

∫ 1

0
|f(t− k)e2πikν |2dνdt =

∫ 1

0
|f(t− k)|2dt < ∞.

So Mk ∈ L2(Q). Moreover, these functions are orthogonal. That is, for all
j 6= k,

〈Mk,Mj〉 =
∫ 1

0
f(t− j)f(t− k)

(∫ 1

0
e2πi(j−k)νdν

)
dt = 0.

It follows that ‖∑
k Mk‖2

2 =
∑ ‖Mk‖2

2 = ‖f‖2
2. Therefore,

∑
k Mk is well-

defined, linear, convergent, and norm-preserving.
From the definition, we have the quasi-periodicity relations

Zf(t + 1, ν) = e−2πiνZf(t, ν) and Zf(t, ν + 1) = Zf(t, ν).(5.6)
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We see then that the Zak transform is completely determined by its values
in the unit square Q = [0, 1)× [0, 1). So we can define a new Hilbert space

L2(Q) =

{
F : Q → C : ‖F‖2 =

(∫ 1

0

∫ 1

0
|F (t, ν)|2dνdt

)1/2

< ∞
}

.

The inner product here is

〈F, G〉 =
∫ 1

0

∫ 1

0
F (t, ν)G(t, ν)dνdt.

Note that the two-dimensional exponentials (Emn)m,n∈Z form an orthonor-
mal basis for L2(Q). Now we are ready to relate the Zak transform to our
Hilbert spaces.

Theorem 5.27. The Zak transform is a unitary map of L2(R) onto
L2(Q).

Proof. Again we will check the case λ = 1. For m,n ∈ Z, let φmn =
TnEmχ

[0,1). A direct calculation shows that (φmn) is an orthonormal basis for
L2(R). We will show that Z maps φmn to Emn to complete the proof. Now,

Zφmn(t, ν) =
∑

k∈Z

e2πim(t+k−n)χ
[n,n+1)(t + k)e2πikν .

Since 0 ≤ t ≤ 1, the only nonzero term in this series is k = n, so

Zφmn(t, ν) = e2πimte2πinν = Emn(t, ν).

We can also recover a function from its Zak transform by the formula

f(t) =
∫ 1

0
(Zf)(t, ν)dν.(5.7)

A close look at the proof of Theorem 5.27 yields for ab = 1 that

Z(EmbTnag) = EmnZg.(5.8)

Equation (5.8) places some strong restrictions on the form of Zg when (g, a, b)
yields a frame. We combine some of these results in the following theorem
[54, 93, 98].

Theorem 5.28. Let ab = 1 and g ∈ L2(R).
(1) (EmbTnag) is complete in L2(R) if and only if Zg 6= 0 a.e.
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(2) (g, a, b) generates an orthonormal basis for L2(R) if and only if |Zg| = 1
a.e.

(3) The following are equivalent:
(i) 0 < A ≤ |Zg|2 ≤ B a.e.;
(ii) (g, a, b) generates a frame for L2(R) with frame bounds A,B.

(4) (g, a, b) is minimal if and only if (1/Zg) ∈ L2(Q).

Proof. (1) This is immediate from the fact that the Zak transform is a
unitary map, (Emn) is an orthonormal basis for L2(Q), and (5.8).

(2) We leave this to the reader.
(3) Since Z is a unitary map, (5.8) yields that (g, a, b) is a frame for L2(R)

with frame bounds A,B if and only if (EmnZg) is a frame for L2(Q) with
frame bounds A,B. But, for any F ∈ L2(Q),

∑
m,n

|〈F, EmnZg〉|2 =
∑
m,n

|〈F · Zg, Emn〉|2 = ‖F · Zg‖2.

The equivalence of (i) and (ii) follows easily from here. Finally, (4) is an
observation we leave to the reader.

We mention yet another important result which has a long history (see
[99]).

Theorem 5.29. Let f ∈ L2(R) and assume that Zf is continuous on
R×R. Then Zf has a zero.

Combining Theorem 5.28 with Theorem 5.29, we see that no function
whose Zak transform is continuous can generate a WH-frame for ab = 1.
However, if we are willing to go to ab < 1, then we can get good functions,
even Gaussians, to be window functions.

Remark 5.30. It can be checked that the Zak transform of the Gaussian
function g(t) = π−1/4e−t2/2 is continuous and has a single zero in Q. It
follows from Theorem 5.28 and the Balian-Low Theorem that (when ab = 1)
(EmbTnag) is complete in L2(R) but does not form a frame. However, it
does form a frame for all values of ab < 1. This was shown independently
by Lyubarskii [111] and Seip and Wallsten [130]. Recently, Lyubarskii and
Seip [113] proved that the removal of just one element from this WH-system
leaves an independent set. Also, Casazza and Lammers [42] have written down
explicitly for ab = 1 those functions g ∈ L2(R) for which (g, a, b) is complete.

This raises another question for WH-systems.
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Problem 5.31. Find all those g, a, b so that (g, a, b) is complete in L2(R).

Problem 5.31 has been answered for the case ab = 1 by Casazza and
Lammers [42]. But the general case is completely open. We now state another
important result for applications of the Zak transform.

Proposition 5.32. Suppose that g ∈ PF . For each k ∈ Z we have:
(1) |(Zg)(t, ν)|2 ≤ B, a.e. t, ν ∈ [0, 1).
(2) |(Zg)(t, ν)|2 has for a.e. t the Fourier series expansion

|(Zg)(t, ν)|2 =
∞∑

k=−∞
Gk(t)e−2πikν , a.e. ν.

(3) For a.e. t and all k ∈ Z,

Gk(t) =
∫ 1

0
|(Zg)(t, ν)|2e2πikνdν.

Proof. (1) follows from the definition of the Zak transform. (2) is an
application of Parseval’s identity and Carleson’s theorem, and (3) follows im-
mediately from (2).

We end our introduction to WH-frames by considering the basic use of the
Zak transform to produce examples in this area. This result can be found in
[39].

Proposition 5.33. Let a = b = 1 and g ∈ PF. For M ⊂ Z with |M | < ∞
and all f ∈ L2(R), let SM : L2(R) → L2(R) be given by

SMf =
∑

k∈M

f(· − k)Gk =
∑

k∈M

(Tkf) ·Gk.

Then
‖SM‖ = ess supt,ν |

∑

k∈M

Gk(t)e−2πikν |.

Moreover, for all ν0 ∈ [0, 1) we have

ess supt|
∑

k∈M

Gk(t)e−2πikν0 | ≤ ‖SM‖.

Proof. For any f ∈ L2(R), taking the Zak transform, we have

Z


 ∑

k∈M

f(· − k)Gk


 (t, ν) = (Zf)(t, ν) ·

∑

k∈M

Gk(t)e−2πikν , a.e. t, ν ∈ R.
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Since Z is unitary, the operator norm of SM is the same as the operator norm
of the multiplication operator:

Zf ∈ L2(Q) 7→ (Zf)(t, ν) ·
∑

k∈M

Gk(t)e−2πikν .

But these operator norms are precisely

‖SM‖ = ess supt,ν |
∑

k∈M

Gk(t)e−2πikν |.

We leave the moreover part to the reader.

Proposition 5.33 is the main tool for constructing counterexamples using
the Zak transform. We will give two such examples here to give the flavor of
this method. These examples come from [39].

Example 5.34. There is a WH-frame (g, 1, 1) satisfying the CC-condition
but failing the uniform CC-condition.

Proof. Choose real numbers am > 0 with M =
∑

m am < ∞. Define
F (t, ν) for t, ν ∈ [0, 1) by

F (t, ν) = M +
∞∑

m=`

am−` cos 2πmν, t ∈
[
1− 1

`
, 1− 1

` + 1

)
, ν ∈ [0, 1).

Let g ∈ L2(R) be the unique element satisfying

(Zg)(t, ν) =
√

F (t, ν), t, ν ∈ [0, 1).

A direct calculation for this g yields that Gk = 0 for |k| = 0, 1, . . .m− 1 while
Gk(t) = 1

2a|k|−` for |k| = `, ` + 1, . . ., when t ∈ [1 − 1/`, 1 − 1/(` + 1). A
moment’s reflection should convince the reader that this implies that (g, 1, 1)
satisfies the CC-condition while failing the uniform CC-condition.

Example 5.35. There is a function g ∈ L2(R) so that (g, 1, 1) yields a
WH-frame for L2(R), but g fails to satisfy the CC-condition.

Proof. We see that what we need is a function Zg so that Zg is essentially
bounded but (Zg)(t, ·) is not continuous a.e. t. So let

(Zg)(t, ν) = F (t, ν) =

{
1 : 0 ≤ t ≤ 1, 0 ≤ ν ≤ 1

2 ,
1
2 : 0 ≤ t < 1, 1

2 < ν < 1.
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By Theorem 5.28, we see that (g, 1, 1) yields a WH-frame for L2(R). Using
Proposition 5.32, we can explicitly compute:

Gk(t) =
3((−1)k − 1)

8πik
, k 6= 0.

It follows that ∑

k

|Gk(t)| = ∞.

So our example is complete.

6. An Introduction to Perturbation Theory

Perturbation theory involves answering the question: If (fi) is a frame
for a Hilbert space H and (gi) is a sequence in H which is “close” to (fi),
must (gi) be a frame for H (or just for its span)? And if so, does it have
the same excess? What can be said about (gi) if (fi) is a Riesz basis? The
main issues here are (1) How do we measure “closeness”? and (2) Once we
have a measure of “closeness” how close does the sequence need to be to a
frame to guarantee that it is a frame? For the first question, there are two
natural ways to measure closeness in a Hilbert space: Close in norm and close
in inner product. We will look at both these possibilities here and also look at
natural conditions for question (2). Again, the important book of Young [139]
constains many results and references for perturbation theory in the context
of frames - especially Fourier frames which we consider in Section 8.

Perhaps the first perturbation theorem was due to C. Neumann [118].
This states that an operator T on a (Banach) Hilbert space H satisfying
‖I − T‖ < 1, must be an invertible operator. As a consequence, we get a
perturbation theorem:

Theorem 6.1. If (fi) and (gi) are sequences in a Hilbert space H and
0 < λ < 1 satisfies for all sequences of scalars (ai),

‖
∑

i

ai(fi − gi)‖ ≤ λ‖
∑

i

aifi‖,

then Tfi = gi is a well-defined invertible operator on H.

Proof. Clearly, ‖I − T‖ ≤ λ < 1.

Theorem 6.1 is generally referred to as the Paley-Wiener Perturbation
Theorem and is proved in [120]. Apparently no one noticed that it was really
due to Carl Neumann.
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A much more powerful perturbation theorem is due to Hilding [96] and is
a generalization of the perturbation theorem of C. Neumann (see also [43] for
a generalization) and is also really a Banach space result.

Theorem 6.2. Let (fi) and (gi) be sequences in a (Banach) Hilbert space
H. Assume there are constants λ1, λ2 satisfying for all sequences of scalars
(ai)

‖
∑

i

ai(fi − gi)‖ ≤ λ1‖
∑

i

aifi‖+ λ2‖
∑

i

aigi‖.

Then Tfi = gi is a well-defined invertible operator on H.

The previous two results say that if (fi) is a frame for H and if (gi) is
a sequence in H which is close to (fi) in the sense of the inequalities in the
theorems, then (gi) is a frame for H which is equivalent to the frame (fi).

It would be advantageous to be able to conclude that the (gi) forms a
frame–even if it is not equivalent to the frame (fi). Such results existed in
exponential frame theory for quite some time (see Section 8). We next give
a perturbation theorem which is an unpublished observation of Casazza. The
advantage of this result is that it is the first “necessary and sufficient” pertur-
bation theorem, and hence is best possible in all situations. Also, it allows one
to conclude that our second family forms a frame without it being equivalent to
the original sequence. Finally, it is easy to reduce most abstract perturbation
theorems to this theorem quite quickly.

Theorem 6.3. Let (fi) be a frame for a Hilbert space H and let (gi) be a
sequence of elements of H. The following are equivalent:

(1) (gi) is a frame for H.
(2) There is a constant M > 0 so that for all f ∈ H we have:

∑

i

|〈f, fi − gi〉|2 ≤ M min

(∑

i

|〈f, fi〉|2,
∑

i

|〈f, gi〉|2
)

.(6.1)

Moreover, if (gi) has a finite upper frame bound, then (1) and (2) are equivalent
to

(3) there is a constant M > 0 so that for all f ∈ H we have

∑

i

|〈f, fi − gi〉|2 ≤ M
∑

i

|〈f, gi〉|2.

Proof. (1) ⇒ (2): Let Af , Bf , Ag, Bg be the lower and upper frame
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bounds of (fi) and (gi). Now, for all f ∈ H we have

∑

i

|〈f, fi − gi〉|2 ≤ 2

(∑

i

|〈f, fi〉|2 +
∑

i

|〈f, gi〉|2
)

≤ 2

(∑

i

|〈f, fi〉|2 + Bg‖f‖2

)
≤ 2

(∑

i

|〈f, fi〉|2 +
Bg

Af

∑

i

|〈f, fi〉|2
)

≤ 2

(
1 +

Bg

Af

) ∑

i

|〈f, fi〉|2.

By symmetry, since we are assuming in (1) that (gi) is also a frame, we have

∑

i

|〈f, fi − gi〉|2 ≤ 2

(
1 +

Bf

Ag

) ∑

i

|〈f, gi〉|2.

(2) ⇒ (1): Given M in (2) and any f ∈ H, we compute

Af‖f‖2≤
∑

i

|〈f, fi〉|2 ≤ 2

(∑

i

|〈f, fi − gi〉|2 +
∑

i

|〈f, gi〉|2
)

≤ 2

(
M

∑

i

|〈f, gi〉|2 +
∑

i

|〈f, gi〉|2
)

= 2(M + 1)
∑

i

|〈f, gi〉|2

≤ 2(M + 1)

(∑

i

|〈f, fi − gi〉|2 +
∑

i

|〈f, fi〉|2
)

≤ 2(M + 1)

(
M

∑

i

|〈f, fi〉|2 +
∑

i

|〈f, fi〉|2
)

≤ 2(M + 1)2
∑

i

|〈f, fi〉|2 ≤ 2(M + 1)2Bf‖f‖2.

For the moreover part of the theorem, it is clear that (2) always implies (3).
To see that (3) implies (1), we use the first four lines of the proof of (2) ⇒ (1)
to get a lower frame bound for (gi) and the upper frame bound comes from
the fact that (gi) is Hilbertian.

There is also a Banach space version of Theorem 6.3.

Theorem 6.4. Let (fi) and (gi) be sequences in a (Banach) Hilbert space
H. The following are equivalent:

(1) (fi) ≈ (gi) (i.e., Tfi = gi is a well-defined (possibly into) isomorphism
of H into H).
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(2) There is a constant M > 0 so that for all sequences of scalars (ai) we
have

‖
∑

i

ai(fi − gi‖ ≤ M min

(
‖

∑

i

aifi‖, ‖
∑

i

aigi‖
)

.

Moreover, if (2) holds, the equivalence constant in (1) is ≤ M + 1.

Proof. (1) ⇒ (2): Given Tfi = gi an isomorphism, for any finitely non-zero
sequence of scalars (ai) let f =

∑
i aifi. Then

‖f − Tf‖ ≤ ‖f‖+ ‖Tf‖ ≤ (1 + ‖T‖)‖f‖.
Similarly, ‖f − Tf‖ ≤ (1 + ‖T−1‖)‖Tx‖. This is enough for (2).

(2) ⇒ (1): By assumption, for any sequence of scalars (ai) we have

‖
∑

i

aifi‖ ≤ ‖
∑

i

ai(fi − gi)‖+ ‖
∑

i

aigi‖ ≤ (M + 1)‖
∑

i

aigi‖.

By symmetry we have that

‖
∑

i

aigi‖ ≤ (M + 1)‖
∑

i

aifi‖.

The disadvantage of Theorem 6.4 is that we do not get to conclude that the
sequence (gi) is complete (i.e., spans H). For example, if (ei) is an orthonormal
basis for H and we let fi = ei and gi = ei+1, the theorem holds.

Some of the first modern Hilbert space frame perturbation theorems come
from the PhD thesis of Heil (see [49]). The motivation for studying abstract
frame perturbations grew out of results of Feichtinger and Gröchenig and
Walnut for perturbing WH-frames. This topic was then carried further by
Christensen et al. [32, 33, 45]. Good use of these results was made by Balan
[8] in studying Fourier frames and Wavelet bases. We present a generalization
due to Casazza and Christensen [32]. We will not track the frame bounds for
(gi) below, but point out that in general it is quite important to know precisely
the exact frame bounds obtained for a perturbation of a frame.

Theorem 6.5. Let (fi) be a frame for a Hilbert space H with frame bounds
A,B. Let (gi) be a sequence in H and assume max[λ1 + µ√

A
, λ2] < 1. If one

of the following two conditions is fulfilled for all finitely nonzero sequences of
scalars (ai) and all f ∈ H, then (gi) is also a frame for H:

(∑

i

|〈f, fi − gi〉|2
)1/2

≤ λ1

(∑

i

|〈f, fi〉|2
)1/2

+ µ‖f‖,

‖
∑

i

ai(fi − gi)‖ ≤ λ1‖
∑

i

aifi‖+ λ2‖
∑

i

aigi‖+ µ
∑

i

|ai|2)1/2.
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Proof. For the proof, we refer the reader to the listed papers, or point out
that these results can be obtained by judicious use of Theorems 6.3, 6.4.

There are special perturbation theorems for WH-frames as well as expo-
nential frames (see the article by Christensen in [73]). This ends our small
introduction to perturbation theory. We mention that there is room for many
useful perturbation results in this area. It would be particularly important,
however, to produce good applications for new perturbation results so that
this topic does not degenerate into total abstract nonsense. Good places to
look for applications are WH-frames, frames of translates (see Section 8) and
exponential frames (see Section 8).

7. Wavelet Frames

The theory of wavelet frames is one of the most underdeveloped areas of
frame theory. (We should not confuse this with the study of orthogonal or
biorthogonal wavelets, which is one of the most active research areas today.)
Since these frames are also important for applications, it would be quite useful
for much more progress to be made in this direction.

When the theory of wavelets was just blossoming, Daubechies, Gross-
man, and Meyer [56] combined the theory of the continuous wavelet transform
with the theory of frames to define affine frames (or alternatively, wavelet
frames) for L2(R). Daubechies [54] developed these ideas much further. As
we have seen in the Balian-Low Theorem, it is not possible to have a Weyl-
Heisenberg frame (g, 1, 1) with g both smooth and rapidly decaying. Some of
the excitement over wavelets is due to a major result of Meyer [115] which
says such a phenomenon can occur there (and hence also in wavelet frames).

Definition 7.1. Given g ∈ L2(R), a > 1 and b > 0, we say that (g, a, b)
generates an affine frame (or a wavelet frame) for L2(R) if

{DanTmbg}m,n∈Z

is a frame for L2(R). The function g is called the mother wavelet. The num-
bers a, b are the frame parameters with a being the dilation parameter and b
the shift parameter.

It is sometimes necessary to use two mother wavelets in order to form a
frame for L2(R). This was the original approach of [56].

Theorem 7.2. Let g1, g2 ∈ L2(R) satisfy:
(1) supp (ĝ1) ⊂ [−L,−`] and supp (ĝ2) ⊂ [`, L], where 0 < ` < L < ∞.
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(2) ĝ1 and ĝ2 are continuous and do not vanish on (−L,−`) and (`, L),
respectively. Then (DanTmbg1, DanTmbg2) is a frame for L2(R) for all 1 < a <
L/` and all 0 < b ≤ 1/(L− 1).

We really want to find only one mother wavelet generating a wavelet frame
for L2(R). If the world were perfect, we could just add the two functions in
Theorem 7.2 and get a good mother wavelet. Unfortunately, this does not work
in general. For example, if a = 2, b = 1, ĝ1 = χ

(−2,−1], and ĝ2 = χ
[1,2), then

(DanTmbg1, DanTmbg2) actually forms an orthonormal basis for L2(R), but
f̂ = χ

(−2,−1]−χ
[1,2) is orthogonal to every function of the form DanTmb(g1+g2).

The problem here is not critical however, since if we take b small enough then
g1 + g2 will generate a frame. This is an interesting result of Heil and Walnut
[95].

Theorem 7.3. Let g1, g2 ∈ L2(R) be as in Theorem 7.2. If 2L < 1/b,
then (g1 + g2, a, b) generates an affine frame for L2(R).

Proof. Let g = g1+g2. Since supp (Dan f̂ · ĝ) ⊂ [−1
2b , 1

2b ], we have Dan f̂ · ĝ ∈
L2[−1

2b , 1
2b ]. Since (b1/2Emb) is an orthonormal basis for L2[−1

2b , 1
2b ], we have

∑
m,n

|〈f,DanTmbg〉|2 =
∑
m,n

|〈Dan f̂ · ĝ, E−mb〉|2

= b−1
∑
n

∫

R
a−n|f̂(a−nγ)|2|ĝ(γ)|2dγ

=
∫ 0

−∞
|f̂(γ)|2 · b−1

∑
n

|ĝ1(anγ)|2dγ

+
∫ ∞

0
|f̂(γ)|2 · b−1

∑
n

|ĝ2|2dγ.

The result follows immediately from here.

Daubchies [54] has also given a general criterion for g, a, b to generate a
wavelet frame.

Theorem 7.4. Let g ∈ L2(R) and a > 1 satisfy:
(1) There are positive constants A,B such that

A ≤
∑
n

|ĝ(anγ)|2 ≤ B, a.e. γ ∈ R.

(2) limb→0
∑

k 6=0 β(k/b)1/2β(−k/b)1/2 = 0, where

β(s) = ess sup|γ|∈[1,a]

∑
n

|ĝ(anγ)ĝ(anγ − s)|.
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Then there exists a b0 > 0 such that (g, a, b) generates a wavelet frame for
L2(R) for each 0 < b < b0.

Again, relying on the CC-condition, Casazza and Christensen [36] gave a
stronger condition which also works for frame sequences (i.e., when (g, a, b)
generates a wavelet frame for its closed linear span).

Theorem 7.5. Let a > 1, b > 0 and g ∈ L2(R) be given. Let

N =:

{
γ ∈ [1, a] :

∑

n∈Z

|ĝ(anγ)|2 = 0

}
,

and assume

A =: inf|γ|∈[1,a]−N


∑

n∈Z

|ĝ(anγ)|2 −
∑

k 6=0

∑

n∈Z

|ĝ(anγ)ĝ(anγ + k/b)|

 > 0,

B =: sup|γ|∈[0,a]

∑

k,n∈Z

|ĝ(anγ)ĝ(anγ + k/b)| < ∞.

Then { 1
an/2 g( x

an −mb)}n,m∈Z is a frame sequence with bounds A/b,B/b.

As we saw earlier, the dual of a WH-frame is another WH-frame. One ma-
jor difficulty with wavelet frames is that the dual frame of a wavelet frame need
not be a wavelet frame. What we do have is that given a wavelet frame with
frame operator S, S(Danf) = DanSf and similarly for S−1. An important
problem, especially for applications, is to classify the affine frames which have
duals which are also affine frames. Recently, Bownik [26] gave two equations
which are necessary and sufficient for two affine frames to be dual frames. We
ask:

Problem 7.6. Classify all (g, a, b) which generate wavelet frames.

The above problem may be completely intractable at this time. Something
which would be just as good in practice is:

Problem 7.7. Find all wavelet frames whose cannonical dual frame is also
a wavelet frame (and preferrably give an exact representation for the dual).

As we saw in Section 5, a WH-frame is a Riesz basis for L2(R) if and only
if ab = 1. Moreover, in this case, functions giving WH-frames are either not
smooth or do not decay quickly. Meyer [115] showed that things are much
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better in the wavelet frame case by exhibiting a C∞ function with compactly
supported Fourier transform which generates a wavelet basis for L2(R).

Definition 7.8 (Meyer wavelet). The Meyer wavelet is the function
ψ ∈ L2(R) defined by ψ̂(γ) = eiγ/2ω(|γ|), where

ω(γ) =





0 : γ ≤ 1
3 or γ ≥ 4

3 ,
sin π

2 ν(3γ − 1) : 1
3 ≤ γ ≤ 2

3 ,

cos π
2 ν(3γ

2 − 1) : 2
3 ≤ γ ≤ 4

3 ,

and ν ∈ C∞(R) is such that ν(γ) = 0 for γ ≤ 0, ν(γ) = 1 for γ ≥ 1,
0 ≤ ν(γ) ≤ 1 for γ ∈ [0, 1], and ν(γ) + ν(1− γ) = 1 for γ ∈ [0, 1].

It takes some work to show that (D2nTmψ)m,n∈Z is an orthonormal basis
for L2(R), and any ψ with the property that (D2nTmψ) forms an orthonormal
basis for L2(R) is called an (orthonormal) wavelet. Mallat and Meyer then
developed the theory of multiresolution analysis to put such examples into
a natural framework. This was based on some earlier remarkable results of
Mallat [114].

Definition 7.9. A multiresolution analysis for L2(R) consists of
(1) closed subspaces Vn ⊂ L2(R) for n ∈ Z and satisfying:

(a) Vn ⊃ Vn+1,
(b) ∩Vn = {0},
(c) ∪Vn is dense in L2(R),
(d) Vn+1 = D2Vn = {D2f : f ∈ Vn},

(2) a function φ ∈ V0 such that (Tmφ)m∈Z is an orthonormal basis for V0.

The important point is that each MRA generates a natural orthonormal
basis for L2(R). There is an MRA generating the Meyer wavelet. The Haar
system is generated by setting V0 = {f ∈ L2(R): f is a constant on each of
the intervals [m,m + 1), m ∈ Z} and letting Vn = D2nV0, and φ = χ

[0,1).
How does an MRA work? Since Vn ⊂ Vn−1, there is a subspace Wn of

Vn−1 so that Vn−1 = Vn ⊕ Wn. By assumption, there is a function φ ∈ W0

such that (Tmφ) is an orthonormal basis for W0. Now, Wn+1 = D2Wn makes
(D2nTmφ) an orthonormal basis for Wn. Since L2(R) = (

∑⊕Wn)`2 , it follows
that (D2nTmφ) is an orthonormal basis for L2(R).

Multiresolution analysis is one of the most used and useful tools in wavelet
theory. We refer the reader to the classical book of Daubechies [55] for an
introduction to this important topic. Also, more recently, the notion of a
frame multiresolution analysis has been defined by Benedetto and Li [18].



The Art of Frame Theory 177

This topic is just now being developed and we refer the reader to [18, 20, 104]
for the most recent results in this area.

Once again we emphasize that the focus of these notes is on modern ab-
stract frame theory. This accounts for the sparse treatment of wavelets and
wavelet frames. The reader should be aware however that this is one of the
largest and most active areas of research today.

8. Frames of Translates

Frames consisting of translates of a single function play an important role
in sampling theory as well as in wavelet theory and Weyl-Heisenberg frame
theory. In this section we will be dealing with families (fi) in L2(R) which are
not frames for L2(R), but are frames for their closed linear span. We will call
such sequences frame sequences. It is known that no sequence of translates
of a single function can form a frame for L2(R). This is a recent result of
Christensen, Deng and Heil [48]. Previously, Olson and Zalik [119] showed
there are no Riesz bases of translates for L2(R).

We first introduce some notation. If φ ∈ L2(R) and b > 0, we define the
function Φb : T → R by

Φb(ζ) =
∑

n∈Z

|φ̂
(

ζ + n

b

)
|2.

Note that Φb ∈ L1(T ). A direct calculation shows that for any n ∈ Z we have

〈Tnbφ, φ〉 = 〈e−2πinζbφ̂, φ̂〉 =
1
b

∫ 1

0
Φb(ζ)e−2πinζdζ =

1
b
Φ̂b(n).

If Λ ⊂ Z, we let HΛ be the closed subspace of L2(T ) generated by the charac-
ters e2πinζ , for n ∈ Λ. We let EΛ be the closed subspace of HΛ consisting of all
f such that Φb(ζ)f(ζ) = 0 a.e., If f ∈ HΛ, we denote by d(f,EΛ) the distance
of f to the subspace EΛ. Our first result is due to Casazza, Christensen and
Kalton [40].

Theorem 8.1. Suppose φ ∈ L2(R) and b > 0. If Λ ⊂ Z, then (Tnbφ)n∈Λ

is a frame sequence with frame bounds A and B if and only if for every f ∈ HΛ

we have

Ad(f,EΛ)2 ≤ 1
b

∫ 1

0
|f(ζ)|2Φb(ζ)dζ ≤ B‖f‖2,

or, equivalently, for all f ∈ HΛ ∩ E⊥
Λ ,

A‖f‖2 ≤ 1
b

∫ 1

0
|f(ζ)|2Φb(ζ)dζ ≤ B‖f‖2.
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Furthermore, if this condition is satisfied, then (Tnbφ)n∈Λ is an exact frame
sequence with the same frame bounds if and only if EΛ = {0}.

Proof. By our earlier remarks and the definitions, (Tnbφ)n∈Λ is a frame
sequence with frame bounds A,B if and only if the linear map T : c00(Λ) →
L2(R) (where c00(Λ) denotes the finitely nonzero sequences supported on Λ)
defined by Ten = Tnbφ extends to a bounded linear operator T : `2 → L2(R)
with

Ad(u, ker T )2 ≤ ‖Tu‖2 ≤ B‖u‖2,

for all u ∈ `2(Λ).
Let U : HΛ → `2(Λ) be the natural isometry Uf = {f̂(n)}n∈Λ. Then for

any trigonometric polynomial f ∈ HΛ, we have

‖TUf‖2 = ‖
∑

n∈Λ

f̂(n)Tnbφ‖2 =
∫ ∞

−∞
|
∑

n∈Λ

f̂(n)e−2πinbζ φ̂(ζ)|2dζ

=
1
b

∑

n∈Z

∫ 1

0
|f(ζ)|2φ̂

(
n + ζ

b

)
|2dζ =

1
b

∫ 1

0
|f(ζ)|2Φb(ζ)dζ.

The theorem now follows.

Theorem 8.1 yields a generalization of a result of Benedetto and Li [18].
The original theorem had an unnecessary hypothesis which our theorem re-
moves. However, Kim and Lim [104] also removed this unnecessary hypothesis
as did Benedetto and Treiber [19].

Theorem 8.2. If φ ∈ L2(R) and b > 0, then
(1) (Tnbφ)n∈Z is an orthonormal sequence if and only if

Φb(γ) = b a.e.

(2) (Tnbφ)n∈Z is an exact frame sequence with frame bounds A,B if and
only if

bA ≤ Φb(γ) ≤ bB a.e.

(3) (Tnbφ)n∈Z is a frame sequence with frame bounds A, B if and only if

bA ≤ Φb(γ) ≤ bB a.e.

on T −Nb, where Nb = {ζ ∈ T : Φb(ζ) = 0}.

Proof. Note that (1) follows easily from the fact that (Tnbφ)n∈Z is or-
thonormal if and only if TU is unitary. (2) is immediate from (3). For
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(3), we note that if Λ = Z, then HΛ = L2(T ) and EΛ = L2(Nb). Hence,
d(f, EΛ)2) =

∫
T−Nb

|f |2dζ. This is all we need.

We now state an interesting consequence of the above ideas.

Theorem 8.3. Suppose φ ∈ L2(R) and b > 0. Then the sequence
(Tnbφ)n∈N is a frame sequence if and only if (Tnbφ)n∈N is a Riesz basis for its
span.

Proof. Assume that (Tnbφ)n∈N is a frame sequence. Then (see for example
[63]) if 0 6= f ∈ HN we have that log |f | ∈ L1 and so, in particular, |f | > 0
a.e. This implies that EN = 0. It follows that if A,B are the frame bounds
for (Tnbφ)n∈N , then for every trigonometric polynomial in HN we have

A‖f‖2 ≤
∫
|f(ζ)|2Φb(ζ)dζ ≤ B‖f‖2.

Now, if f is any trigonometric polynomial, then for large enough n we have
that e2πinζf ∈ HN . Thus, the same inequality follows for all trigonometric
polynomials in L2(T ). This implies the theorem.

A careful examination of the proof of Theorem 8.3 should convince the
reader that the theorem holds for (Tnbφ)n∈Λ with Λ ⊂ N . Theorem 8.2 is a
classification theorem for when an evenly spaced sequence of translates forms
a frame, Riesz basis or orthonormal basis. The main question here is:

Problem 8.4. Classify those functions φ ∈ L2(R) and sequences λn ∈ R
so that (Tλnφ) is a frame sequence.

Problem 8.4 is way beyond the scope of the theory at this time. But,
we can break this problem down into smaller parts. First we ask whether
every frame of translates is equivalent to a subset of an evenly spaced frame
of translates?

Problem 8.5. Is every frame of translates equivalent to a frame sequence
(Tnbφ)n∈Λ for some Λ ⊂ Z (perhaps with multiples of the elements)?

It can be shown that the answer to Problem 8.5 is yes if φ̂ is bounded. This
is a simple variation of the proof of Theorem 5.3.2 in the section of Christensen
of the book [73]. Problem 8.5 could benefit from some deeper perturbation
theory.

Problem 8.6. Classify the frame sequences consisting of subsets of evenly
spaced frames of translates.
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We end with a few remarks about exponential frames. Here we are
interested in finding the γ and families of real (or complex) numbers λn so
that (eiλn) forms a frame (or a Riesz basis) for L2(−γ, γ). Since the Fourier
transform takes Tnbφ to E−nbφ̂, exponential frames (or Fourier frames as
they are sometimes called) are related to frames of translates. This topic is so
large that entire books are devoted to it (see Young [138]). Therefore, we have
decided not to cover it at all since we cannot do justice to it in the limited
space we have here. There is a rich history to these questions going back to
Paley and Wiener (see for example Young [138]). Also, there is a large body
of information available concerning exponential frames and we refer the reader
to Young [138] for this or the bibliography of Seip [129] or Balan [8] for some
more recent results. Young’s book also contains extensive stability results (i.e.,
perturbation results).

Another major direction of research related to this topic is sampling the-
ory. This has been an important topic since Shannon’s sampling theorem
first appeared [131, 135]. This also involves a fundamental question in signal
processing. Namely, how do we represent a function on R in terms of a discrete
sequence? One way is to sample the function - either on a uniform grid or an
irregular grid. The Shannon-Whittaker Representation Theorem [131, 135],
says that the class of bandlimited functions (described in the theorem) can be
completely characterized by their sample values. Again, sampling theory is a
large area of research and we have chosen not to enter this important topic
here. We refer the reader to [2, 3, 14, 16, 21, 112] and their bibliographies for
an up-to-date view of this important topic.

9. Recent Developments in Weyl-Heisenberg Frame Theory

In this section we will look at some recent results in Weyl-Heisenberg frame
theory. We will treat this section more as a survey of the latest results here.

An important result was proved recently and independently by Daubechies,
H. Landau and Z. Landau [59], Janssen [101], and Ron and Shen [125].

Theorem 9.1. For g ∈ L2(R) and a, b > 0, the following are equivalent:
(1) (g, a, b) is a Weyl-Heisenberg frame.
(2) (Em/aTn/bg)n,m∈Z is a Riesz basic sequence.

Casazza and Lammers [42] split the above theorem in half and showed

Theorem 9.2. For g ∈ L2(R) and a, b > 0, the following are equivalent:
(1) There are A, B > 0 so that A ≤ ∑

n∈Z |g(t− na)|2 ≤ B, a.e.
(2) (Em/ag)m∈Z is a Riesz basic sequence.
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Next, we have the classification theorem for tight WH-frames. The equiva-
lence of (1) and (2) in this theorem can be found in [125, Corollary 2.19], while
it also follows from the developments in [102, Subsection 1.3]. The equivalence
of (1) and (3) can be deduced from [125, Corollary 6.8] or from [102, Theorem
1.4.1]. Our proof comes from [38, Theorem 3.2].

Theorem 9.3. Let g ∈ L2(R) and a, b ∈ R. The following are equivalent:
(1) (EmbTnag) is a normalized tight Weyl-Heisenberg frame for L2(R).
(2) We have:

(a) G0(t) =
∑

n∈Z |g(t− na)|2 = b a.e.
(b) For all k 6= 0, Gk(t) =

∑
n g(t− na)g(t− na− k/b) = 0 a.e.

(3) We have g ⊥ En/aTm/bg, for all (n,m) 6= (0, 0) and ‖g‖2 = ab.
(4) (En/aTm/bg) is an orthogonal sequence in L2(R) and ‖g‖2 = ab.
(5) (EmbTnag) is a Weyl-Heisenberg frame for L2(R) with frame operator

S and Sg = g.
Moreover, when at least one of (1)-(5) holds, (EmbTnag) is an orthonormal

basis for L2(R) if and only if ‖g‖ = 1.

Proof. (1) ⇔ (2): Assume (EmbTnag) is a normalized tight frame. For any
function f ∈ L2(R) which is bounded and supported on an interval of length
< 1/b, we have by the WH-frame Identity that F2(f) = 0. Hence, again by
the WH-frame identity we have

‖f‖2 =
∫

R
|f(t)|2dt =

∑
n,m

|〈f, EmbTnag〉|2 = b−1
∫

R
|f(t)|2G0(t)dt.

(2) follows easily from here. The converse is immediate from the WH-frame
Identity.

(3) ⇔ (4): This is a direct calculation.
(1) ⇔ (5). Since S commutes with translation by a and modulation by b,

(5) is equivalent to S = I which, in turn, is equivalent to (1).
(2) ⇔ (3): We compute:

〈g, EmbTnag〉=
∫

R
g(t)Embg(t− na)dt =

∫

R
g(t)g(t− na)e−2πimbtdt

=
∫ 1/b

0

∑

k∈Z

g(t− k/b)g(t− na− k/b)e−2πimbtdt.

A little reflection should convince the reader that this is all we need.

There are several consequences of Theorem 9.3.
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Remark 9.4. Another application of Theorem 9.3 (see [38, Corollary 3.4])
is a simple proof of Theorem 5.19 (2).

Proof. If (EmbTnag) is a WH-frame with frame operator S, then by Propo-
sition 5.5 and the remarks following equation (4.3), (EmbTnaS

−1/2g) is a nor-
malized tight WH-frame equivalent to our WH-frame. So if our frame is exact,
then (EmbTnaS

−1/2g) is an orthonormal basis. Hence,

1 = ‖S−1/2g‖2 = ab.

Also, if ab = 1, then (EmbTnaS
−1/2g) is a tight WH-frame and hence by The-

orem 9.3, (En/aTm/bS
−1/2g) is an orthogonal sequence. But, ab = 1 implies

that n/a = nb and m/b = ma, so (EnbTmaS
−1/2g) is an orthogonal basis for

L2(R). Since S−1/2 is an invertible operator, it follows that (EmbTnag) is a
Riesz basis.

We are now in a position to write down explicitly the functions which yield
WH-frames which are also orthonormal bases for L2(R). If f(x, y) is a function
of two variables, we denote by fx(y) (respectively, fy(x)) the function of one
variable given by fx(y) = f(x, y) (respectively, fy(x) = f(x, y)).

Theorem 9.5. Let ab = 1 and g ∈ L2(R). The following are equivalent:
(1) (EmbTnag) is a normalized tight WH-frame for L2(R).
(2) (EmbTnag) is an orthonormal basis for L2(R).
(3) There is a measurable function f : [0, 1]× [o, a) → R such that if

h(x, y) =
√

be−2πif(x,y)

then for all n ∈ Z and all y ∈ [0, a) we have

g(y + na) = ĥy(n).

Proof. Since ab = 1, we have a = 1/b, so Theorem 9.3 (2) becomes:
(a) G(t) =

∑
n∈Z |g(t− na)|2 = b a.e.

(b) Gk(t) =
∑

n∈Z g(t− na)g(t− (n− k)a) = 0, a.e. for all k 6= 0.

But, condition (b) is equivalent to zy = (g(y−na))n∈Z is orthogonal to all
of its proper shifts and (a) is equivalent to ‖zy‖2 = b. Direct calculation (see
the proof of [38, Theorem 4.1], yields: For each y ∈ [0, a) there is a function
fy : [0, 1] → R and hy : [0, a) → C with

hy(x) = e−2πify(x),
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and
ĥy(n) = g(y + na).

So defining f(x, y) : [0, 1]× [0, a) → R and h(x, y) by:

f(x, y) = fy(x), h(x, y) = hy(x),

yields our result modulo the measurability conditions which are obvious.

A little reflection should convince the reader that the function h(x, y) above
is essentially the Zak transform in disguise. We can also quickly get from here
most of the standard examples of WH-frames from the literature as well as
some new ones. We are working with ab = 1 in these examples.

Example 9.6. Letting f(x, y) = k for all y ∈ [0, a) gives the function

g(x) =
√

bχ[0,a).

Now, (g, a, b) generates an orthonormal basis for L2(R).

Example 9.7. Letting

f(x, y) = Ky, for all x ∈ [0, 1],

gives the function
g(x) =

√
beih(x)χ

[0,a),

where h : [0, 1] → R yielding that (g, a, b) generates an orthonormal basis for
L2(R).

Example 9.8. Letting f(x, y) = f(x, y′) for all y, y′ ∈ [0, a] gives the
function

g(x) =
∑

n∈Z

cnχ
[na,(n+1)a),

where (cn) is an `2-sequence which is orthogonal to all its proper shifts. So
(g, a, b) generates an orthonormal basis for L2(R).

Example 9.9. If we partition [0, a) into disjoint measurable sets (An)n∈Z ,
let Bn = An + {n} and define

f(x, y) = dn + nx, for all y ∈ An,

where dn ∈ C, we get
g(x) =

∑

n∈Z

cnχBn .
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Thus, (g, a, b) generates an orthonormal basis for L2(R).

We can generalize Theorem 9.5 to the case 1/ab ∈ Z [38] and perhaps even
to arbitrary rational ab. However, we ask

Problem 9.10. Give an explicit representation of all functions g ∈ L2(R)
and ab irrational so that (g, a, b) generates a normalized tight WH-frame.

All normalized tight Weyl-Heisenberg frames have the same frame operator
– namely, the identity operator. It is possible in general to classify the WH-
frames with the same frame operator. As we will see, this result is a natural
generalization of the equivalence of (1) and (2) in Theorem 9.3. Since we now
have to work with two WH-frames, we define for (g, a, b) and k ∈ Z

Gg
k =

∑

n∈Z

g(t− na)g(t− na− k/b).(9.1)

Our next theorem comes from [39].

Theorem 9.11. The systems (g, a, b) and (h, a, b) generate WH-frames
with the same frame operator if and only if Gg

k = Gh
k a.e. for all k ∈ Z.

In [39, Theorem 8.2], there is a generalization of Theorem 9.11 to the case
where we have (g, a, b) and (h, c, d).

As we saw in Proposition 5.10, if (EmbTnag) is a WH-frame, then the frame
operator S is given by

Sf =
∑

n,m∈Z

〈f,EmbTnag〉EmbTnag.

We know that the frame operator is an invertible operator on L2(R) and that
both S and S−1 commute with translation by a and modulation by b. Walnut
[133] gave a useful explicit representation for S even for many cases where this
is only a preframe operator.

Theorem 9.12. Let a, b > 0 and g ∈ W (L∞, L1). Then the sum Sf
converges unconditionally for each f ∈ L2(R) and is given by

Sf = b−1
∑

k

Tk/bf ·Gk.(9.2)

The sum in (9.2) is called the Walnut representation or the Walnut
series for the frame operator and it also converges unconditionally. A detailed
study of the convergence properties of the Walnut representation of the frame
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operator was done by Casazza, Christensen and Janssen [39]. Recall from
Proposition 5.33, for M ⊂ Z we define the operator SM : L2(R) → L2(R) by

SMf =
∑

k∈M

f(· − k)Gk =
∑

k∈M

(Tkf) ·Gk.

If L,K ∈ Z+ and M = {−L,−L + 1, · · · , 0, 1, · · ·K}, we write SL,K = SM .
Also, we write SK =: SK,K . We say that the Walnut representation con-
verges weakly (respectively, in norm) if for every f ∈ L2(R), SL,Kf → Sf
weakly (respectively, in norm) as K, L → ∞. If SM → Sf as a net for every
f ∈ L2(R) we say the Walnut series converges unconditionally. Finally, for
each of the above, we can discuss the symmetric convergence of the Walnut
representation, i.e., if SKf → Sf for all f ∈ L2(R).

We saw earlier that there are WH-frames for which the CC-condition fails.
Also [39] there are WH-frames for which the Walnut representation does not
converge even weakly for some f ∈ L2(R). However, weak and norm (strong)
convergence of the Walnut representation are the same [39] as we now show.

Theorem 9.13. For a, b ∈ R and g ∈ L2(R) with |Go(t)| ≤ B a.e., the
following are equivalent:

(1) The Walnut series converges in norm (resp. symmetrically in norm)
for every f ∈ L2(R).

(2) The Walnut series converges weakly (resp. weakly symmetrically) for
every f ∈ L2(R).

(3) We have supL,K ‖SL,K‖ = B < ∞ (resp. supK ‖SK‖ = B < ∞).

Proof. Corollary 5.13 says that the Walnut series converges unconditionally
on a dense subset of L2(R). Therefore, weak and norm convergence become
equivalent to the partial sum operators being uniformly bounded.

Symmetric and norm convergence of the Walnut representation are not
equivalent in general [39]. It is natural to ask:

Problem 9.14. Give necessary and sufficient conditions, in terms of g, a, b
for the Walnut series to converge (symmetrically) in norm for all f ∈ L2(R).

It is known that unconditional convergence of the Walnut representation is
not equivalent to norm convergence (see [39]). We do have the corresponding
result to Theorem 9.13 for unconditional convergence [39]. The proof is similar
to that case combined with Theorem 2.3.

Theorem 9.15. Let a, b ∈ R and g ∈ PF. The following are equivalent:
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(1) The Walnut series converges weakly unconditionally for every f ∈
L2(R).

(2) The Walnut series converges unconditionally in norm for every f ∈
L2(R).

(3) supM⊂Z,|M |<∞ ‖SM‖ < ∞.

It is also known that the CC-condition is strong enough to yield the un-
conditional convergence of the Walnut series. The following is a compilation
of several results from [39].

Theorem 9.16. Let a, b ∈ R and g ∈ PF.
(1) If (g, a, b) satisfies the CC-condition, then the Walnut series converges

unconditionally for all f ∈ L2(R).
(2) If ab is rational, then the following are equivalent:

(i) The Walnut series converges unconditionally for all f ∈ L2(R).
(ii) There is a B > 0 so that

∑
k |Gk(t)| ≤ B a.e.

(3) If ab is irrational, then there is a WH-frame (g, a, b) for which (i) and
(ii) in (2) are not equivalent.

Proof. We will prove (1) to give some of the flavor of this result. The other
parts are more technical and we refer the reader to [39] for these. For any
h ∈ L2(R) and any m ≥ n > 0, we have (using the fact that T−k/bGk = G−k)

m∑

|k|=n

|〈(Tk/bf)Gk, h〉| =
m∑

|k|=n

|
∫

h(t)(Tk/bf)(t)Gk(t)dt|

≤
m∑

|k|=n

∫
|h(t)||Tk/bf(t)||Gk(t)|dt

≤
m∑

|k|=n

(∫
|h(t)|2|Gk(t)|dt

)1/2

·
(∫

|Tk/bf(t)|2|Gk(t)|dt

)1/2

≤



m∑

|k|=n

∫
|h(t)|2|Gk(t)|dt




1/2

·



m∑

|k|=n

∫
|Tk/bf(t)|2|Gk(t)|dt




1/2

=




∫
|h(t)|2

m∑

|k|=n

|Gk(t)|dt




1/2

·



∫
|f(t)|2

m∑

|k|=n

|T−k/bGk(t)|dt




1/2

=




∫
|h(t)|2

m∑

|k|=n

|Gk(t)|dt




1/2

·



∫
|f(t)|2

m∑

|k|=n

|G−k(t)|dt




1/2

.

By our hypotheses,
|h|2

∑

k

|Gk| ∈ L1(R).
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Hence, by the Lebesgue Dominated Convergence Theorem, we conclude that
the following series converges in L1(R):

∑

k

|h|2|Gk|.

It follows that the right-hand side of (9.3) goes to zero as n →∞. We conclude
that the Walnut series for f is weakly unconditionally Cauchy in L2(R) and
hence it is unconditionally convergent in norm by Theorem 2.3.

Theorem 9.16 gives a classification of the WH-frames (g, a, b) for which the
Walnut series always converges unconditionally for the case ab rational.

Problem 9.17. Find necessary and sufficient conditions on g, a, b with
ab irrational which guarantee that the Walnut series converges unconditionally
for all f ∈ L2(R).

It would also be interesting to know, for a given WH-system (g, a, b) for
which the Walnut representation does not always converge unconditionally,
a large class of functions for which the Walnut representation does converge
unconditionally anyway. One such class is discussed in Theorem 6.10 of [39].

If (g, a, b) is a normalized tight WH-frame, then the frame operator is
S = I and hence the frame operator extends to be a bounded linear operator
from Lp(R) to Lp(R), for all 1 ≤ p ≤ ∞. It is natural then to consider general
conditions which allow the frame operator to extend to be a bounded linear
operator (or an invertible operator) on Lp(R). These (g, a, b) were classified
by Casazza, Christensen and Janssen [39, Theorem 7.1].

Theorem 9.18. If ab ≤ 1 and g ∈ L2(R), the following are equivalent:
(1) There is a constant B > 0 so that

∑

k∈Z

|Gk(t)| ≤ B, a.e. x ∈ R.

(2) The frame operator Sf =
∑

n,m∈Z〈f, EmbTnag〉EmbTnag extends to a
bounded linear operator from Lp(R) to Lp(R) for every 1 ≤ p ≤ ∞. (Here, by
L∞ we really mean c0(R) – the closure of the compactly supported functions
in L∞.)

Moreover, if (g, a, b) generates a WH-frame, ab is rational, and g satisfies
the uniform CC-condition, then S extends to an invertible operator on Lp(R)
for all 1 ≤ p ≤ ∞.

Proof. (1) ⇒ (2) : We will show that S is a bounded linear operator
mapping a dense subset of Lr(R) into itself for r = 1,∞. Then, by the
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Riesz-Thorin Interpolation Theorem [140, p.95], S extends to a bounded linear
operator on Lp(R) for all 1 ≤ p ≤ ∞.

Case I: The L1-Case.
If f ∈ L1 is bounded and compactly supported, then by Corollary 5.13 we

have:

‖Sf‖L1 = ‖Lf‖L1 = b−1
∫

R
|
∑

k

(Tk/bf)Gk| ≤ b−1
∑

k

∫

R
|(Tk/bf)Gk|

= b−1
∑

k

∫

R
|f ||G−k| ≤ b−1

∫

R
|f |

∑

k

|Gk| ≤ b−1B

∫

R
|f |

= b−1B‖f‖L1 .

This shows that S is a bounded linear operator from a dense subspace of L1

to itself.
Case II: The L∞0 -Case.
For any compactly supported f ∈ L∞0 , we have

‖Sf‖L∞ = ‖Lf‖L∞ = ‖
∑

k

(Tk/bf)Gk‖L∞ = ess sup|
∑

k

(Tk/bf)Gk|

≤ ess sup
∑

k

|Tk/bf ||Gk| ≤ ess sup
∑

k

‖f‖L∞ |Gk|

≤ ‖f‖L∞

(
ess sup

∑

k

|Gk|
)
≤ B‖f‖L∞ .

This makes S a bounded linear operator from a dense subspace of L∞0 to itself.
(2) ⇒ (1): We assume that S is a bounded linear operator on L∞0 . Fix n,

let I = [0, a] and choose functions (fk)n
k=−n satisfying:

(1) |fk| = χ[k/b,(k/b)+a],
(2) (T−k/bfk)Gk = χ[0,a]|Gk|.
Letting f =

∑
k fk, since ab ≤ 1 we have that ‖f‖L∞ = 1. Now we have

‖S‖ ≥ ‖Sf‖L∞ ≥ ‖χ[0,a]Sf‖L∞ = ‖
n∑

k=−n

(T−k/bfk)Gk‖L∞

= ‖
n∑

k=−n

|Gk|‖L∞ = ess sup
n∑

k=−n

|Gk|.

This is all we need to establish (1).
For the moreover part of the theorem we apply the theorem to S−1 which

also satisfies the uniform CC-condition by [39, Theorem 4.14].

There is also a classification for the WH-frames (g, a, b) for which the frame
operator extends to a bounded linear operator on the Wiener amalgam space
[39, Theorem 7.2].
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Theorem 9.19. If ab ≤ 1 and g ∈ PF , the following are equivalent:
(1) The frame operator S is a bounded linear operator from W (L∞, `1) to

itself.
(2) We have

∑

k∈Z

‖Gk‖∞ =
∑

k∈Z

ess sup|Gk(t)| = B < ∞.

Now let us return to alternate dual frames as given in Definition 4.17, but
for the case of Weyl-Heisenberg frames. We start with an important result
of Wexler-Raz [134]. The rigorous form of the result given below is due to
Janssen [100].

Theorem 9.20. Let g, h ∈ PF. Then (EmbTnah) and (EmbTnag) are al-
ternate dual WH-frames if and only if h ⊥ En/aTm/bg, for all (m,n) 6= (0, 0)
and 〈h, g〉 = ab.

Now we are ready for the classification of alternate dual WH-frames. Parts
of the following result were done in an even more general setting by Ron and
Shen [126] and Janssen [73].

Theorem 9.21. For (g, a, b) a WH-frame with frame operator S and h ∈
PF, the following are equivalent:

(1) (EmbTnah) is an alternate dual frame for (EmbTnag).
(2) We have

(a)
∑

n∈Z h(x− na)g(x− na) = b a.e.
(b)

∑
n∈Z h(x− na)g(x− na− k/b) = 0 a.e. for all k 6= 0.

(3) h = S−1g + f , where f ∈ L2(R) and f ⊥ spann,m∈ZEn/aTm/bg.

It can be shown that the canonical dual generated by S−1g has the least
L2-norm among all h ∈ L2(R) satisfying h ⊥ En/aTm/bg, (n,m) 6= (0, 0), and
〈h, g〉 = ab. For proofs of this fact, we refer to [101, Proposition 3.3] and [55,
Proposition 4.2]. Note that (EmbTnag) is a normalized tight frame if and only if
we can replace h in Theorem 9.21 by the function g. Also in this case S = I, so
part (3) of the theorem becomes: h = g + f where f ⊥ spann,m∈ZEn/aTm/bg.
As we have seen, the canonical dual to a WH-frame is again a WH-frame,
but Li [107] has shown that there exist alternate duals not having the WH-
structure.

We mention again that an important question in WH-frame theory is to
find S−1g. Strohmer (see Chapter 8 of [73]) has developed a series of algo-
rithms for carrying out this computation. Again, this is an important and
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fruitful area of study. Also in [73] one can find a theory of multi-window WH-
frames as well as applications to optics, signal detection and a host of other
directions.

This ends our tour of Weyl-Heisenberg frame theory. Admittedly, we have
left out the most important part of the theory: applications to image pro-
cessing, signal processing, data compression etc. Unfortunately, these topics
would require significantly more space than we have available here, and be-
cause of the rather specific nature of each set of applications we leave it to the
reader to consult the myriad of books devoted to each one.

10. Topics in Modern Abstract Frame Theory

It was an open question for a time whether every bounded frame must con-
tain (i.e., have a subsequence which is) a Riesz basis. Seip [129] proved there
are exponential frames for L2[π, π] which do not contain a Riesz basis. Casazza
and Christensen [33, 35] gave elementary examples of this phenomenon.

Example 10.1. The sequence of vectors ((fn
j )n+1

j=1 )∞n=1 (see equations (4.1)
for the definition) forms a normalized tight frame for H = (

∑
n⊕Hn)`2 which

does not contain a Schauder basis.

A more delicate example [28] is that of a normalized tight frame which
contains a Schauder basis but does not contain a Riesz basis. This means that
our frame has subsequences which are ω-independent, but any subset of the
frame which is ω-independent, is no longer a frame for H.

One class of frames which always contain a Riesz basis are the Besselian
frames introduced by Holub [97]. A frame (fi) is Besselian if whenever∑

i aifi converges, then (ai) ∈ `2. We now have [97].

Proposition 10.2. If (fi) is a frame for H, the following are equivalent:
(1) (fi) is a near-Riesz basis (i.e., after deleting a finite number of elements,

(fi) becomes a Riesz basis for H).
(2) (fi) is Besselian.
(3)

∑
i aifi converges in H if and only if (ai) ∈ `2.

There is room here for some interesting work still to be done.

Problem 10.3. Classify the Weyl-Heisenberg frames which contain a
Riesz basis.

We should point out that Problem 10.3 may be exceptionally difficult be-
yond its usefulness to the theory. However, it is possible that some new im-
portant properties of WH-frames will show up in its solution.
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Problem 10.4. Classify the exponential frames (or frames of translates)
which contain Riesz bases for their span.

In [46], Christensen introduces the notion of a Riesz frame. We call (fi)
a Riesz frame if (fi) is a frame with frame bounds A,B and every subset
of (fi) is a frame for its closed linear span with the same frame bounds A,B.
A slight weakening of this definition is: We say that a frame (fi) has the
subframe property if every subset of (fi) is a frame for its closed linear
span. Christensen [46] showed that every Riesz frame contains a Riesz basis.
A simple proof is just to choose a maximal linearly independent subset of a
Riesz frame, and note that it follows from Proposition 4.3 that this subset is a
Riesz basis. It was shown in [30] that every frame with the subframe property
also contains a Riesz basis. In fact, a complete classification of frames with
the subframe property (but using Riesz frames to do it) is in [27]. However,
we do not have a good classification of Riesz frames.

Problem 10.5. Classify the Riesz frames. Are there WH-frames or expo-
nential frames with this property (which do not degenerate into Riesz bases)?

As we have seen, one of the main difficulties with frame theory is that in
order to do reconstruction we have to invert the frame operator S. This is often
difficult if not impossible. It could be quite useful if this inversion could be
done by finite-dimensional methods. This is the idea behind the projection
methods introduced by Christensen [44].

We say that a frame (fi), with frame operator S, satisfies the projection
method if

lim
n→∞〈f, S−1

n fi〉 = 〈f, S−1f〉, for all i, f ∈ H,

where Sn is the frame operator on Kn = span(fi)n
i=1. We say that (fi) satisfies

the strong projection method if there is an increasing sequence of subsets
of N , I1 ⊂ I2 ⊂ · · · ↗ N , and frame operators Sn for Kn = spani∈Infi (i.e.,
Snf =

∑
i∈In

〈f, fi〉fi) so that
∑

i∈In

|〈f, S−1
n fi〉 − 〈f, S−1fi〉|2 → 0, for all f ∈ H.

We call (fi) a conditional Riesz frame if the frames (fi)i∈In have common
frame bounds. This is equivalent to saying:

sup
n
‖S−1

n ‖ < ∞.

Christensen [44] shows that (fi) satisfies the projection method if and only if
there are constants Cj so that

‖S−1
n fj‖ ≤ Cj , for all n such that j ∈ In.
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These ideas are related to the solution of moment problems. That is, given
(ai) ∈ `2, when does there exist an f ∈ H so that

〈f, fi〉 = ai, for all i ∈ I?

Some deeper results on moment problems can be found in [128]. We combine
several results from [34] below.

Theorem 10.6. Let (fi) be a frame for a Hilbert space H. The following
are equivalent:

(1) (fi) is a conditional Riesz frame.
(2) The strong projection method works.
(3) S−1Pnf → S−1f , for all f ∈ H (where Pn is the orthogonal projection

of H onto spani∈Infi).
(4) 〈S−1

n Pnf, g〉 → 〈S−1f, g〉, for all f, g ∈ H.
(5)

∑
i∈In

aiS
−1
n fi →

∑
i∈I aiS

−1fi, as n →∞ and for all (ai) ∈ `2.
(6) S−1

n

∑
i∈In

bifi → 0, as n →∞ for all (ai) ∈ `2 for which
∑

i aifi = 0.

There are several problems with the projection methods. For one, there
appear to be only a few specialized frames which satisfy them. It is not
known, except in trivial cases, if Weyl-Heisenberg frames have this property.
Variations of this method which work for any frame appeared in [37]. However,
this is an area which needs much more attention. The importance here is that
these results are in the direction of finite frame theory (which is really all there
is in the concrete applications).

There are several more abstract directions of research for frame theory.
One of them is in the direction of what is called “local theory” in Banach
space theory. That is, frames for finite-dimensional spaces. As we have seen,
there are normalized frames for a Hilbert space which do not contain a Riesz
basis. In the finite-dimensional setting, such questions become “quantitative”
in nature. That is, any frame for a finite-dimensional Hilbert space always
contains a Riesz basis – namely any subset which is complete and linearly
independent. So here we are really asking: If (fi) is a frame for a finite-
dimensional Hilbert space H, is there a subset of (fi) which is a Riesz basis
for H for which the Riesz basis constants are a function of the frame bounds
of (fi) but independent of (fi) and the dimension of the Hilbert space? It is
easily seen that this problem also has a negative answer [29]. But, using some
deep results from the local theory of Banach spaces, Casazza [29] showed that
for normalized frames (fi) for n-dimensional Hilbert space Hn and all ε > 0,
there is a subset of (fi) which is a Riesz basis for a subspace Kn of Hn with
dim Kn ≥ (1 − ε)n and having Riesz basis constants only a function of the
frame bounds. Vershynin [132] removed the unnecessary hypothesis that the



The Art of Frame Theory 193

frame be normalized in the above theorem. This produced a powerful method
for working with the “John’s ellipsoid” in Banach space theory and produced
some significant simplifications of several formally quite deep results in this
area. In general, however, frame theory for finite-dimensional Hilbert spaces is
lacking in deep quantitative estimates which could be quite useful–especially
in WH-frame theory.

Frames for Hilbert spaces were generalized to Banach spaces by Gröchenig
[87]. A Banach space of scalar-valued sequences (often called a BK-
space) is a linear space of sequences with a norm which makes it a Banach
space and for which the coordinate functionals are continuous.

Definition 10.7. Let X be a Banach space and let Xd be an associated
Banach space of scalar valued sequences indexed by N . Let (yi) be a sequence
of elements from X∗ and (xi) be elements of X. If

(1) {(x, yi)} ∈ Xd, for each x ∈ X,
(2) the norms ‖x‖X and ‖{(x, yi)}‖Xd

are equivalent, i.e., there are con-
stants A,B > 0 so that for all x ∈ X we have

A‖x‖X ≤ ‖{(x, yi)}‖Xd
≤ B‖x‖X .

(3) for all x ∈ X we have x =
∑

i〈x, yi〉xi,
then we call ((yi), (xi)) an atomic decomposition of X with respect to Xd.

Gröchenig [86] also defines the notion of a Banach frame. Before smooth
wavelet orthonormal bases were discovered for Hilbert space L2(R), Frazier
and Jawerth [77] constructed wavelet atomic decompositions for Besov spaces,
which they called the φ-transform. A host of papers have appeared surround-
ing these notions [47, 49, 65, 133]. Also, Feichtinger and Gröchenig developed
a quite general theory for a large class of functions and group representations
[68, 69, 70]. (See also Chapters 3 and 5 of [73].) This has proved to be quite
useful in the study of Besov spaces. This was important since Walnut [133]
showed that there are no Gabor frames for weighted Hilbert spaces. Casazza,
Han and Larson [41] made a detailed study of a host of possible generalizations
to Banach space theory of the notion of a frame including atomic decomposi-
tions.

Finally, we mention that a group of strong people in operator theory have
started to enter frame theory bringing with them some very powerful tools from
operator theory – especially C∗-algebra and von Neumann algebra theory (see
for example, Frank and Larson [75], Frank, Paulsen and Tiballi [76], Han and
Larson [92], and Gabardo and Han [81], and results of Z. Landau, R. Balan
etc). It is not clear where this will go yet, but it is clear that this development
will produce some very deep new results in the area.
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