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Abstract—In 1948 Shannon developed fundamental limits on
the efficiency of communication over noisy channels. The coding
theorem asserts that there are block codes with code rates
arbitrarily close to channel capacity and probabilities of error
arbitrarily close to zero. Fifty years later, codes for the Gaussian
channel have been discovered that come close to these funda-
mental limits. There is now a substantial algebraic theory of
error-correcting codes with as many connections to mathematics
as to engineering practice, and the last 20 years have seen the
construction of algebraic-geometry codes that can be encoded and
decoded in polynomial time, and that beat the Gilbert–Varshamov
bound. Given the size of coding theory as a subject, this review
is of necessity a personal perspective, and the focus is reliable
communication, and not source coding or cryptography. The
emphasis is on connecting coding theories for Hamming and
Euclidean space and on future challenges, specifically in data
networking, wireless communication, and quantum information
theory.

Index Terms—Algebraic, information and coding theory, quan-
tum and space–time codes, trellis.

I. A BRIEF PREHISTORY

BEFORE Shannon [187] it was commonly believed that
the only way of achieving arbitrarily small probability

of error on a communications channel was to reduce the
transmission rate to zero. Today we are wiser. Information
theory characterizes a channel by a single parameter; the
channel capacity. Shannon demonstrated that it is possible
to transmit information at any rate below capacity with an
arbitrarily small probability of error. The method of proof
is random coding, where the existence of a good code is
shown by averaging over all possible codes. Now there were
codes before there was a theory of coding, and the mathemat-
ical framework for decoding certain algebraic codes (Bose-
Chaudhuri-Hocquengham (BCH) codes) was written down
in the late 18th century (see Wolf [227] and Barg [5]).
Nevertheless, it is fair to credit Shannon with creating coding
theory in that he established fundamental limits on what
was possible, and presented the challenge of finding specific
families of codes that achieve capacity.

Classical coding theory is concerned with the representation
of information that is to be transmitted over some noisy
channel. There are many obstacles to reliable communication,
including channel estimation, noise, synchronization, and in-
terference from other users, but there are only two resources
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available to the code designer; memory and redundancy. The
proper allocation of these resources to the different obstacles
is fertile ground for information theory and coding, but for
the past 50 years the focus of coding theory in particular
has been reliable communication in the presence of noise.
This general framework includes the algebraic theory of error-
correcting codes, where codewords are strings of symbols
taken from some finite field, and it includes data transmission
over Gaussian channels, where codewords are vectors in
Euclidean space. Compact disk players [168], [113], hard-
disk drives [152], and high-speed modems [83] are examples
of consumer products that make essential use of coding
to improve reliability. The importance of these applications
has served to focus the coding theory community on the
complexity of coding techniques, for it is entirely appropriate
that performance of a code should be valued as a function of
delay and decoding complexity. Ever since Shannon’s original
paper, coding theorists have attempted to construct structured
codes that achieve channel capacity, but this problem remains
unsolved. It is in fact tempting to ask a slightly different
question; to fix the complexity of decoding and to ask for
the maximum transmission rate that is possible. There is a
sense in which the journey is more important than the goal,
for the challenge of coming close to capacity has generated
many important coding techniques.

The notion of combined source/channel coding is present
in the telegraph codebooks that were used from 1845 until
about 1950 (see [120, Ch. 22]). These books, arranged like
dictionaries, would list many useful phrases, or even sentences,
each with its corresponding codeword. They were compiled
by specialists who competed on the basis of compression (the
ability to capture a specialist vocabulary in few words), ease
of use, and resistance to errors (exclusion from the codebook
of words obtained from codewords by single letter substitution
or transposition of adjacent letters). An important motivation
was the price per word on undersea cablegrams which was
considerable (about $5 per word on a trans-Atlantic cable
message in 1867, falling to 25 cents per word by 1915). The
addition of adjacent transpositions to Hamming errors means
that the universe of words makes for a more complicated
metric space, so that determining efficiency or even optimality
of a particular code is extremely complicated. This framework
did not encourage the creation of coding theory but it did not
prevent telegraph code makers from using linear codes over
a variety of moduli, and from realizing that the more parity-
check equations were used, the greater the minimum distance
would be.
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In exploring the beginnings of coding theory, it is important
to be mindful of intent. In the early 1940’s the famous
statistician Fisher [71], [72] discovered certain remarkable
configurations in Hamming space through his interest in fac-
torial designs. Consider factors taking values
that influence the yield of a process, and suppose pairwise
interactions do not affect yield. We are led to an expression

where captures error and imprecision in the model. We look
to determine the coefficients by measuring for a small
number of binary vectors called experiments. Further, we
are interested in a collection of experiments that will allow
us to distinguish the effect of factor from that of ;
in the language of statistical design, these factors are not
to be confounded. The experiments , for

, have this property, and correspond to codewords
in the binary simplex code. The assertion that main effects

are not confounded is simply that the minimum weight in
the Hamming code is at least. In classical statistical design
the experiments are taken to be a linear code, and large
minimum weight in the dual code is important to ensure
that potentially significant combinations of factors are not
confounded. Since coding theory and statistical design share a
common purpose we can understand why Fisher discovered the
binary simplex code in 1942, and the generalization to arbitrary
prime powers in 1945. However, it is important to remember
his intention was not the transmission of information.

On an erasure channel, a decoding algorithm interpolates
the symbols of a codeword that are not erased. In an algebraic
error-correcting code the information in each encoded bit is
diffused across all symbols of a codeword, and this motivates
the development of decoding algorithms that interpolate. This
notion is fundamental to the Berlekamp–Massey algorithm
that is used for decoding a wide class of cyclic codes, and
to the new list decoding algorithm of Sodan [203]. However
Wolf [227] observed that as far back as 1795, de Prony [58]
considered the problem of solving over the real field, the
system of equations

for the coefficients , in the case where . In algebraic
coding theory this system of equations appears in the decoding
of -error-correcting BCH codes, but the underlying field is
finite, the index is the number of errors, and the
coefficients are the error values. Nevertheless, the solutions
proposed by de Prony [58] and Peterson [170], Gorenstein and
Zierler [104] have the same form: all solve for the coefficients

of the error-locator polynomial

by analyzing the recurrence relation

Algebraic coding theory calculates the determinant of this
linear system for It is zero if exceeds
the number of errors that occurred and nonzero if equality
holds. Once the error-locator polynomial is known Chien
search [40] can be used to find the error locations, and
then finding the errors is simple linear algebra. By contrast,
de Prony used Lagrange interpolation, and this corresponds
to the refinement of the basic algorithm for decoding BCH
codes that was suggested by Forney [73]. Berlekamp ([11,
Ch. 7]) and Massey [153] expressed the problem of finding the
coefficients of the error-locator polynomial as that of finding
the shortest linear feedback shift register that generates the
syndrome sequence. The Berlekamp–Massey algorithm has
recently been generalized to more than one dimension, and
used to decode algebraic-geometry codes. This story is told
in more detail by Barg [5], but even this outline reveals
considerable synergy between the discrete and the Euclidean
world. This synergy is one of the strengths of the text by
Blahut [14] and there is reason to resist any balkanization of
coding theory into algebraic codes and codes for the Gaussian
channel.

II. A N INTRODUCTION TO HAMMING SPACE

Let denote the finite field with elements, and let
denote the set of -tuples where . The
Hamming weight of a vector is the number
of nonzero entries. TheHamming distance between
two vectors is the number of places whereand

differ. Thus . An code
over the alphabet is a collection of vectors from
(called codewords) such that

for all distinct

and is the largest number with this property. The parameter
is called theminimum distanceof the code.
Vector addition turns the set into an -dimensional

vector space. Alinear code is just a subspace of . The
notation indicates a linear code with blocklength,
dimension , and minimum distance . The next result is
both fundamental and elementary.

Theorem: The minimum distance of a linear code is the
minimum weight of a nonzero codeword.

It is possible to describe any code by just listing the
codewords, and if the code has no structure, then this may
be the only way. What makes a linear code easier to discover
is that it is completely determined by any choice oflinearly
independent codewords. Perhaps ease of discovery is the main
reason that coding theory emphasizes linear codes.

A generator matrix for an linear code is a
matrix with the property that every codeword of is some
linear combination of the rows of . Given an linear
code , thedual code is the linear code given
by

for all
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where

is the standard inner product. An linear code is
also completely determined by any choice of linearly
independent codewords from . A parity-check matrix
for an linear code is an matrix with
the property that a vector is a codeword in if and
only if . Thus a generator matrix for is a parity-
check matrix for and vice versa. A linear code is said
to be self-orthogonalif for all . If is
self-orthogonal, then and we can construct a parity-
check matrix for by adding rows to a generator matrix. If

, then is said to beself-dual. In this case, a single
matrix serves as both a generator matrix and a parity-check
matrix.

It is interesting to look back on Blake [15] which is an
annotated selection of 35 influential papers from the first 25
years of algebraic coding theory and to distinguish two larger
themes; geometry and algorithms. Here the early work of
Slepian [196]–[198] on the internal structure of vector spaces
provides a geometric framework for code construction. By
contrast, the emphasis of work on cyclic codes is on the
decoding algorithm. In the last 25 years, the fear that good
codes might turn out to be very difficult or impossible to
decode effectively (“messy”) has been proved to be unfounded.

Hamming distance is not changed bymonomial transforma-
tionswhich consist of permutations of the coordinate positions
followed by diagonal transformations that
multiply coordinate by the nonzero scalar . Monomial
transformations preserve the Hamming metric and we shall
say that two codes and areequivalentif one is obtained
from the other by applying a monomial transformation. In her
1962 Harvard dissertation, MacWilliams [146] proved that two
linear codes are equivalent if and only if there is an abstract
linear isomorphism between them which preserves weights.
Extensions of this result to linear codes over finite rings and
to different weight functions (for example, Lee weight) have
been derived recently by Wood [228].

A. The Sphere-Packing Bound

The sphere of radius centered at the vector
is the set

Since there are ways to change an individual entry we
have

Let be a code in with minimum Hamming distance
and let . The sphere-packing bound

expresses the fact that spheres of Hamming radiuscentered
at the codewords of are disjoint, and the union of these
spheres is a subset of . An -error-correcting code for
which equality holds in the sphere-packing bound is said to
beperfect. For perfect single-error-correctinglinear codes, the
sphere-packing bound gives

Since is linear, there is a dual code satisfying
for some , and so .

The columns in a parity-check matrix
for are vectors in . If for some ,

then . This means , which
contradicts the fact that is a code with minimum Hamming
weight . Hence different columns of must determine
different one-dimensional subspaces of. Since there are
exactly distinct one-dimensional
subspaces of , we must choose exactly one vector from
each subspace. Note that given, any two codes of length

obtained in this way are equivalent. This
completes the classification of perfect single-error-correcting
linear codes, but even perfect single-error-correcting nonlinear
codes are not yet completely understood.

It is natural to start the search for other perfect codes by
looking for instances where is a power of
. For we find

and for we find

In each case there was a code waiting to be found; the
ternary Golay code, and the binary Golay code.

The ternary Golay code was discovered by Virtakallio in
1947 and communicated in issues 27, 28, and 33 of the
Finnish football pool magazineVeikaaja. The ternary alphabet
is associated with the possible outcomes of a soccer match
(win, lose, or draw), and Virtakallio’s aim was to approximate
closely an arbitrary vector in Hamming space (the ternary
Golay code has the property that given any there
is a unique codeword such that ).

The Golay codes [102] were discovered by Golay in 1949,
but their rich algebraic structure was not revealed until much
later. The binary Golay code is obtained from the
perfect code by adding an overall parity check,
and it is a most extraordinary code. The codewords of any
given weight form beautiful geometric configurations that
continue to fascinate combinatorial mathematicians. The sym-
metry group of this code plays a central role in finite group
theory, for it is the Mathieu group , which is perhaps the
most important of the 26 sporadic simple groups.

In a perfect -error-correcting code, the spheres of radius
about the codewords are disjoint and they cover the whole
space. MacWilliams [146], [147] proved that an-error-
correcting linear code is perfect if and only if there are exactly

nonzero weights in the dual code. For example, the
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ternary Golay code is perfect, and nonzero codewords in the
dual code have weight or . Uniformly packed codes are
a generalization of perfect codes that were introduced by
Semakov, Zinoviev, and Zaitzev [183] in which the spheres
of radius about the codewords cover the whole space,
and these spheres overlap in a very regular way. There are
constants and (with ) such that
vectors at distance from the code are in spheres and
vectors at distance from the code are in spheres. If
the restriction on were removed, a perfect code would also
be uniformly packed. Goethals and van Tilborg [101] showed
that an -error-correcting linear code is uniformly packed if
and only if there are exactly nonzero weights in the
dual code. For example, the binary Golay code is
uniformly packed with and , and is self-dual with
nonzero weights , , , and .

The connection between the metric properties of a lin-
ear code and the weight spectrum of the dual code is just
one facet of the structural framework for algebraic coding
theory that was introduced by Delsarte [48] in his Ph.D.
dissertation, and this dissertation might well be the most
important publication in algebraic coding theory over the past
30 years. The framework is that of association schemes derived
from a group-theoretic decomposition of the Hamming metric
space, and it will be described briefly in Section IV. The
concept of an association scheme appears much earlier in the
statistics literature, and Delsarte was able to connect bounds
on orthogonal arrays from statistics with bounds for codes.

Of course, perfect codes are best possible since equality
holds in the sphere-packing bound. However, Tieta̋váinen
[212], van Lint [138], and Zinoviev and Leontiev [231]
have shown that the only perfect multiple-error-correcting
codes are the binary and ternary Golay codes, and the binary
repetition codes. Critical to these classification results is a
remarkable theorem of Lloyd [141] which states that a certain
polynomial associated with a group-theoretic decomposition
of the Hamming metric space must have integral zeros (for a
perfect linear code these zeros are the weights that appear in
the dual code).

B. The Gilbert–Varshamov Bound

We fix the transmission rate, and we increase the block-
length in order to drive the error probability to zero. If
the symbol error probability is, then the average number of
errors in a received vector of length is . The minimum
distance must grow at least as fast as . This explains the
importance of the quantity which measures achievable
rate, given by

where is the maximum size of a code with
minimum distance . To study we need to estimate
the number of vectors in a sphere of radius in .
If , then

where defined on is the appropriate
generalization of the binary entropy function, and is given by

for

Independently, Gilbert [95] and Varshamov [218] derived a
lower bound on achievable rate that is surprisingly difficult to
beat. In fact, Varshamov proved there exist linear codeswith

which for particular values is sometimes stronger.

Theorem (The Gilbert–Varshamov Bound):If
, then

Proof: It is sufficient to prove

Let be an code in , where .
Then, by definition, there is no vector in with Hamming
distance or more to all codewords in . This means that

which implies .

The proof shows it is possible to construct a code with
at least codewords by adding vectors to a
code with minimum distance until no further vectors can
be added. What is essential to the Gilbert–Varshamov (G-V)
argument is an ensemble of codes, where for each vectorthat
appears in some code, we have control over the fractionof
codes from the ensemble that contain. In the original G-V
argument, the ensemble consists of all linear codes of a certain
dimension. The group of nonsingular linear transformations
preserves this ensemble (though linear transformations do not,
in general, preserve Hamming weight) and acts transitively on
nonzero vectors, so that is constant. The G-V argument
applies to more restrictive ensembles of codes, for example,
to binary self-orthogonal codes with all Hamming weights
divisible by [149]. Here the function
defines a quadratic form on the space of all binary vectors
with even Hamming weight. Self-orthogonal codes correspond
to totally singular subspaces and transitivity of the underlying
orthogonal group leads to the G-V bound. Similar arguments
provide lower bounds for quantum error-correcting codes [34]
and for the minimum norm of certain lattices (see [142]), and
there is a sense in which the classical bounds of Conway and
Thompson are also obtained by averaging.
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Fig. 1. The Gaussian channel model.

III. EUCLIDEAN SPACE

A Gaussian channelcombines a linear filter with additive
Gaussian noise as shown in Fig. 1. In the time domain the
output is given by

where is the input waveform, is thechannel impulse
response, is the convolution of with , and

is zero-mean-colored Gaussian noise.
The Fourier transform of is the frequency response

of the channel, and thepower spectrum is given
by . In the frequency domain the signal

and the noise are characterized by their Fourier
transforms and , respectively, and by their power
spectra and . An essential feature of the model
is a power constraint

on the power spectrum of the input waveform .
The channel signal-to-noise functionSNR is given by
SNR , and is measured in decibels by
taking SNR .

The model is limited in that the output is assumed to
depend linearly on the input , and to be time-invariant.
In magnetic-recording applications, this linearity assumption
becomes less valid once the recording density exceeds a certain
threshold. In modem applications, the noise starts to
depend on the input once the transmission rate exceeds a
certain threshold. However, these caveats should not subtract
from the importance of the basic model.

We think of the input and the output as random
variables. The mutual information between and is
the conditional entropy of given . Channel capacity
results from maximizing mutual information. Information-
theoretic “waterfilling arguments” show that there is a constant

and a frequency band SNR , such
that the capacity achieving input power spectrum is
given by

SNR if
if

The sampling theorem of Nyquist and Shannon allows us
to replace a continuous function limited to the frequency band

by a discrete sequence of equally spaced samples,
without loss of any information. This allows us to convert our
continuous channel to a discrete-time channel with signaling
interval . The input is generated as a filtered
sequence , where is complex and the pulse

has power spectrum proportional to on . The output
is sampled every seconds and the decoder operates on

these samples.
Opportunity for coding theorists is a function of commu-

nications bandwidth. The capacity-achieving bandwidth of
an optical fiber is approximately 10Hz, which is too large
for sophisticated signal processing. By contrast, the capacity
achieving bandwidth of a telephone channel is approximately
3300 Hz. If a modem is to achieve data rates of 28.8 kb/s and
above, then every time we signal, we must transmit multiple
bits. Mathematics now has a role to play because there is time
for sophisticated signal processing.

An ideal band-limited Gaussian channelis characterized by
a “brickwall” linear filter that is equal to a constant
over some frequency band of width hertz and equal to zero
elsewhere, and by white Gaussian noise with a constant power
spectrum over the channel bandwidth. The equivalent discrete-
time ideal channel represents the complex output sequence
as

where is the complex input sequence and is a
sequence of independent and identically distributed (i.i.d.)
complex zero-mean Gaussian random variables. We let
denote the average energy of the input samples, and we let

denote the average energy of the noise samples. Shannon
proved that the channel capacity of this ideal channel is given
by

bits/Hz

or

bits/s.

We may transmit bits per hertz by selecting from
a fixed constellation of points from the integer lattice

in the complex plane. This method of signaling is called
-Quadrature Amplitude Modulation( -QAM), and this is

uncoded transmission since there is no redundancy. There is
a gap between capacity of this ideal channel and the rate that
can be achieved by uncoded QAM transmission. The size of
this gap varies with channel SNR and for sufficiently high
SNR it is approximately 3 bits/Hz. This can also be expressed
as a gap in SNR of approximately 9 dB since the extra rate
changes to and 9 dB.

Shannon recognized that signals input to a Gaussian channel
should themselves be selected with a Gaussian distribution;
the statistics of the signals should match that of the noise. We
start by choosing a lattice in real -dimensional space .
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Fig. 2. Fifty years of information theory and coding for the power-constrained Gaussian channel.

Here the text by Conway and Sloane [44] is a treasury of infor-
mation about sphere packings, lattices, and multidimensional
Euclidean geometry. The signal constellationconsists of all
lattice points within a region . The reason we consider signal
constellations drawn from lattices is that signal points are
distributed regularly throughout -dimensional space. This
means that the average signal powerof the constellation

is approximately the average power of a probability
distribution that is uniform within and zero elsewhere.
This approximation is called thecontinuous approximationand
we shall use it extensively. If we fix the size of the signal
constellation, then the average signal power depends on the
choice of lattice and on the shape of the region that bounds the
constellation. We obtain a Gaussian distribution by choosing
the bounding region to be an -dimensional sphere.

From the time that Shannon derived the capacity of the
Gaussian channel there has been a divide between coding
theory and coding practice. The upper track in Fig. 2 is
the world of geometry and the lower track is the world of
algorithms. We shall illustrate the differences by following an
example, but a very positive development over the last five
years is that these two tracks are converging.

A. Lattices

We begin with geometry. Formally, alattice in real -
dimensional space is a discrete additive subgroup of. A
basis for the lattice is a set of vectors such that

The lattice is said to be -dimensional and usually we have
. If is another choice of basis then there

exists a unimodular integral matrix such that
for all . The Gosset lattice was discovered
in the last third of the nineteenth century by the Russian
mathematicians A. N. Korkin and E. I. Zolotaroff, and by the

English lawyer and amateur mathematician Thorold Gosset:

or

and

A fundamental region for a lattice is a region of that
contains one and only one point from each equivalence class
modulo . In the language of mathematics, is a complete
system of coset representatives forin . If are
a basis for a lattice then the parallelotope consisting of the
points

is an example of a fundamental region of. This region is
called a fundamental parallelotope. If is a lattice,
and is a lattice point, then theVoronoi region
consists of those points in that are at least as close to
as to any other . Thus

for all

The interiors of different Voronoi regions are disjoint though
two neighboring Voronoi regions may share a face. These faces
lie in the hyperplanes midway between two neighboring lattice
points. Translation by maps the Voronoi region
to the Voronoi region , so that all Voronoi regions
are congruent.

A maximum-likelihood decoding algorithm for the lattice
finds the Voronoi region that contains the received

vector . The Voronoi regions are the decision
regions for this algorithm. We may create a fundamental
region for the lattice by deleting faces from a Voronoi
region. Different ways of deleting faces correspond to different
rules for resolving ties in a maximum-likelihood decoding
algorithm.

Given a lattice , there are many ways to choose
a fundamental region, but the volume of the fundamental
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region is uniquely determined by the lattice. This volume
is called thefundamental volumeand we denote it by .
There is a simple formula for the fundamental volume. Let

be a basis for , and
let . The fundamental volume is given by

. It is easily verified that the fundamental
volume of the Gosset lattice is equal to , the same as the
integer lattice .

Let be an -dimensional signal constellation consisting
of all points from a lattice that lie within a region ,
with centroid the origin. If signals are equiprobable, then the
average signal power is approximately the average power

of a continuous distribution that is uniform within
and zero elsewhere. Thus

where

is the volume of the region , where

is the normalized or dimensionless second moment. The
second moment results from taking the average squared
distance from a point in to the centroid, and normalizing to
obtain a dimensionless quantity.

We see that the average signal powerdepends on the
choice of lattice, and on the shape of the region that bounds
the signal constellation. The formula sep-
arates these two contributions. The volume ,
so that the second factor is determined by the choice of lattice.
Since different lattices require different volumes to enclose the
same number of signal points, it is possible to save on signal
power by choosing the lattice appropriately. Since the second
moment is dimensionless, it is not changed by scaling
the region . Therefore, the first factor measures the
effect of the shape of the region on average signal power.

It is natural to compare the performance of as a code
for the Gaussian channel with uncoded QAM transmission (the
integer lattice ). Since the fundamental volumes coincide we
may use the same region to bound both signal constellations.
Performance gain is then determined by the minimum squared
Euclidean distance between two distinct points in the
lattice . We have which corresponds
to a coding gain of 3 dB.

B. Trellis Codes Based on Lattices and Cosets

Next we turn to algorithms. In 1976, Ungerboeck [215]
constructed simple trellis codes for the Gaussian channel that
provided coding gains of between 3 and 6 dB. His original
paper has transformed the subject of coding for the Gaussian
channel. Calderbank and Sloane [36] then abstracted the idea
of redundant signaling based on lattices and cosets. The signal

Fig. 3. Labeling edges by cosets in[ : 4 ].

points are taken from an -dimensional lattice , and the
signal constellation contains an equal number of points from
each coset of a sublattice. One part of the binary data stream
selects cosets of in , and the other part selects points
from these cosets. All the redundancy is in the coset-selection
procedure, and the bits that select the signal point once the
coset has been chosen are referred to asuncoded bits. Forney
[79], [80] coined the namecoset codeto describe redundant
signaling based on lattices and cosets, and this name captures
the essential property of these signaling schemes. Coset coding
provides a level of abstraction that makes it possible for a
code designer to handle complicated codes and large signal
constellations.

Switching from uncoded transmission using the integer
lattice to coded transmission using a coset codebased
on the lattice partition requires that the -dimensional
signal constellation be expanded by a factor , where

is the redundancy of the coset code. Note that all
redundancy is in the method of selecting cosets, so this
quantity is easy to calculate. We assume that the constellation
is expanded by scaling a bounding region, so that the power
penalty incurred by expansion is . The coding gain
of the coset code is then given by

This is the gain over uncoded transmission using the integer
lattice (QAM signaling).

We introduce the method of trellis coding by means of an
example where the lattice is the integer lattice , and the
sublattice is . Fig. 3 shows the encoder trellis where the
edges have been relabeled by the four residue classes modulo

. All the redundancy is in the coset (residue class modulo
) selection procedure; one bit chooses from four cosets.

The symbol represents the coset .
For transmission all cosets are translated by . Since all
redundancy is in the coset-selection procedure, we can achieve
any transmission rate by just increasing the number of uncoded
bits.

The power and simplicity of the lattice/coset viewpoint
comes from viewing the signal constellation as a finite subset
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of an infinite lattice. By focusing on the infinite lattice, we
eliminate the influence of constellation boundary effects on
code structure and code performance.

It is not hard to prove that the minimum squared distance
between different signal sequences is given by

. To calculate the redundancy , we observe that every
one-dimensional signaling interval, one input bit selects half of
the integer lattice. The redundancy , and the nominal
coding gain is given by

3.3 dB

There is, however, a difference between the nominal coding
gain calculated above and the coding gain observed in practice.
For channels with high SNR the performance of a trellis code

is determined by the minimum squared distance
between output sequences corresponding to distinct input
sequences. For coset codes this minimum squared distance
is determined by the minimum nonzero norm in the sublattice

and by the method of selecting cosets. For channels with
moderate SNR (symbol error probability ) performance
is determined by the minimum squared distance , and
by the number of nearest neighbors or path multiplicity. A
telephone channel is an example of a channel with moderate
SNR. Here Motorola Information Systems has proposed a rule
of thumb that reducing the path multiplicity by a factor of two
produces a coding gain of 0.2 dB. The result of discounting
nominal coding gain by path multiplicity in this way is called
effective coding gain.

Every lattice point in has 240 nearest neighbors; the
neighbors of the origin (the point ) are the 112 points

, and the 128 points where the number
of minus signs is even. This means that offers a way
of arranging unit spheres in eight-dimensional space so that
240 spheres touch any given sphere. Levenshtein [134] and
Odlyzko and Sloane [165] proved that it is impossible to
exceed this. We can start to appreciate that the latticeis a
fascinating mathematical object, and this largekissing number
contributes to its allure. When we apply the discounting rule
to the lattice the path multiplicity (per dimension) is

, whereas for the trellis code the path multiplicity
is . The difference is an important reason why high-speed
modems employ trellis codes based on lattices and cosets,
rather than lattices in their natural state.

Before the invention of trellis-coded modulation by Unger-
boeck [215] researchers designed codes for the Gaussian
channel using heuristics that approximated Euclidean distance.
For example, Nakamura [161] designed codes for phase mod-
ulation by restricting the congruence of signals modulo. This
approach was also used for QAM transmission by Nakamura,
Saito, and Aikawa [162]. Their measure of distance was Lee
distance, which is computed entry by entry as a sum of Lee
weights. TheLee weight of a coset in is
the smallest absolute value of an integer congruent
to modulo . This amounts to designing codes for the
metric. The assumption that noise is Gaussian makes it more
appropriate to follow Ungerboeck and work with the metric
directly.

One reason that trellis-coded modulation has had an enor-
mous impact on communications practice is that around 1982
digital electronics were sufficiently advanced to implement
codes of the type proposed by Ungerboeck. And when it is
not possible to build circuits the only recourse is geometry.
A second reason, also very important, is that consumers were
waiting for new products, like high-speed modems, that this
invention made possible. With all the benefits of hindsight
we may look back and find the principles of set partition-
ing in earlier mathematical work by Leech [131] at a time
when digital electronics were not ready for this innovation.
However, Leech’s work lacked any vision of communications
practice, and Ungerboeck made the link explicit between his
mathematical theory of set partitioning and the transmission
of information.

C. Sphere Packings and Codes

Leech [131] showed how to use error-correcting codes to
construct dense sphere packings in-dimensional space. The
idea is to specify a set of vectors with integer entries by
constraining the binary expansion of those entries.

The Leech coordinate arrayof a vector
with integer coordinates is obtained by writing the binary
expansion of the coordinates in columns starting with the
least significant digit. The first row of the coordinate array is
the row, the second row is the row, the third row is
the row, and so on. To find the binary expansion of a
negative number , simply write

and for solve the equation

In row , the entry represents an odd integer, and the entry
represents an even integer. We define subsets of the integer

lattice by constraining the first rows of the coordinate
array. Given binary codes with blocklength

, the sphere packing consists of all vectors
for which the th row of the coordinate array of

is a codeword in . If , and if is a binary linear
code, then

for some

Here is a lattice, since it is closed under addition. This
construction is described by Leech and Sloane [132], where
it is calledConstruction A, though Forney [80] uses the term
mod 2 latticeto distinguish lattices constructed in this way. In
general is not a lattice.

We make contact again with the Gosset lattice by
taking to be the extended Hamming code .
The fundamental volume , and the minimum
squared distance . The code contains the zero
vector, 14 codewords of weight, and the all-one vector of
weight . There are vectors in of type ,
and 16 vectors in of type . This gives 240 vectors
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Fig. 4. A decoding trellis for the[8; 4; 4] Hamming code.

in with minimum norm , and it is easily seen that there
are no others. This second appearance of the number 240 is not
happenstance. The lattice is a realization of the Gosset
lattice on a different scale. There is a norm-doubling linear
transformation satisfying that
transforms the original realization of into .

Conway and Sloane [44] describe more sophisticated vari-
ants of Construction A, but it may be more interesting to apply
the original construction to codes defined over the ring
of integers modulo . For example, extended cyclic codes
over obtained from certain binary cyclic codes by Hensel
lifting determine even unimodular lattices via Construction A.
The binary Golay code determines the Leech lattice in this
way, and this is perhaps the simplest construction for this
remarkable lattice that is known. For more details see [108],
[19], and [28].

D. Soft-Decision Decoding

The origin of the termtrellis code is that the graph of
state transitions looks like the structures used by gardeners to
support climbing plants. Codewords are represented as paths
through this trellis.

The decoder has a copy of the trellis. It processes the noisy
samples and tries to find the path taken by the binary data. The
decoding algorithm was proposed by Viterbi [219] and later
shown to be a variant of dynamic programming. Every trellis
stage, the decoder calculates and stores the most likely path
terminating in a given state. The decoder also calculates the
path metric, which measures distance from the partial received
sequence to the partial codeword corresponding to the most
likely path. Fig. 4 shows a decoding trellis for the
Hamming code or for the lattice (in this interpretation the
digits , represent the cosets and the metric for
an edge labeled is determined by the distances from the
received signals to ). At time in Fig. 4,
the decoder only needs to update two path metrics and make
one comparison to determine the most likely path terminating
in a given state.

Viterbi [219] originally introduced this decoding method
only as a proof technique, but it soon became apparent that
it was really useful for decoding trellis codes of moderate
complexity. The importance of this application is the reason
the decoding method is called the Viterbi algorithm by com-
munication theorists. Forney [77] recognized that the Viterbi
algorithm is a recursive optimal solution to the problem of

TABLE I-A
MAXIMUM -LIKELIHOOD DECODING OF THE BINARY GOLAY CODE

TABLE I-B
MAXIMUM -LIKELILHOOD DECODING OF THE LEECH LATTICE

estimating the state sequence of a discrete time finite state
Markov process observed in memoryless noise. Many problem
in digital communication can be cast in this form.

Decoding algorithms are assembled from basic binary op-
erations such as real addition, real subtraction, comparing two
real numbers, and taking an absolute value. For simplicity,
we might assign unit cost to each of these operations, and
we might neglect the complexity of say multiplication by
(since this can be accomplished by merely shifting a binary
expansion). It is then possible to compare different algorithms,
and to show, for example, that the iterative decoding procedure
for Reed–Muller codes based on the construction
is less complex than the standard procedure using the fast
Hadamard transform (see [80]). Quite recently there has been
substantial interest in effective trellis-based decoding of codes
and lattices. Tables I-A and I-B follow the progress that has
been made in reducing the number of operations required
for maximum-likelihood decoding of the Golay code and the
Leech lattice (see [216] and [217] for details and additional
references).

Decoding complexity can be reduced still further through
bounded-distance decoding. Here the decoder corrects all
error patterns in the Euclidean sphere of radiusabout the
transmitted point, where is the packing radius of the code
or lattice. This means that the error exponent of the bounded-
distance decoder is the same as that of a maximum-likelihood
decoder. Forney and Vardy [87] have shown that bounded-
distance decoding of the binary Golay code and Leech lattice
requires only 121 and 331 operations, respectively. The overall
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degradation in performance is about 0.1 dB over a wide range
of SNR’s.

It was Conway and Sloane [43] who revived the study of
the complexity of soft-decision decoding algorithms for block
codes and lattices. Their paper served to inspire a great deal
of work, including the results reported in Table I. However, it
is fair to say that this work was specific to particular families
of codes, and fundamental asymptotic questions seemed out of
reach. That changed with Tarokh’s 1995 thesis [208] showing
that decoding complexity grows exponentially with coding
gain. The lower bound on complexity is established by means
of an ingenious argument involving a differential equation,
and the upper bound uses a sophisticated tensor product
construction. Together the results show that the lower bound
is asymptotically exact.

It is instructive to look back at the work of Slepian [199]
who constructed codes for the Gaussian channel by taking a
finite group of matrices, and applying each matrix to a
fixed vector in . It is remarkable that Ungerboeck codes
are examples of Slepian signal sets (see [81]). One minor
difference is that the group of isometries has become infinite.
A more important difference is the emphasis today on the
complexity of the group. This was not an issue that concerned
Slepian, but it is of paramount importance today, because it
determines the complexity of soft-decision decoding.

E. Multilevel Codes and Multistage Decoding

The coded-modulation schemes proposed by Ungerboeck
make use of a partition of the signal constellation into

subsets sometimes corresponding tolevels in the Leech
coordinate array. A rate convolutional code selects
the subset, and the remaining uncoded bits select a signal from
the chosen subset. Instead of coding across all levels at once,
we might directly allocate system redundancy level by level,
an idea that first appeared in the context of binary codes.
In 1977, Imai and Hirakawa [112] presented their multilevel
method for constructing binary block codes. Codewords from
the component codes form the rows of a binary array, and
the columns of this array are the codewords in the multilevel
code. Imai and Hirakawa also described a multistage bounded-
distance decoding algorithm, where the bits are decoded in
order of decreasing sensitivity, starting with the bits protected
by the most powerful error-correcting code. Subsequently,
Calderbank [22] and Pottie and Taylor [173] described simple
multilevel coset codes for the Gaussian channel, and quantified
the performance/complexity advantages of multistage decod-
ing over full maximum-likelihood decoding. Here the purpose
of the parity check is to provide immunity against single
symbol errors. Concerning theoretical limits, Wachsmann and
Huber [220] have shown that multilevel codes with turbo code
components come within 1 dB of the Shannon limit.

F. The Broadcast Channel

The flexibility inherent in multilevel coding and multistage
decoding makes it easy to introduce unequal error protection
when some bits are extremely sensitive to channel errors and
others exhibit very little sensitivity. For example, Code Excited

Linear Prediction (CELP) is a method of transmitting speech
by first communicating a model of the vocal tract specified by
parameters that depend on the speaker, and then exciting the
model. This model includes pitch information, and an error
here has much more impact on the reproduced speech quality,
than an error at the input to the model. Specific speech/channel
coding schemes for wireless channels are described by Cox,
Hagenauer, Seshadri, and Sundberg [47]. This matching of
speech and channel coding has become standard practice in
the engineering of cellular voice services.

A second example is digital High-Definition Television
(HDTV) that has been made possible by recent advances in
video compression. Digital broadcast differs from digital point-
to-point transmission in that different receivers have different
signal-to-noise ratios, which decrease with distance from the
broadcast transmitter. One concern with digital broadcast is
its sensitivity to small variations in SNR at the various
receiver locations. This sensitivity is manifested as an abrupt
degradation in picture quality, which is generally considered
unacceptable by the TV broadcast industry.

It is possible to achieve more graceful degradation by means
of joint source and channel coding. There are algorithms for
compressing video signals that output coarse information and
fine information. The coarse information is sensitive because
it provides a basic TV picture, and the fine information is
less sensitive because it adds detail to the coarse picture.
The channel-coding scheme is designed to provide greater
error protection for the coarse information, so that the distant
receiver always has access to the coarse picture. Receivers
that are closer to the broadcast transmitter can obtain both the
coarse picture, and the fine detail, so that, indeed, there is a
more graceful decline in the quality of reception.

This philosophy of joint source and channel coding has
its roots in the information-theoretic work of Cover [46]
on broadcast channels. He considered a typical broadcast
environment where a source wishes to transmit information
over a Gaussian channel to a strong receiver with SNR,
and a weak receiver with SNR . Cover established the
efficiency ofsuperimposing information; that is, broadcasting
so that the detailed information meant for the stronger user
includes the coarse information meant for the weaker user. The
geometry of the achievable rate region makes it apparent that
it is possible to achieve close to capacity
for the strong receiver at the cost of reducing the achievable
rate for the weaker receiver only slightly below capacity

. Specific multilevel codes that can be
used in terrestrial broadcasting of HDTV to provide unequal
error protection are described by Calderbank and Seshadri
[34]. The data rate for HDTV is about 20–25 Mb/s in 6-MHz
bandwidth, corresponding to transmission of 4 bits/symbol. It
is possible to provide virtually error-free transmission (greater
than 6-dB coding gain) for some fraction (for example, 25%)
of the data, while providing a modest gain of 1–2 dB for
the remaining data with respect to uncoded transmission. The
connection with the information-theoretic work of Cover on
broadcast channels is described by Ramchandran, Ortega, Uz,
and Vetterli [175] in the context of their multiresolution joint
source/channel coding scheme for this same application. Their
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paper proposes a complete system, and describes a particu-
lar source-coding algorithm that delivers bits with different
sensitivity to channel errors.

G. Methods for Reducing Average Transmitted Signal Power

We consider signal constellations that consist of all lattice
points that fall within some region . If the region
is an -cube with faces parallel to the coordinate axes,
then the induced probability distribution on an arbitrary-
dimensional projection is uniform. Changing the shape of
the region induces a nonuniform probability distribution
on this -dimensional projection. Thus gains derived from
shaping a high-dimensional constellation can be achieved in
a low-dimensional space by nonequiprobable signaling. The
asymptotic shaping gain is or 1.53 dB.

The problem of addressing a signal constellation is that
of mapping a block of input data to a signal point. This
problem enters into the design of both encoder and decoder;
for the decoder needs to invert the mapping in order to
recover the data stream corresponding to the estimate for the
transmitted sequence of signals. The-cube is a particularly
simple Cartesian product for which the addressing problem
is trivial, but here there is no shape gain. Spheres optimize
the shape gain available in a given dimension but are hard
to address. Conway and Sloane [42] proposed the use of
Voronoi constellations based on a lattice partition —the
constellation consists of points from a translate ofthat
fall within a Voronoi region for the shaping lattice . They
showed how to use a decoding algorithm for to address
the constellation. Unfortunately, the ratio of peak-to-average
power for Voronoi constellations (and spheres) is very high,
precluding their use.

Calderbank and Ozarow [31] introduced the method of
shaping on rings, where the region is partitioned into
subregions so as to obtain equal subconstellations with
increasing average power. A shaping code then specifies
sequences of subregions, and it is designed so that subcon-
stellations with lower average power are more frequent. The
purpose of the shaping code is to create a good approximation
to the desired Gaussian distribution, and it is important to
minimize the complexity of the shaping code. The shell map-
ping algorithm used in the V.34 modem standard enumerates
all points in the Cartesian product of a basic two-dimensional
constellation that are contained in a higher dimensional sphere.
Laroia, Farvardin, and Tretter [130] show that it is possible to
construct a 64-dimensional constellation from a 384-point two-
dimensional constellation that supports uncoded transmission
at 8 bits/symbol with a shaping gain of 1.20 dB and a peak-to-
average power ratio (PAR) of 3.76. Alternatively, it is possible
to achieve a shaping gain of 1 dB with a PAR of 2.9 (for
comparison, the PAR of the two-dimensional sphere is).

1) Shaping by Searching a Trellis:A trellis code is an en-
semble of codewords that can be searched efficiently. This
search can be carried out with respect to any nonnegative
measure that is calculated on a symbol-by-symbol basis. In
Viterbi decoding this measure is distance from the received
sequence. Here the measure is signal energy, but many other

applications are possible, for example, the reduction of peak
to average power in OFDM systems. Trellis shaping is a
method proposed by Forney [82] that selects a sequence with
minimum power from an equivalence class of sequences, by
means of a search through the trellis diagram of a code. The
signal constellation is divided into rings labeled by the possible
outputs of a binary convolutional code. Shaping information is
transmitted by choosing a coset of the convolutional code, and
a decoder selects the minimum-norm vector in the coset for
transmission. Now data is transmitted in blocks of about 1000
symbols by periodically terminating the convolutional code.
The delay would be unacceptable if it were only possible to
recover information carried by the shaping code on a block-
by-block basis. However, it is possible to specify cosets on a
symbol-by-symbol basis using the theory of syndrome formers,
developed by Forney [75] as part of his algebraic theory
of convolutional codes. Forney ([75], [77], [78], [81]) has
explored the algebraic structure of convolutional codes, and the
connections with linear systems theory in some depth. Forney
and Trott [85] have since shown that most of this structure
theory extends to trellis codes based on lattices and cosets.

H. Precoding for ISI Channels

We begin with a brief account of the evolution in sig-
nal processing for magnetic-recording channels. Until quite
recently, virtually all magnetic recording systems employed
peak detection, where one sampled output is used to estimate
the value of one symbol recorded on the disk. The reliability
of peak detection depends on the minimum spacing between
transitions. If two transitions are too close, the peaks are
reduced in amplitude and shifted. Binary sequences input to
magnetic recording systems that employ peak detection are
required to meet certain runlength constraints in order to
improve linear density and to improve system reliability. The

constraint requires that adjacent’s be separated by
at least ’s and by at most ’s. Here it is important to
recall that in NRZI (nonreturn-to-zero-interleaved) recording
the symbol represents no transition, and the symbol
represents a transition. Long runs of’s correspond to long
stretches of constant magnetization. When the binary input
satisfies a constraint, it is possible to signal times
as fast while maintaining the same spacing between transitions.
If the code rate is then the increase in linear density is given
by the product . The constraint aids timing recovery
since timing is derived from transitions in the recorded data.
Note that increasing the speed of circuitry is not without its
challenges.

Peak detection looks at a signal sequence with respect to
itself, not with respect to other signal sequences that could
have been transmitted. The idea of using maximum-likelihood
sequence estimation in magnetic-recording systems was sug-
gested in 1971 by Kobayashi and Tang [125]. However, it has
only recently become possible to implement partial response
maximum likelihood (PRML) detection at sufficiently high
speeds. PRML detection provides increases in linear density
of about 30% by eliminating the constraint. The resulting
intersymbol interference (ISI) is equalized at the output of the
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channel to some tractable response such as PRIV
or EPRIV . Maximum-likelihood (Viterbi)
decoding is accomplished by tracking the state of the channel,
as described in Kobayashi [124] or Forney [76].

A basic feature of telephone channels and certain optical
memories (see [27]) is that they are linear subject to a peak
constraint, and support a continuum of recording levels. This is
fundamentally different from conventional magnetic-recording
channels which are inherently nonlinear and where, to force
linearity, the write current in the recording head has to be
sufficient to ensure positive or negative saturation of the
magnetic medium. Hence it is only possible to record the
levels . The ability to write a continuum of levels at the
input to this channel makes it possible to employ precoding
techniques such as the one developed by Tomlinson [213],
and by Miyakawa and Harashima [157], for Gaussian channels
subject to ISI. The philosophy behind this precoding technique
is that since the channel is known, it is possible to anticipate
and correct for the effects of the channel at the input, so
that a very simple decoder can be used at the output. It
is not possible to use Tomlinson–Harashima precoding on
conventional magnetic- and optical-recording systems where
it is only possible to record a small discrete number of levels.

We consider transmission of equally spaced analog levels
over a discrete time channel with causal

impulse response for which . The output
is given by

Tomlinson–Harashima precoding [157], [213] is a nonlinear
method of precoding the data that renders the output of the

channel effectively free of intersymbol interference, and
allows instantaneous symbol-by-symbol decoding of the data.

The Tomlinson filter does not transmit the datadirectly,
but instead transmits precoded data, where

where is the unique integer such that . Now the
output is given by

and instantaneous symbol-by-symbol decoding is possible via
congruence modulo .

Precoding is a part of the V.34 modem standard [116]
for communication over bandlimited Gaussian channels and
variants thereof. In telephone-line modem applications it is
important that the statistics of the channel symbols are Gauss-
ian, so they match the statistics of the noise. Here Tomlin-
son–Harashima precoding is not appropriate since reduction
modulo seems to produce channel symbols that are
uniformly distributed over the interval . The ISI pre-
coder [129] that forms a part of the V.34 standard is a
more sophisticated alternative to Tomlinson–Harashima pre-
coding. It achieves significant shaping gain (the saving in

average transmitted signal power provided by a Gaussian input
distribution over a uniform distribution) without increasing
the complexity of trellis decoding much beyond that of the
baseline memoryless channel. The key idea is to separate
the problem of decoding in the presence of additive white
Gaussian noise (AWGN) from that of resolving intersymbol in-
terference. This is captured geometrically in Fig. 5. Precoding
modifies the input just enough to ensure that the output of the
channel is a trellis codeword. A Viterbi decoder takes
care of the noise, and inversion of the channel provides an
approximation to the original input. The original input can be
recognized from the approximation, since both lie in a common
Voronoi region. There is a small power penalty connected
with the power of the sequence that modifies the original
input, but this penalty can be made insignificant. Running this
precoded transmission system “backward” provides a system
for quantizing an individual source with memory (cf. trellis-
coded quantization [150]).

I. The AWGN Channel and the Public Switched
Telephone Network

Trellis codes provide effective coding gains of about 4.5
dB on the AWGN channel, and a further 1 dB is available
through shaping schemes of moderate complexity. Forney
and Ungerboeck [86] observe that the cutoff role of a high-
SNR channel corresponds to an effective coding gain (without
shaping) of about 5.7 dB at error probabilities of about 10.
This is as high an effective coding gain as anyone has achieved
with moderate complexity trellis codes.

The coset codes described in this paper select signal points
from uniformly spaced constellations. When harmonic dis-
tortion and PCM noise (logarithmic quantization noise) are
significant channel impairments it can be advantageous to
distort the uniform spacing. Testing of high-speed voiceband
modems has revealed a significant increase in distortion for
points near the perimeter of a QAM signal constellation.
This distortion increases with distance from the center of the
constellation and limits performance at data rates above 19.2
kb/s. The perimeter distortion can be reduced by transforming
the signal constellation so that points near the center are
closer together, and points near the perimeter are further
apart. When the channel SNR is high, such a transformation
reduces immunity to Gaussian noise because points near the
center of the transformed constellation are closer together than
in a uniformly spaced constellation with the same average
power. Betts, Calderbank, and Laroia [13] have demonstrated
theoretically that for channel SNR’s of practical interest, there
is actually a small gain in immunity to Gaussian noise. In fact,
an appropriate coded-modulation scheme can produce gains
of about 0.25 dB. Experiments support the intuition that it is
advantageous to employ trellis codes for which the dominant
error is a trellis path error, and the longer that error the better.

In fact, the Public Switched Telephone Network is evolving
toward the point where an analog voiceband channel will
consist of short analog end links connected to PCM codes,
with no intermediate tandem D/A or A/D transformations.
This observation inspired development of the V.90 modem
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Fig. 5. A geometric rendering of a precoded transmission system.

standard, concluded in February 1998 which promises 56 kb/s
downstream and delivers V.34 upstream.

J. The Potential of Iterated Decoding

In algebraic error-correcting block codes the information
in each encoded bit is distributed across all symbols in
a codeword. Information carried by concatenated codes is
segmented, with some bits determining the encoding of a
particular component subblock, and other bits the linkage
between the different components. In decoding concatenated
codes, initial estimates for component codewords are com-
bined by decoding the code that links components together.
In turbo codes the information in each bit is replicated in two
different localities of a codeword. The original construction is
to produce a first parity sequence by encoding an information
sequence using a rate recursive systematic encoder, to
permute the information bits using a very long interleaver
( – bits), and to produce a second parity sequence by
encoding the permuted sequence using a second encoder of
the same type as the first (possibly identical). Decoding is
an iterative process where bit level soft decisions produced
by one decoder are used to improve (hopefully) the decisions
produced by the other decoder at the next step. The potential
of this combination of local encoding and iterative decoding
was revealed by Berrou, Glavieux, and Thitmajshima [12]
who demonstrated that a 16-state rate turbo code can
operate at an SNR 0.7 dB greater than capacity of the
AWGN channel, with a decoded bit-error rate of . For
comparison, the Big Viterbi Decoder [41] designed to decode
a 16 384-state convolutional code requires 2.4 dB to achieve
the same bit-error rate. Like many revelations there was a
period of initial scepticism, but now there are no doubts that
this is a spectacular achievement. It is interesting to observe

that the search for theoretical understanding of turbo codes
has transformed coding theorists into experimental scientists.
One empirical discovery is the existence of anerror floor at
low error rates that depends on the size of the interleaver.
Perhaps the most interesting theoretical connection is that
between theforward–backward algorithm[6] (a.k.a. theBCJR
algorithm [3]) used in decoding convolutional codes, and
belief propagation in Bayesian networks [167], a technique
used for training and system identification in the neural
network community [90], [145].

The ideas of local encoding and iterative decoding were
present in a classic paper of Gallager [91], [92] written
some 30 years before the discovery of turbo codes. A low-
density parity-check (LDPC) matrix is a binary array where
the number of ’s in each row and column is kept small.
Gallager suggested using the adjacency matrix of a randomly
chosen low-degree bipartite graph as the parity-check matrix.
Decoding is again an iterative process where bit-level soft
decisions obtained at one stage are used to update bit-level
soft decisions about a particular bit at the next stage by means
of the parity-check equations involving that bit. Gallager
distinguished two different types of information,intrinsic and
extrinsic, and understood that only extrinsic information is
useful for iterative decoding. He developed the geometric
picture of a support treewhere the influence of a bit fans
out across all symbols in a controlled way as the iterations
progress. Gallager was not able to show correctness of the
proposed iterative algorithm but he showed long LDPC codes
can achieve rates up to capacity on the binary-symmetric
channel with maximum-likelihood decoding. Subsequently,
Zyablov and Pinsker [232] showed that with high probability
over the choice of graph, the codes proposed by Gallager
could be decoded in rounds, where each decoding round
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TABLE II
A GENERATOR MATRIX FOR THE [24; 12;8] BINARY GOLAY CODE

removes a constant fraction of errors. More recently, MacKay
and Neal [145] demonstrated near Shannon-limit performance
of LDPC codes with iterative decoding. If the art of simulation
had been more advanced in 1963, the history of coding theory
might look very different today.

Sipser and Spielman [192] only discovered Gallager’s pa-
per after deriving asymptotically good linear error-correcting
codes with decoding complexity -linear time only
under the uniform cost model where the complexity of adding
two -bit binary vectors is independent of. The combinato-
rial objects at the heart of the Sipser–Spielman construction are
expander graphsin which every vertex has an unusually large
number of neighbors, and these codes are of the type proposed
by Gallager. The machinery of expander graphs enabled Sipser
and Spielman to prove that the sequential decoding algorithm
proposed by Gallager was in fact correct for these expander
codes, something Gallager had not been able to do 30 years
earlier.

The idea that graphical models for codes provide a natural
setting in which to describe iterative decoding techniques
is present in Tanner [207] but has undergone a revival in
recent years [221], [222]. One way this school of coding
theory connects with the classical theory is through the study
of tailbiting trellises for binary block codes. Solomon and
van Tilborg [200] demonstrated that a tailbiting trellis for
a binary block code can in fact have fewer states than a
conventional trellis. Table II shows a generator matrix of the

binary Golay code that provides a 16-state, 12-
section tailbiting trellis [26], whereas a conventional trellis
must have 256 states at its midpoint [158]. The specific
discovery was motivated by a suggestion of Wiberg [221,
Corollary 7.3], and by the general result that the number of
states in a tailbiting trellis can be as few as the square root
of the corresponding number for a conventional trellis at the
midpoint [222]. The time axis for a tailbiting trellis is defined
most naturally on the circle, though it can also be defined on
an interval with the added restriction that valid paths begin and
end in the same state. Thespanof a generator is the interval
from the first to the last nonzero component, and the generator
is said to beactivein this interval. For the Golay code, we see
from Table II that at every time slot only four generators are

active, hence the states in the tailbiting trellis (see
[26] for details). It is quite possible that other extremal self-
dual block codes (notably the Quadratic Residue
code) will also have generator matrices that correspond to
low-complexity tailbiting representations.

In iterative decoding the focus is on understanding the
domain of attraction for a codeword rather than understanding
the boundaries of a Voronoi region. In the future we might
well see a shift in emphasis within coding theory from
static geometry to dynamical systems. Certainly it would be
interesting to have a counterpart of turbo codes in the world
of algebraic error-correcting codes.

K. On Duality Between Transmission and Quantization

The theory of communication and that of quantization
overlap significantly, but there has been less cross pollina-
tion between the two communities than might be expected.
Nevertheless, it is commonly understood that the problems of
coding and quantization are in some sense dual.

The lattice-decoding algorithms described in previous sec-
tions can be used to represent a source sequenceas the sum
of a lattice point , and an error sequence . In quan-
tization the objective is the lattice point, and the expected
value is the mean-squared error(mse) normalized per
dimension. By contrast, the objective in transmission is not
the lattice point , but the error sequence. The idea is to
choose a suitable discrete set of source sequences, so that
the entries of the error sequencehave a distribution that is
approximately Gaussian.

The error sequenceis distributed over the Voronoi region
of the lattice, and if this distribution is uniform, then the

mean-squared error is equal to the second moment
. In quantization, the quantity is

called thegranular gain, and it measures the reduction in
mean-squared error that comes from choosing the shape of
the quantization cell. The baseline for comparison is uniform
scalar quantization (using the integer lattice) where the quanti-
zation cell is the -cube with second moment

. Table III presents a correspondence between quantities
of interest in communications and in quantization (with respect
to Gaussian channels/sources). Successive refinement is a
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TABLE III
CORRESPONDENCEBETWEEN QUANTITIES OF INTEREST IN CODING AND QUANTIZATION

particular case of multiple descriptions, where two channels
connect the source to the destination (see [166], [64], and
[214]). Either channel may fail and this failure is known to
the decoder but not the encoder. The objective is to obtain
good performance when both channels work and to degrade
gracefully if either channel fails. The two channels may be
considered equally important, and this is different in spirit
from layered coding (successive refinement) where a high-
priority channel transports important bits. The emergence of
wireless systems employing multiple antennas, and of active
networking in lossy packet networks represent an opportunity
for the multiple descriptions coding paradigm.

L. The Notion of Frequency Domain

This is the idea of using constraints in the frequency domain
to separate codewords in the time domain. We begin by
considering integer valued sequences
which we represent as polynomials . We
shall say that the sequence has a th-order spectral null
at , if is divisible by . A collection
of sequences with this property is called aspectral null code.
To show that it is possible to separate vectors in Euclidean
space by placing spectral constraints in the frequency domain,
we consider the case . We say that the sequence
has a sign change at position if , and

, where .

Theorem (Descartes Rule of Signs):Let be a real
polynomial with positive real roots, not necessarily distinct.
Then the number of sign changes in the sequenceof
coefficients of is at least .

For a proof we refer the reader to Householder [111]. Now
consider a code with a th-order spectral null at .
It follows directly from Descartes Rule of Signs that the

minimum squared distance between codewords is at least,
where is the minimum distance of the integer alphabet
employed (for the bipolar alphabet , this gives a bound
of . This simple observation is the starting point for
the construction of many codes used in magnetic recording
applications; more details can be found in Immink and Beenker
[115], Karabed and Siegel [121], Eleftheriou and Cideciyan
[63], and the survey paper [152]. The objective in all these
papers is to separate signals at the output of a partial-response
channel by generating codewords at the input with spectral
nulls that are matched to those of the channel. The special
features of telephone channels and recording channels have
also led to new connections between coding theory, dynamical
systems, and linear systems theory [151].

M. Partial-Response Channels and Coding
with Spectral Constraints

It is natural to try to devise coding schemes that meet both
spectral null and minimum distance/coding gain objectives.
Starting from an uncoded -level data sequence we
want to generate a real-valued sequence with nulls at
certain prescribed frequencies in such a way that the data

can be recovered instantly from the sequence. Fig. 6
shows an input sequence passing through a partial
response channel with impulse response (transfer function)

, resulting in an output , which is
called a partial-response-coded (PRC) sequence. A white-noise
sequence may be added to to give a noisy PRC
sequence , representing the output of a real channel. The
input sequence can be recovered from the PRC sequence

by passing through a filter with transfer function
. (We have to imagine that “starts” at some finite

time for this inverse filtering operation to be well-defined, and
we assume the initial values are known.) Thus the sequence
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Fig. 6. Diagram for either partial-response signaling or signaling with spectral nulls.

may be reconstructed as the “running digital sum” (RDS)
of the PRC sequence . The spectra of the RDS sequence
and PRC sequence are related by the partial-response transfer
function expressed in the frequency domain. The order of the
spectral null will be the order of the corresponding zero in

. This number needs to be doubled to describe the order
of the null in the actual power spectrum, which is proportional
to .

We define theRDS power as the sample variance of
the RDS variables , assuming sufficient stationarity (so
that this notion is well-defined), and thePRC power as
the sample variance of the PRC variables. Neither is
necessarily larger than the other. Given , the problem is to
choose so as to minimize subject to the requirement
that be held fixed. This will single out a one-parameter
family of filters indexed by the RDS power . It is
necessary to constrain , for otherwise the minimizing
solution is and the null disappears (the power

becomes infinite). Decreasing the width of a spectral null in
the line-code spectrum requires a large peak at the appropriate
frequency in , and hence large power .

The new information in each symbol is carried by the
i.i.d. input to the filter . The power of the sequence

is the effective signal power at the output of a minimum
mean-squared error (MMSE) predictor for the RDS sequence

. For a single null at dc, Forney and Calderbank [84]
show that the filter gives the best possible
tradeoff between the RDS power and the line code power

. The optimum tradeoff is shown in Fig. 7 and is given by

The corresponding PRC spectra are shown in Fig. 8. As
approaches , necessarily increases without bound,

and becomes flatter with a sharper and sharper null at
dc. These power spectra are called “first-order power
spectra” by Justesen [118], who considers them to be an
interesting representative class of simple spectra for sequences
with dc nulls, in that they remain small up to some cutoff
frequency and then become approximately constant over the
rest of the band. He notes that if is defined as the frequency
at which (the “half-power” frequency), then,

Fig. 7. Optimum tradeoff betweenSx=S andSy=S.

Fig. 8. PRC spectra for first-order autoregressive RDS sequences with
parameter�.

for these first-order power spectra

(where is the upper Nyquist band-edge frequency), so that
(or ), at least for .

The optimum tradeoff between and for sequences
and that are related by , where
is a response with arbitrary spectral nulls, was developed

in subsequent work by Calderbank and Mazo [30]. Forney and
Calderbank have shown that, at least for sequences supporting
large numbers of bits per symbol, coset codes can be adapted
to achieve effectively the same performance and complexity on
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Fig. 9. Concatenation of an inner modulation code with an outer Reed–Solomon code. At�1 the demodular provides a maximum-likelihood estimate of the
� valued sequence written on the disk, and the bit-error probability might be between10

�6 and10�10 depending on the aggressiveness of the modulation
strategy. At�2 the bit-error probability needs to be10�18, that is, essentially error-free.

partial-response channels, or for sequences with spectral nulls,
as they do in the ordinary memoryless case. This in addition
to the optimum tradeoff between input and output powers.

N. Concatenated Codes

Applications of coding theory (see [45]) from deep-space
communication to consumer electronics employ an inner mod-
ulation code with an outer algebraic error-correcting code
(usually a Reed–Solomon code). Fig. 9 is a representation
of a magnetic recording channel. For this application it is
likely that in the next five years we will see full integration
of demodulation and Reed–Solomon coding (a single-chip
solution).

There are opportunities to use soft information calculated
by the demodulator in Reed–Solomon decoding. For a small
increase in decoder complexity it is possible either to provide
reliability information about every demodulated data symbol,
or to provide a list of the two or three best estimates of
the -valued sequence written on the disk (see [184] and
[106]). For the second alternative, the quantity of interest
is the probability that the true write sequence is not among
the list of two or three. This quantity may be recast as a
decrease in bit-error probability; the old range
becomes , an improvement of about 1.5 dB
for the list of three estimates. Both alternatives have the
potential to simplify Reed–Solomon decoding, but it is not
so easy in practice, and even the declaration of erasures is
something of an art. It may in fact be more productive to
focus on interpolating reliable symbols as in [203]. Staged
decoding can provide additional coding gains of up to 1
dB in concatenated systems. For example, Hagenauer, Offer,
and Papke [107] identify Reed–Solomon codewords that are

correct with very high probability, and have the inner decoder
treat the corresponding information bits as side information
in a second round of decoding (state pinning). Particularly in
magnetic recording, it can be advantageous to reverse the order
of modulation and Reed–Solomon encoding (a systematic
encoder is required). This reduces error propagation and can
result in coding efficiencies (see [17] and [114]).

The theoretical foundations of concatenated coding are
found in Forney [74], who showed that for polynomial de-
coding complexity, the error rate could be made to decrease
exponentially with blocklength at any rate less than capacity.
The notion of concatenated codes has been pursued with
enthusiasm in the Russian literature, and there is a substantial
commonality to the generalized cascade codes of Zinoviev
[230], and the multilevel codes of Imai and Hirakawa [112].
In algebraic coding theory, Justesen [117] provided an explicit
construction of a sequence of codes for which the rate and
the normalized distance are both bounded away from
zero. For a long time prior to his construction there had
been serious doubt as to whether this was possible. Now it
is easy to show there exist field elements , so that
the binary concatenated codes determined by pairs

meet the Gilbert–Varshamov bound as .
However, this is not an explicit construction. Justesen’s idea
was to consider pairs where the field element

depends explicitly on the symbol , but where variation
in from symbol to symbol provides the kind of performance
attributable to random coding.

IV. TWO IMPORTANT DEVELOPMENTS

IN ALGEBRAIC CODING THEORY

Even in the 1977 edition of MacWilliams and Sloane there
were 1478 references. Since it would be unwise to attempt a
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comprehensive array of algebraic coding theory in the space
available, we have chosen instead to highlight two develop-
ments of particular importance. The first is the geometric-
mathematical framework of association schemes presented by
Delsarte [48] that provides a common language for coding
theory, statistical design, and algebraic combinatorics. The
second is grounded in algorithms, and follows developments
in cyclic codes through to the creation of algebraic-geometry
codes that beat the Gilbert–Varshamov bound.

The theory of association schemes was inspired in part by
the MacWilliams Identities, though it is the nonnegativity of
the MacWilliams transform that is important, rather than the
identity connecting the weight distribution of a linear code
to that of the dual code (see [51]). It is these MacWilliams
Inequalities that lead to the MRRW linear programming bound
on codes, and to lower bounds on combinatorial designs and
orthogonal arrays. Many notions of regularity in group theory,
combinatorics, and statistics are expressed very naturally in
terms of association schemes. For example, the study of
distance regular graphs, now a large subject in its own right
(see [21]), is the study of association schemes with a particular
( -polynomial) property.

We begin with a section that emphasizes approximation
in the theory of combinatorial designs. The notion of ap-
proximation is one reason the theoretical computer science
community has made extensive use of coding theory in recent
years. In particular, codes have been used to design small
sample spaces that approximate the behavior of large sample
spaces, leading to bounds on the number of random bits
used by probabilistic algorithms and the communications
complexity of cryptographic protocols. From the perspective of
computational complexity it is natural to view random bits as a
resource analogous to time and space, and to design algorithms
that require as few as possible. For details on this and other
applications of coding theory to computational complexity see
Feigenbaum [67].

A. Approximation, Combinatorial Designs,
and the Johnson Scheme

The concept of approximation is similar but slightly dif-
ferent from that of quantization. The purpose of a design is
to capture with a small ensemble the regularity properties of
a much larger universe. Designs are concerned with approxi-
mating a universe closely, whereas codes are concerned with
separating an ensemble widely. Questions in coding theory
are packing problems, whereas questions in design theory are
covering problems. There is a duality between packing and
covering that can be made mathematically precise using the
theory of association schemes.

An association schemeis a set together with a partition
of the two-element subsets of into classes
satisfying the following conditions:

1) given , the number of points with
depends only on;

2) given with , the number of points
with and is a constant

that depends only on and .

We may think of an association scheme onas a coloring
of the complete graph on with colors where
an edge has color if it belongs to . The first condition
asserts that each monochromatic graph is regular. The
second condition asserts that the number of triangles with a
given coloring on a given base depends only on the coloring
and not on the base.

The Johnson scheme offers an algebraic means
of quantifying the duality between packing and covering
properties of -subsets of a -set. The point set of is
the set of -subsets of a -set, these subsets intersect in
possible ways, and the relations

determine an association scheme. Starting from this simple
observation, Delsarte [48] used the representation theory of
the symmetric group and orthogonal polynomials to derive an
algebraic foundation for extremal set theory.

The vector space consists of all mappings from to
, and is invariant under the natural action of the symmetric

group . The irreducible -invariant subspaces under this
action are the harmonic spaces
where . The adjacency matrix

of the graph is symmetric, and the relations

imply that the matrices span a -
dimensional commutative real algebra called theBose–Mesner
algebra of the Johnson scheme [20]. The adjacency matrices

commute with the natural action of the symmetric group,
and Delsarte [48] proved that the eigenspaces common to
the matrices are in fact the harmonic spaces. Calderbank,
Delsarte, and Sloane [25] constructed an explicit spanning set
for each harmonic space . For every -set , let

where is the sum of the characteristic functions of all
-subsets of . As ranges over every-set the vectors

span .
The harmonic spaces are of combinatorial importance, be-

cause if the characteristic function of a family of-subsets
of a -set is orthogonal to a harmonic space , then
this family exhibits some regularity with respect to-sets. To
connect this viewpoint with classical design theory, we recall
that a design is a collection of subsets of a -
element set such that every member ofcontains points and
every subset of points is in blocks. Here we are looking at
the universe of -point subsets, and we are approximating the
regularity properties of this universe with respect to-subsets
of coordinates.

If is an -invariant subspace of , then we can write
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for some subset of , where denotes orthog-
onal sum. There are such subspaces. Now let be a
nonempty family of -subsets of a -set. A subspace of
will be said to be -regular if it satisfies

for all

where is the characteristic function of a subset of. Here
we are thinking about a design as a way of approximating
the statistics of the full ensemble of -subsets of a -set,
using only a proper subset . The vector is the all-one
function which spans . Orthogonality implies that the
inner product vanishes for all with

. It follows from the definitions that if is -invariant
and -regular then

for all , with

In this case we say is a -design(when , a -design is
defined to be a -design with ). The importance
of this equation is that it shows the equivalence between the
concepts of a -design in and an -invariant -
regular subspace of . The following theorem of Delsarte
[48] makes the connection with classical design theory.

Theorem: A -design in is a -design, where
.

Let be a family of -subsets of a -set. The inner
distribution of is given by

which is the average valency of the relation restricted to
. The information carried by the inner distribution is packing

information about the family . The numbers in the inner
distribution are all that is necessary to calculate the norm of the
projection of the characteristic function on the harmonic
spaces . These norms carry information about how
subsets in cover the points. This is what is meant by
quantifying the duality between packing and covering.

Since the Bose–Mesner algebra is semisimple, it has a
unique basis of minimal mutually orthogonal idempotent ma-
trices . Here , where is the matrix
with every entry , and the columns of span the harmonic
space . If

for

then

so that is the eigenvalue of on the harmonic space
. The matrix with th entry is

called theeigenmatrixof the Johnson scheme. The eigenvalue
, where is the Eberlein polynomial defined

by

For a proof, see Delsarte [48]. The matrix , with
th entry is called thedual eigenmatrix. Note that

The entry , where is the Hahn polynomial
defined by

Again we refer the reader to Delsarte ([48] or [50]) for a proof.
Given a family of -subsets of a -set, thedual distri-

bution is given by

where is the orthogonal projection of onto the
eigenspace .

Theorem ([48]): The inner distribution , and the dual
distribution are related by

where is the dual eigenmatrix of the Johnson scheme.
Proof: We have

as required.

It is also possible to capture the regularity properties of
a design through analysis of invariant linear forms. With
any -subset of and any integer we associate
the number that counts the blocks in meeting in

points. Suppose that for all-subsets , we have a linear
relation

where and are fixed real numbers. Then we
say that the -tuple is a -form for . The
set of -forms clearly is a vector space, which will be called
the -form spaceof . The dimension of the-form space
measures regularity of with respect to -subsets, and when

is a classical -design, the -form space coincides with
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. Calderbank and Delsarte [24] have shown that the-form
space is completely determined by the inner distribution of,
and that the invariant-forms can be calculated via a matrix
transform that involves a system of dual Hahn polynomials.
For example, the inner distribution of octads in the binary
Golay code is and the -form
space can be generated from the particular-form

It is interesting to note that given any collection of-element
subsets of a -set for which this particular-form is invariant,
the linear span must be the binary Golay code.

The fundamental question in design theory is usually taken
to be: Given does there exist a design?
This is certainly a natural question to ask from the perspective
of small geometries, but it does not involve the idea of
approximation in an essential way. Designs play an important
role in applied mathematics and statistics and this author would
suggest that questions involving fundamental limits on the
quality of approximation are more important than questions
involving existence of individual designs.

One of the strengths of the association scheme approach to
designs is that it allows arbitrary vectors in , not just the
characteristic vectors of collections of-sets, in particular it
includes signed designs [177].

We mention briefly an elegant application to extremal set
theory that was inspired by Delsarte’s thesis. A familyof -
element subsets of-set is called- intersectingif
for all . The problem of determining the maximum
size of -intersecting families goes back to Erdős, Ko, and
Rado [66] who proved the following theorem.

Theorem: Suppose that is a -intersecting family with
. Then

The bound is obviously best possible, since we may take
to be all -subsets containing a fixed-element subset. The

best possible value of is , as was
shown by Frankl [89] for , and then by Wilson [225] for
all . The eigenvalues of the adjacency matricesare a little
difficult to work with, and Wilson used instead the matrices

, with rows and columns indexed by-sets, and where
the entry counts -subset for which and

. Thus is a linear combination of
and the eigenvalues turn out to be

with multiplicity . It is interesting to note that when
, it is easy to prove the Erdős–Ko–Rado theorem using

this algebraic framework. An intersecting family determines
a principal submatrix of that is identically
zero, and the size of this submatrix is bounded above by

, where is the number of positive

(negative) eigenvalues. We obtain

as required.

We now consider -designs in greater detail. If denotes
the number of blocks, and if denotes the number of blocks
containing a given point, then the identities

and

restrict the possible parameter sets. These identities are trivial
in that they are obtained by elementary counting arguments.
It is natural to impose the restriction , and in this case
we have Fisher’s inequality . Designs with are
called symmetric designs. In a symmetric design there is just
one intersection number; two distinct blocks always intersect
in points. Conversely, it is easily shown that a-design
with one intersection number is a symmetric design. The
Bruck–Ryser–Chowla theorem provides a nontrivial restriction
on the parameter sets of symmetric designs. Here “nontrivial”
means an algebraic condition that is not a consequence of
simple counting arguments. The Bruck–Ryser–Chowla theo-
rem also provides a connection between the theory of designs
and the algebraic theory of error-correcting codes. The row
space of the incidence matrix of a symmetric design deter-
mines a self-dual code with respect to some nondegenerate
scalar product. The restrictions provided by the theorem are
necessary conditions for the existence of these self-dual codes
(see Lander [128], Blokhuis and Calderbank [18]).

B. Algebraic Coding Theory and the Hamming Scheme

The Hamming scheme is an association scheme
with classes. The point set is , and a pair of vectors

is in class if the Hamming distance .
The adjacency matrices of the graph generate the
Bose–Mesner algebra of the scheme, and there is a second
basis of mutually orthogonal idempotent matrices.
The two bases are related by

where
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is the th Krawtchouk polynomial. Recall that is the
coefficient of in

In this association scheme, the eigenmatrixand the dual
eigenmatrix are identical.

The inner distribution of a code is
called thedistance distribution, and the entry is the average
number of codewords at distancefrom a given codeword. If

is linear then is simply the weight distribution. The dual
distribution is given by which
we expand as

For linear codes we recognize these equations as the
MacWilliams Identities [146], [147] that relate the weight
enumerator of a linear code to that of the dual code. A
little rearrangement gives

which is the single variable form of the MacWilliams Identi-
ties. It is sometimes more convenient to associate to a linear
code a weight enumerator in two variables. Then

and the MacWilliams Identities take the form

There are several families of nonlinear codes that have more
codewords than any comparable linear code presently known.
These are the Nordstrom–Robinson, Kerdock, Preparata,
Goethals, and Delsarte–Goethals codes [52], [98], [99], [122],
[164], and [174]. Aside from their excellent error-correcting
capabilities, these pairs of codes (Kerdock/Preparata and
Goethals/Delsarte–Goethals) are remarkable in the sense that
although these codes are nonlinear, the weight distribution of
one is the MacWilliams transform of the weight distribution
of the other code in the pair. Hammonset al. [108] provide
an algebraic explanation by showing that there is a natural
definition of Kerdock and Preparata codes as linear codes
over , and that as codes they are duals. The mystery
of the weight distributions is resolved by observing that (,
Lee distance) and ( , Hamming distance) are isometric
(see Subsection IV-D), and that there is an analog of the
standard MacWilliams Identities for codes in the Lee metric.
There are in fact a number of different association schemes
and MacWilliams Identities that are useful in coding theory.
Delsarte and Levenshtein [55] mention five, including the
association scheme relative to the split-weight enumerator.

There is a great deal of interesting mathematics associated
with self-dual codes. The weight enumerator of a

binary self-dual code with all weights divisible by is
invariant under the transformations

and

These transformations generate a group containing 192 matri-
ces, and Gleason [97] used a nineteenth century technique
called invariant theory to prove that is a poly-
nomial in the weight enumerators of the Hamming
and Golay codes. An immediate corollary is that
the blocklength is divisible by . More details and gen-
eralizations can be found in a very nice survey by Sloane
[201]. There is also a very fruitful connection between self-
dual binary codes with all weights divisible by and even
unimodular lattices. In fact, there are parallel theorems giving
upper and lower bounds on the best codes and lattices, and
parallel characterizations of the weight enumerator of the code
and the theta series of the lattice (see [44, Ch. 7]).

The most important theorem relating codes and designs is
the Assmus–Mattson theorem. The statement of this theorem
given below differs from the statement given elsewhere (for
example, in Assmus and Mattson [2] or MacWilliams and
Sloane [148]) where the conclusion applies only to codewords
of sufficiently low weight. This restriction is to exclude designs
with repeated blocks. Since we mean to allow-designs with
repeated blocks, we may drop the extra restriction.

Theorem (Assmus–Mattson):Let be a linear code
over , where the weights of the nonzero codewords are

. Let be the nonzero
weights in . Let be the greatest integer in the range

, such that there are at most weights
with . Then the codewords of any weight
in form a -design.

The theorem is proved using the MacWilliams Identities. We
puncture the code by deleting coordinates to obtain
a code . The code is obtained by taking codewords
in with and deleting these
coordinates. The MacWilliams Identities allow us to solve for
the weight distribution of and the solution is independent
of the choice of .

Delsarte [49] identified four fundamental properties of a
code or more generally, a subset of an association scheme:

• the minimum distance ;
• the degree , which is the number of nonzero entries

in the inner distribution, not counting ;
• the dual distance , which is the index of the first

nonzero entry in the dual distribution, not counting
;

• the dual degree (sometimes called theexternal dis-
tance), which is the number of nonzero entriesin the
dual distribution, not counting .
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There is also the (maximum) strength which is . In the
Johnson scheme, a subset of strengthis a -design.

The combinatorial significance of the external distance
is understood through the characteristic polynomial of a code

, which is given by

We expand the shifted polynomials in terms of
Krawtchouk polynomials

Now, given a vector , let be the number of
codewords for which . Delsarte [48] proved

if
otherwise

Taking , we see that the covering radius ofis bounded
above by the external distance.

If the minimum distance is greater than the external
distance , then the coefficients
For , this is proved by choosing at
distance from some . Then by the triangle inequality,
every other is at distance greater thanfrom . Since

, and for we have
. This leads to the famous characterization of perfect

codes mentioned in Section II.

Theorem: Let be a code with minimum distanceand
external distance , and let . Then

If one of the bounds is attained, then so is the other, the code
is perfect, and its characteristic polynomial is

This result is named for Lloyd who obtained the theorem
for by analytic methods prior to the discovery of
the MacWilliams Identities. For comparison, the characteristic
polynomial of a uniformly packed code is

The problem of finding good upper bounds on the size of
a code with minimum distance can be expressed as a linear
program. We treat the entries of the inner distribution as real
variables, and we look to maximize the sum under
the linear constraints

for

for

for

It has in fact proved more convenient to attack the dual
minimization problem. Here we look for a polynomial of
degree at most , where the coefficient in the Krawtchouk
expansion

are nonnegative, where , and where
for . The size of any code with minimum
distance is bounded above by . The McEliece,
Rodemich, Rumsey, Welch (MMRW) bound [156] results from
polynomials

where , and is an appropriately chosen
real number. For binary codes the ratesatisfies

Strengthening the dual problem by requiring for
gives a new problem where the minimizing

polynomial can be found explicitly [136], [194]. However, the
asymptotics of the solution coincide with the MRRW bound.

A second application of linear programming is to bound-
ing zero-error capacity of a discrete memoryless channel,
a concept introduced by Shannon [188] in 1956. Here the
input alphabet becomes the vertex set of a graph, and two
vertices are joined if the action of noise cannot result in the
corresponding symbols being confused at the output of the
channel. The problem of determining the zero-error capacity
of the pentagon remained unsolved for some 20 years until the
linear programming solution by Lov´asz [144].

The combinatorial significance of the dual distanceis
understood in terms of variation in the inner distribution of
translates of . For example, a code is said to bedistance-
invariant if the number of codewords at distancefrom a
given codeword depends only onand not on the codeword
chosen. Linear codes are distance-invariant, as are the binary
images of linear codes over after applying the Gray map
(for example, the Kerdock and Preparata codes). Delsarte [48]
proved that a sufficient condition for distance invariance is
that the degree is at most the dual distance. The argument
rests on degrees of freedom in the MacWilliams transform. If

then there is no variance in the distance distribution
of translates where is constant (for
details see [55] or [38]).

We have seen how the dual degreeand the minimum
distance can be used to provide upper bounds on the size
of codes. We now describe how the degreeand the dual
distance can be used to provide lower bounds on the size
of designs. Given a subset of , we form the array where
the rows are the words in . The subset is an orthogonal
array of strength and index if, in each -tuple of distinct
columns of the array, all-tuples of symbols appear exactly
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times. Clearly, . This what it means to be a design in
the Hamming scheme. The two notions of strength coincide,
and this is evident when is linear.

The counterpart to the characteristic polynomial is the
annihilator polynomialgiven by

which we expand in terms of Krawtchouk polynomials

If the maximum strength is at least the degree, then the
coefficients . The counterpart of the
previous theorem is the following.

Theorem: Let be a design with degreeand maximum
strength , and let . Then

If one of the bounds is attained, then so is the other, the
design is calledtight and the annihilator polynomial is

This is the Rao bound [176] for orthogonal arrays of strength
. The corresponding theorem in the Johnson scheme is the

Ray–Chaudhuri/Wilson bound for tight designs [178] (-
designs with different block intersection sizes). For the
only known example is the set of minimum-weight codewords
in the perfect binary Golay code.

C. Spherical Codes and Spherical Designs

We begin in real Euclidean space with a mathematical
criterion that measures how well a sphere is approximated
by a finite point set. Let be a set of
points on the unit sphere

Then is a spherical -designif the identity

(where is uniform measure on normalized to have
total measure ) holds for all polynomials of degree .

For example, a soccer ball is a truncated icosahedron rather
than a perfect sphere, and the 60 vertices of the soccer ball
form a spherical -design. Goethals and Seidel [100] improved
upon the standard soccer ball by slightly perturbing the vertices
so as to produce a spherical-design. This is a very particular
spherical design. Seymour and Zaslavsky [186] proved that for
any positive integers and , and for all sufficiently large ,
there exist spherical-designs of size in . This result
is a remarkable generalization of the mean value theorem and
is not constructive.

There are strong structural similarities between the Eu-
clidean sphere and the Hamming and Johnson schemes.
All are distance-transitivein the sense that given points

the distances are equal if and only
if there is an isometry for which and .
For the Euclidean sphere, isometries are simply orthogonal
transformations. Delsarte, Goethals, and Seidel [54] showed
that the earlier method of deriving lower bounds on designs
remains valid, though the particular orthogonal polynomials
are different. Also see [55] for more details.

Delsarte, Goethals, and Seidel [53] also derived upper
bounds on the cardinality of sets of lines having prescribed
angles both in and . The inner products between unit
vectors in the different lines determine the inner distribution
of these spherical codes. Given a spherical codelet

. For and integers , the
Jacobi polynomial in the real variable is defined by
a three-term recursion that depends on the choice of field.

Theorem [53]: For any , let be a polynomial
satisfying for all for all ,
and , where is the coefficient of in the
Jacobi expansion of . Then

This theorem provides upper bounds on the size of families
of sequences with favorable correlation properties that are
used in spread-spectrum communication. For instance, there
is an interesting example involving Kerdock codes. Cameron
and Seidel [37] used quadratic forms on to construct a
family of lines through the origin of , where ,
such that any two lines are perpendicular or at an angle
where . These line sets are the union of
frames corresponding to cosets of the first-order Reed–Muller
code in the Kerdock code. K̈onig [126] and Levenshtein [135]
observed that adding the standard coordinate frame did not
increase the set of prescribed angles, and that the augmented
system of lines met an upper bound derived from the above
theorem. The -linear Kerdock code determines an extremal
system of lines in complex space (see [23]).

D. From Cyclic Codes to Algebraic-Geometry Codes

We take the perspective of frequency-domain techniques
particular to finite fields. The notions of time and frequency
domain for codes defined over finite fields, and the idea
of using constraints in the frequency domain to separate
codewords in the time domain are of fundamental importance.
This is the foundation for the Reed–Solomon codes that are
found everywhere today, from computer disk drives to CD
players.

The early theory of cyclic codes was greatly influenced
by a series of reports written mostly by Assmus, Mattson,
and Turyn in the 1960’s and early 1970’s. They were much
quoted and used extensively by van Lint [139] in his first book
on coding theory. These reports were much influenced by the
monthly meetings on coding theory held first at Hanscom Field
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then at Sylvania involving Assmus, Gleason, Mattson, Pierce,
Pless, Prange, Turyn, and the occasional distinguished visitor.

We begin by observing that the binary
Hamming code may be defined as the collection of binary
vectors that satisfy

where is a primitive th root of unity in the extension
field . (Recall that the Hamming code is the unique binary

code, and the new definition certainly
determines a code with these parameters.) We may think of
the matrix

as a parity-check matrix for this Hamming code and increase
minimum distance by adding a second spectral constraint:

This is the parity-check matrix for the two-error-correcting
BCH code. More generally we may define aBCH code with
designed distance by means of the parity-check matrix

...
...

...
...

Note that the rows of are not linearly independent: some
spectral constraints are inferred by others: for example,

implies . The assertion
that the minimum distance is at leastamounts to proving
that every set of columns is linearly independent. This
is a Vandermonde argument.

The Hamming code and the BCH codes with designed
distance are examples of cyclic codes. These codes play
an important role in coding practice, and are good in the sense
that there are cyclic codes that meet the Gilbert–Varshamov
bound. A linear code iscyclic if the set of codewords is fixed
by a cyclic shift of the coordinates: if is a
codeword, then so is . To verify that the
above codes are indeed cyclic, we apply the identity

where subscripts are read modulo . The theory of
cyclic codes identifies the sequence with
the polynomial . Cyclic codes then
correspond to ideals in the residue class ring
and the structure theory of principal ideal rings can be brought
to bear. It is also possible to approach cyclic codes through
a discrete analog of the Fourier transform called theMatt-
son–Solomon polynomial[154]. The vector

is represented by the polynomial where

The BCH code with designed distance is then the
set of all vectors for which .
VLSI implementation of Reed–Solomon decoding has inspired
a great deal of creativity regarding effective computation in
finite fields, for example Berlekamp’s bit-serial multiplication
circuits. For an introduction to this area see McEliece [155],
and note the dedication to Solomon.

1) Cyclic Codes Obtained by Hensel Lifting:A binary cy-
clic code is generated by a divisor of in

. Hensel’s Lemma allows us to refine a factorization
modulo , to a factorization

modulo , and to a factorization
over the -adic integers. The polynomial

generates a cyclic code over the ring of integers ,
and the polynomial generates a cyclic code over the

-adic integers. The codes over can also be described
in terms of parity checks involving Galois rings, and this
is completely analogous to the construction of binary cyclic
codes through parity checks involving finite fields.

A very striking theorem of McEliece (generalized to Abelian
codes in [56]) characterizes the possible Hamming weights that
can appear in a binary cyclic codein terms of , the smallest
number such that nonzeros of (roots of ) have
product . The characterization is that all Hamming weights
are divisible by , and there is a weight not divisible by

. Though this theorem has been generalized to cyclic codes
obtained by Hensel lifting [28] there remains the possibility
of using the codes to infer additional properties of

. We might, for example, hope to resolve the deceptively
innocent question of given two -sequences, whether or not

must appear as a crosscorrelation value.
A special case of particular interest is cyclic codes over

that are obtained from binary cyclic codes by means of a single
Hensel lift. It will be of interest to characterize the possible
Lee weights that can appear in this cyclic code. Recall the the
Lee weightsof the elements of are, respectively,

and that the Lee weight of a vector in is just
the rational sum of the Lee weights of its components. This
weight function defines theLee metricon . If we imagine

as labeling (clockwise) four equally spaced points on
a circle, then Lee distance is distance around this circle. The
Lee metric is important because there is a natural isometry
from ( , Lee Metric) to ( , Hamming Metric) called the
Gray map. This map is defined from to by

and is extended in the obvious way to a mapfrom to
. It is evidently distance preserving. Hammonset al. [108]

proved that the Gray image of the Hensel lift of the first-order
Reed–Muller code RM is the Kerdock code [122]. The
Gray image of the Hensel lift of the extended Hamming code
differs slightly from the standard Preparata code [174], but
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shares the same distance structure. The Kerdock, Preparata,
and Delsarte–Goethals codes are nonlinear binary codes, de-
fined via quadratic forms, that contain more codewords than
any linear code presently known. What remains mysterious is
how to construct efficient linear codes over that correct
more than three errors by specifying parity checks involving
Galois rings. We do not have any counterpart to the BCH,
Hartmann–Tzeng, and Roos bounds for classical cyclic codes
(for a unified approach to these bounds see [140]).

2) Algebraic-Geometry Codes:The last 20 years have seen
the construction of algebraic-geometry codes that can be
encoded and decoded in time polynomial in the blocklength

, and with performance that matches or exceeds the
Gilbert–Varshamov bound. This was proved by Tsfasman,
Vl ăduţ, and Zink [211] for finite fields , where is a square
and , but this numerical restriction on may not be
essential. It was and is a spectacular result, so spectacular
that it motivated many mathematicians to learn some coding
theory, and many engineers to learn some algebraic geometry.
The consequence has been a fascinating combination of
abstract geometry and efficient computational methods that
has been described in a number of excellent surveys and
introductory articles, for example, [110], [204], and [16].

We begin by describing the codes proposed by Reed and
Solomon [179], that are now found everywhere from computer
disk drives to CD players. Even these codes did not go into
use immediately because fast digital electronics did not exist
in 1960. Consider the vector space

of polynomials with coefficients in the field and degree at
most . Let be distinct elements of , and define
the evaluation map

The evaluation map is linear, and if it is .
The image of is a Reed–Solomon code with dimension

and minimum distance . Reed–Solomon codes
are optimal in the sense that they meet the Singleton bound

. The only drawback is that the length is
constrained by the size of the field , though this constraint
can be removed by passing to general BCH codes.

The construction of Reed–Solomon codes can be gen-
eralized by allowing polynomials in several
variables, and by evaluating these polynomials on a subset of
the affine space . In general, the result will be a code with
a poor tradeoff between and . However, the Russian
mathematician Goppa [103] made the inspired suggestion of
choosing the subset of to be points on a curve. Tsfasman,
Vl ăduţ and Zink recognized that existence of asymptotically
good codes required curves over finite fields with many
rational points, hence the entrance of modular curves. Table
IV juxtaposes developments in algebraic geometry codes with
the corresponding theory for BCH codes.

V. THE NEXT FIFTY YEARS

We have chosen to highlight two very different challenges,
the creation of a quantum information theory, and the devel-

opment of coding techniques for data networks in general, and
wireless networks in particular.

In 1948 the main thread connecting information theory and
physics was understanding the new perspective on entropy and
its relation to the laws of thermodynamics. Today the main
thread is quantum mechanics, as methods in information theory
and computing have been extended to treat the transmission
and processing of intact quantum states, and the interaction
of such “quantum information” with classical information.
According to Bennett and Shor [10]

It has become clear that an information theory based
on quantum principles extends and completes classical
information theory, somewhat as complex numbers ex-
tend and complete the reals. The new theory includes
quantum generalizations of classical notions such as
sources, channels and codes, and two complementary,
quantifiable kinds of information—classical information
and quantum entanglement.

In this perspective we focus on the development of quantum
error-correcting codes.

We then turn to 21st century communication. Fifty years
from now it will be disappointing if the focus of coding
theory is point-to-point communication in the presence of
noise. Telecommunications will likely be dominated by packet
data/voice transmitted over wide-area networks like the Inter-
net where network management is distributed. The reliability
and even the nature of individual links will be of secondary
importance, and the challenge will be to understand the
network as a whole and to guarantee end-to-end quality of
service.

A. Quantum Error-Correcting Codes

Classical bits take the valuesor at all times, but quantum
bits or qubits occupy a superposition of theand states.
This is not to say that the qubit has some intermediate value
between and . Rather, the qubit is in both thestate and the

state at the same time to varying extents. Mathematically, a
qubit is a two-dimensional Hilbert space, and a quantum state
is a vector

where

A collection of different two-state memory cells is then ex-
pressed as the tensor product of the individual two-dimensional
Hilbert spaces, so we are led to vectors

where and

When the qubit is measured with respect to
the basis the probability that the qubit is found in
a particular state is the square of the absolute value of the
corresponding amplitude. The evolution of an isolated quan-
tum system conserves superposition and distinguishability, and
is described by a unitary transformation that is linear and
preserves inner products. This is the analog in Hilbert space
of rigid rotation in Euclidean space.
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TABLE IV
PARALLEL DEVELOPMENTS IN THE THEORY OF BCH AND ALGEBRAIC-GEOMETRY CODES

The first work connecting information theory and quantum
mechanics was that of Landauer and Bennett who were looking
to understand the implications of Moore’s Law; every two
years for the past 50 years, computers have become twice
as fast while components have become twice as small. As
the components of computer circuits become very small, their
description must be given by quantum mechanics. Over time
there developed a curiosity about the power of quantum
computation, until in 1994 Shor [190] found a way of ex-
ploiting quantum superposition to provide a polynomial time
algorithm for factoring integers. This was the first example
of an important problem that a quantum computer could
solve more efficiently than a classical computer. The design
of quantum algorithms for different classes of problem, for
instance finding short vectors in lattices, is currently an active
area of research.

The effectiveness of quantum computing is founded on
coherent quantum superposition or entanglement, which allows
exponentially many instances to be processed simultaneously.
However, no quantum system can be perfectly isolated from
the rest of the world and this interaction with the environment
causes decoherence. This error process is expressed mathemat-
ically in terms of Pauli matrices. A bit error in an individual
qubit corresponds to applying the Pauli matrix to
that qubit, and a phase error to the Pauli matrix .
The third Pauli matrix, , corresponds to
a combination of bit and phase errors. The groupof tensor
products and , where each

is one of describes the possible errors in
qubits. TheError Group is a subgroup of the unitary group

. In general, there is a continuum of possible errors
in qubits, and there are errors in sets of qubits which cannot
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be described by a product of errors in individual qubits. For
the purposes of quantum error correction, however, we need
consider only the three types of errors and since
any error-correcting code which connectsof these errors will
be able to correct arbitrary errors inqubits [62], [9]. We do
not go into the details of this result, but essentially it follows
from the fact that the matrices and form a basis
for the space of all matrices, and so the tensor products of

of these errors form a basis for the space of matrices.
In classical computing one can assemble computers that are

much more reliable than any of their individual components
by exploiting error-correcting codes. In quantum computing
this was initially thought to be precluded by the Heisenberg
Uncertainty Principle (HUP) which states that observations
of a quantum system, no matter how delicately performed,
cannot yield complete information on the system’s state before
observation. For example, we cannot learn more about a single
photon’s polarization by amplifying it into a clone of many
photons—the HUP introduces just enough randomness into the
polarizations of the daughter photons to nullify any advantage
gained by having more photons to measure. At first, error
correction was thought to be impossible in the quantum world
because the HUP prevents duplication of quantum states. This
is not so—only repetition codes are eliminated. The trick is
to take quantum superposition decoherence, to measure
the decoherence in a way that gives no information about
the original superposition, and then to correct the measured
decoherence. The first codes were discovered quite recently
[191], [203], [8], [35] but there is now a beautiful group-
theoretic framework for code construction [32], [105], [33].

Commutative subgroups of the error groupplay a special
role. The quantum error-correcting code is the subspace fixed
by the commutative subgroup—hence the namestabilizer
codes. Errors move the fixed subspace to a different eigenspace
of the original commutative subgroup. This eigenspace is
identified by a process similar to that of calculating a syndrome
in the classical world. Note that syndrome decoding identifies
the coset of a linear code containing the received vector, and
not an error pattern. However, given the coset, there is a coset
leader that gives the most probable error pattern. Likewise,
in the quantum world there is an error that is most probable
given the eigenspace that has been identified.

The error group in classical theory is the subgroupof
bit errors. It is possible to describe classical linear codes as
the fixed spaces of commutative subgroups of, so the new
framework is a graceful extension of the classical theory.
Recent developments in quantum coding theory include a
quantum analog of the MacWilliams Identities in classical
coding theory [192].

B. The Changing Nature of Data Network Traffic

Today we lack fundamental understanding of network data
traffic, and we need to replace network engineering methods
developed for voice traffic. Information theory and coding may
have an important role to play, but the first step must be to
develop channel models through active and passive network
measurement, that capture the interaction of applications,
protocols, and end-to-end congestion control mechanisms.

A. K. Erlang (1878–1929) was the first person to study call
blocking in telephone networks. By taking measurements in
a small village telephone exchange he worked out a formula,
now known as Erlang’s formula, that expresses the fraction of
callers that must wait because all lines are in use. Ever since
Erlang, the nature of voice telephone traffic—exponentially
distributed interarrival and holding times—has remained un-
changed. However, Erlang did not anticipate fax, nor could
he imagine the emergence of data networks where computers
talk rather than humans. For voice networks the only statistic
that matters is the mean traffic rate. By contrast, data traffic is
extremely bursty and looks the same when viewed over a range
of different time scales. More precisely, aggregate packet-level
network traffic exhibits fractal-like scaling behavior over time
scales on the order of a few hundred milliseconds and larger, if
and only if the durations (in second) or sizes (in bytes) of the
individual sessions or connections that generate the aggregate
traffic have a heavy-tailed distribution with infinite variance.
The self-similar nature of data network traffic was an empirical
discovery made by Leland, Taqqu, Willinger, and Wilson [133]
from extensive measurements on different local-area networks.
The fact that heavy tails are found everywhere from sizes of
files in a file system to bursts and idle periods of individual
Ethernet connections, leads to self-similarity at the packet level
across local- and wide-area networks (see [224] or [223] for
a popular article). Above a certain time scale there are no
surprises in voice traffic since everything reduces to the long-
term arrival rate. For data traffic, significant variation on quite
coarse time scales means that routers require large buffers,
that safe operating points have to be set very conservatively,
and that overall network performance is no longer a guarantee
of individual quality of service. Absent new insights from
coding and information theory, these variations are likely to
be magnified on wireless channels by the rapidly changing
nature of fading and interference.

The flow of packets at the different layers in the TCP/IP
hierarchy is determined by Internet protocols and end-to-end
congestion control mechanisms. The impact of the network on
traffic shows up on small time scales, from a few hundred mil-
liseconds and downwards. Feldmann, Gilbert, and Willinger
[68] have proposed cascades (or multiplicative processes)
as an explanation for the more complex (multifractal rather
than monofractal) scaling behavior exhibited by measured
TCP/IP and ATM wide-area network traffic. The thought is
that cascades allow refinement of self-similarity (monofractal
scaling) to account for local irregularities in WAN traffic that
might be associated with networking mechanisms such as TCP
flow control that operate on small time scales. Fig. 10 is taken
from [68] and it compares local scaling behavior of exactly
self-similar traffic with that of measured WAN traffic. This
author would suggest that particularly on wireless channels,
we need to change the metrics we use to evaluate systems,
de-emphasizing long-term average packet loss statistics, and
augmenting throughput with appropriate measures of delay.

C. It is Dangerous to Put Limits on Wireless

The heading is a quotation of Marconi from 1932. Fig. 11
superimposes research issues in wireless communication on
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Fig. 10. Local scaling analysis of packet-level data traffic; different shades
of gray indicate different magnitudes of the local scaling exponents at the
different point in the traffic trace (black for small scaling exponents or “bursty”
instants, light for large scaling exponents or “lull” periods). From top to
bottom: (exactly) self-similar traffic, and WAN trace at the 1-ms time scale.The
latter trace was gathered from an FDDI ring (with typical utilization levels
of 5–10%) that connects about 420 modems to the Internet. It was collected
between 22:00 and 23:00, July 22, 1997 and contains modem user as well as
nonmodem user traffic totalling 8 910 014 packets.

a plot that displays the increasing size of the U.S. cellular
market. Unlike the Gaussian channel, the wireless channel suf-
fers from attenuation due to destructive addition of multipaths
in the propagation media and due to interference from other
users. Severe attenuation makes it impossible to determine the
transmitted signal unless some less-attenuated replica of the
transmitted signal is provided to the receiver. This resource is
calleddiversityand it is the single most important contributor
to reliable wireless communications. Examples of diversity
techniques are (but are not restricted to) as follows.

• Temporal Diversity:Channel coding in connection with
time interleaving is used. Thus replicas of the transmit-
ted signal are provided to the receiver in the form of
redundancy in temporal domain.

• Frequency Diversity:The fact that waves transmitted on
different frequencies induce different multipath structure
in the propagation media is exploited. Thus replicas of
the transmitted signal are provided to the receiver in the
form of redundancy in the frequency domain.

• Antenna Diversity:Spatially separated or differently po-
larized antennas are used. Replicas of the transmitted
signal are provided to the receiver in the form of redun-
dancy in spatial domain. This can be provided with no
penalty in bandwidth efficiency.

When possible, cellular systems should be designed to encom-
pass all forms of diversity to ensure adequate performance.
For instance, cellular systems typically use channel coding

in combination with time interleaving to obtain some form
of temporal diversity [206]. In TDMA systems, frequency
diversity is obtained using a nonlinear equalizer [4] when
multipath delays are a significant fraction of symbol interval.
In DS-CDMA, RAKE receivers are used to obtain frequency
diversity, and more general two-dimensional RAKE structures
have been proposed [159] that exploit temporal and spatial
structure in the received multipath signal. Antenna diversity is
typically used in the uplink (mobile-to-base) direction to pro-
vide link margin and cochannel interference suppression. This
is necessary to compensate for the low-power transmission
from mobiles [96]. The focus here will be narrowband 30-kHz
TDMA (IS-136) channels, specifically the design of channel
codes for improving the data rate and/or the reliability of
communications over fading channels using multiple transmit
and receive antennas. Information-theoretic aspects of transmit
diversity were addressed by Telatar [210] and by Foschini and
Gans [88]. They derived the outage capacity curves shown in
Fig. 12 under the assumption that fading is quasistatic, that
is constant over a long period of time and then changing in
an independent manner. Recall that 10% outage capacity is
the transmission rate that can be achieved 90% of the time.
With only two antennas at both the base station and the mobile
there is the potential to increase the achievable data rate by
a factor of .

Transmit diversity schemes use linear processing at the
transmitter to spread the information across the antennas. At
the receiver, the demodulator computes a decision statistic
based on the received signals arriving at each receive antenna

. The signal received by antenna at time
is given by

where the noise at time is modeled as independent
samples of a zero-mean complex Gaussian random variable
with variance per dimension. The coefficient is the
path gain from transmit antennato receive antenna. It is
assumed that these path gains are constant during a frame
and vary from one frame to another (quasistatic flat fading).
Feedforward information (the path gains ) is required to
estimate the channel from the transmitter to the receiver. The
first scheme of this type was proposed by Wittneben [226]
and it includes the delay diversity schemes of Seshadri and
Winters [185] as a special case. In delay diversity there are
two transmit antennas, and a signal is transmitted from the
first antenna, then delayed one time slot, and transmitted
from the second antenna . It has been shown
by Wittneben that delay diversity schemes are optimal in
providing diversity in the sense that the diversity advantage
experienced by an optimal receiver is equal to the number
of transmit antennas. There is, however, no “coding gain.”
For wireless systems employing small numbers of antennas,
the space–time codes constructed by Tarokh, Seshadri, and
Calderbank [209] provide both coding gain and diversity,
and using only a 64-state decoder come within 2–3 dB of
outage capacity. The general problem of combined coding and
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Fig. 11. Progress in wireless communications.

Fig. 12. Achievable data rates with multiple antennas at 10% outage capacity.

modulation for multi-input (multiple transmit antennas) multi-
output (multiple receive antennas) fading channels is a new
research area with great potential.

D. Interference Suppression

The challenge in designing cellular radio networks is to
satisfy large demand with limited bandwidth. Limits on the
available radio spectrum means that cochannel interference is
inevitable when a cellular radio network is operating near ca-
pacity. The standard solution is to treat cochannel interference
as Gaussian noise, and to employ powerful channel codes to
mitigate its effect. This solution is far from optimal, since the
decoder is using a mismatched metric. Interference is often
due to a few dominant cochannel users, and this cannot be
described as additive white Gaussian noise.

A second method of providing interference suppression is
adaptive antenna array processing at the receiver. Here a
substantial body of work by Winters and colleagues (see [96])
has shown that a receiver using-branch spatial diversity can
completely eliminate interferers using optimal linear
combining.

The challenge for coding theory is to provide immunity
to multiple channel impairments, in this case fading and
cochannel interference. This author advocates a divide-and-
conquer strategy, specifically the development of concatenated
coding schemes where an inner component code might enable
interference suppression, and an appropriate outer code might
provide additional immunity to fading. For narrowband 30-
kHz TDMA channels it is possible to design very simple
space–time block codes that provide diversity gain using only
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Fig. 13. Frame error rate performance of 8-PSK modulation with a space–time block code and interference suppression.

Fig. 14. Throughput of an incremental redundancy radio link protocol on a narrowband 30-kHz IS-136 channel.

transmit antennas. For example, Alamouti [1] presents the code

where the signals received over two consecutive symbol
periods are given by

Assuming that channel state information is known to the
receiver, we may form

where the noise vector has zero mean and covari-
ance , and take the vector that results to a
slicer. This code provides diversity gain (but no coding gain)
and decoding is remarkably simple. The matrix that
describes transmission is a particularly simple example of an
orthogonal design [94] and this rather arcane mathematical
theory provides generalizations to more antennas.

If two antennas are available at the receiver, then Naguib
and Seshadri [160] have shown that it is possible to suppress
interference from a second space–time user by exploiting
the special structure of the inner space–time block code.
Fig. 13 shows the performance of their scheme with 8-PSK
modulation. When the signal power of the interferer is equal
to that of the desired signal, performance is the same as that
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of a system employing two transmit and one receive antenna.
When there is no interference, the second antenna provides
additional immunity to fading. The decoder does not require
any information about the interference, and simply adapts
automatically.

E. Radio Link Protocols

In wireless communication, coding theory is associated with
the physical layer which lies at the bottom of the protocol
stack. The next layer is radio link protocols which are designed
to deliver error-free packets to the higher networking layers.
The gains that come from joint optimization of the physical
and radio link layers are substantial, and may well be essential
to the engineering of attractive wireless data services.

A very interesting idea with great potential is that of
incremental redundancy. Packets received in error are stored
at the receiver, and additional parity packets are transmitted
until the original packet is decoded successfully. The type of
hybrid radio link protocol is extremely flexible and can be
tuned to different delay/throughput characteristics by adjusting
the coding strategy and packet size (see [163]). Fig. 14 shows
the throughput that can be achieved on narrowband 30-kHz
channels. An alternative method of increasing throughput is
to measure the signal-to-noise ratio (SNR) at the receiver
and adapt coding and modulation to the measured SNR. It
is difficult to do this accurately (within 1 dB) in the presence
of rapid fading, and changing interference. Furthermore, the
SNR values that trigger changes in coding and modulation vary
with mobile speed so that collection of second-order statistics
is necessary. The incremental redundancy radio link protocol
implicitly adapts to SNR and provides superior performance.
The rise of the Internet shows the power of distributed control
in communications systems, and lightweight engineering is
another reason to prefer implicit adaptation to SNR over
explicit measurement and adaptation to SNR. The radio link
protocol described by van Nobelen [163] has been accepted as
a standard for the IS-136 high-speed packet state mode, and
has similar potential to improve the proposed GSM EDGE
standard.
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geometric codes,”IEEE Trans. Inform. Theory, vol. 36, pp. 1461–1463,
1990.

[196] D. Slepian, “A class of binary signaling alphabets,”Bell Syst. Tech. J.,
vol. 35, pp. 203–234, 1956.

[197] , “A note on two binary signaling alphabets,”IRE Trans. Inform.
Theory, vol. IT-2, pp. 84–86, 1956.

[198] , “Some further theory of group codes,”Bell Syst. Tech. J., vol.
39, pp. 1219–1252, 1960.

[199] , “Group codes for the Gaussian channel,”Bell Syst. Tech. J., vol.
47, pp. 575–602, 1968.

[200] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information,”
IEEE Trans. Inform. Theory, vol. IT-19, pp. 471–480, 1973.

[201] N. J. A. Sloane, “Error-correcting codes and invariant theory: New
applications of a nineteenth century technique,”Amer. Math. Monthly,
vol. 84, pp. 82–107, 1977.

[202] G. Solomon and H. C. A. van Tilborg, “A connection between block and
convolutional codes,”SIAM J. Appl. Math., vol. 37, pp. 358–369, 1979.

[203] A. M. Steane, “Error correcting codes in quantum theory,”Phys. Rev.
Lett., vol. 77, pp. 793–797, 1996.

[204] H. Stichtenoth, “Algebraic geometric codes,” inDifferent Aspects of
Coding Theory, Proc. Symp. App. Math., vol. 50. Providence, RI:
Amer. Math. Soc., 1995,

[205] M. Sudan, “Decoding of Reed–Solomon codes beyond the error-
correction bound,”J. Complexity, vol. 13, pp. 180–193, 1997.

[206] C.-E. Sundberg and N. Seshadri, “Digital cellular systems for North
America,” in IEEE Globecom’90, 1990, pp. 533–537.

[207] R. M. Tanner, “A recursive approach to low complexity codes,”IEEE
Trans. Inform. Theory, vol. IT-27, pp. 533–547, 1981.

[208] V. Tarokh and I. F. Blake, “Trellis complexity versus the coding gain
of lattices, parts I and II,”IEEE Trans. Inform. Theory, vol. 42, pp.
1796–1807 and 1808–1816, 1996.

[209] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for
high data rate wireless communication: Performance criterion and code
construction,”IEEE Trans. Inform. Theory, vol. 44, pp. 744–765, 1998.

[210] E. Telatar, “Capacity of multi-antenna Gaussian channels,” AT&T Bell
Labs. Internal Tech. Memo, June 1995.
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