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Abstract. The artificial added mass effect inherent in sequentially staggered coupling
schemes is investigated by means of a fluid-structure interaction problem. A discrete rep-
resentation of a simplified added mass operator in terms of the participating coefficient
matrices is given and ‘instability conditions’ are evaluated for different temporal discreti-
sation schemes.

With respect to the time discretisation two different cases are distinguished. Discreti-
sation schemes with stationary characteristics might allow for stable computations when
good natured problems are considered. Such schemes yield a constant instability limit.
Temporal discretisation schemes which exhibit recursive characteristics however yield an
instability condition which is increasingly restrictive with every further step. Such schemes
will therefore definitively fail in long time simulations irrespective of the problem parame-
ters. It is also shown that for any sequentially staggered scheme and given spatial dis-
cretisation of a problem, a mass ratio between fluid and structural mass density exists at
which the coupled system becomes unstable.

Numerical observations confirm the theoretical results.

1 INTRODUCTION

Partitioned algorithms are an appropriate way to deal with surface coupled problems
such as fluid-structure interaction. Specificly designed solution schemes can be employed
on the single fields and existing codes can conveniently be coupled. A particularly ap-
pealing way to solve the above coupled problem is a sequentially staggered formulation.
While the fluid and structural domains are solved implicitly the coupling information (4)
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and (5) is exchanged once per time step which introduces explicit features. However se-
quentially staggered schemes exhibit an inherent instability when used on fluid-structure
interaction problems where incompressible flows are considered. The instability can be
overcome by iteratively staggered partitioned schemes also called strongly coupled which
utilise subiterations over the single fields to converge to the solution of the monolithic
system.

The present work further clarifies the destabilising property of the so-called added mass
effect’? on sequentially staggered fluid structure calculations. It has been observed that
loose coupling of fluid and structural part in the context of incompressible flow and slender
structures frequently yields unstable computations. Surprisingly the instability depends
upon the densities of fluid and structure and also on the geometry of the domain®?3.
Clearly sequential coupling introduces an explicit flavour into the computation even if
both partitions themselves are solved implicitly. Thus restrictions on the time step have
to be expected. Observations however show that decreasing of the time step results in an
increased instability. The instability is inherent in the scheme itself and has been named
‘artificial added mass effect’ since major parts of the fluid act as an extra mass on the
structural degrees of freedom at the coupling interface. In sequentially staggered schemes
the fluid forces depend upon predicted structural interface displacements rather than the
correct ones and thus contain a portion of incorrect coupling forces. It is this ‘artificial’
contribution to the coupling which yields the instability.

The added mass effect has been investigated by means of a reduced model problem by
Causin, Gerbeau and Nobile® where it is shown that the onset of the instability can be
predicted well within the simplified problem. Here we wish to investigate the effect of
these results on different time discretisation schemes and want to understand the influence
of small time steps on the onset of the instability of sequentially staggered schemes.

A detailed analysis shows why more accurate schemes tend to be even more unstable.
We employ generalised-a time integration on the structural part and consider backward
Euler, the trapezoidal rule and second order backward differencing (BDF2) on the fluid
domain. Further different predictors and ways to obtain the Dirichlet boundary condition
on the fluid partition along the coupling interface are used.

We also show that every sequentially staggered scheme for incompressible flow will get
unstable provided that the mass density ratio of fluid and structure is high enough. These
results are confirmed by numerical observations.

2 STATEMENT OF THE PROBLEM
2.1 Governing equations

We consider problems consisting of a fluid (occupying Q) and a structural part (in
%) which interact at the common boundary I'. This interface I is represented by a line or
a curved surface in two- or three-dimensional problems, respectively. The possibly large
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motion of the structure is governed by
¢ D*d
Dt?

where d represents the structural displacement and b® body forces applied on the struc-
ture. The second order tensor S denotes the second Piola-Kirchhoff stress tensor and
depends upon the particular material of the structure while F' represents the deformation
gradient tensor. Within the numerical investigations reported here linear St.-Venant-
Kirchhoff material has been employed. The structural density is given by p°. Either
Neumann or Dirichlet boundary conditions apply at the not wetted part of the structural
boundary 90\ T.

The considered Newtonian fluid is governed by the incompressible Navier-Stokes equa-
tions

p —V-(F-8()=p°b" inQ%x(0,7T), (1)

du
F [R—
P

+p" (u—u) - Vu—2uV -e(u) + Vp = p"b" in QF x (0,7), (2)
x

V-ou=0 inQF x(0,7). (3)

Here u denotes the fluid velocity field and p the physical pressure. The fluid density and
viscosity are given by p! and p, respectively. The vector bf represents fluid body forces
and e(u) = 3 (Vu + (Vu)T> denotes the strain rate tensor.

Suitable (Dirichlet or Neumann) boundary conditions apply at the boundary of the
fluid domain which is not coupled to the structure Q7 \ T.

At the FSI interface I' kinematic and dynamic continuity is required. As in viscous
flows the fluid particles stick to the structure at the common interface, a local Lagrangian
formulation at I' can be assumed. Thus denoting the material time derivative by an
over-set dot the kinematic coupling conditions read

de(t) =ri(t),  de(t)=up(t) =%(t),  de(t)=uar()). (4)

Here rp(t) represents the displacement of the fluid interface. The dynamic coupling
condition demands the equilibrium of the traction at I'

h¥(t)+hf(t) =0 (5)
where h = o - n denotes the traction vector on either field which is obtained from the
Cauchy stress tensor.

2.2 Sequentially staggered algorithm

The class of algorithms considered here is outlined in the following. After independent
temporal discretisation of both fields by means of finite differences the time step from
time level n to n + 1 proceeds as follows where we assume the same time step size At on
both fields for brevity:
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(a) Calculate an explicit predictor of the structural interface displacement at the new
time level d?}l.

(b) Compute fluid velocity at I' to serve as Dirichlet boundary condition u?}l (d’ﬁ.})

c¢) Update the mesh displacement r"*! (dji%)).

Fn+4+1
hE

e

)
()
(d) Solve fluid equations on the deforming domain to obtain u"™! and p"*!.
) Obtain fluid boundary traction along I
)

(
(f) Solve the structural field for the new displacements d"*! under consideration of the
fluid load h{" .

(g) Proceed to next time step.

To further specify the above algorithm the single discretisation schemes have to be stated.

The time discretisation of the structural problem is performed by means of a
nonlinear version of the generalised-o time integration scheme of Chung and Hulbert*
which is based on the Newmark scheme

d" = d" + Atd™ + At? ((% - 6) d" + 6&"*1) (6)
@t = d 4 AL (1= 7)d 4 yd ) (7)

The generalised-a scheme satisfies the equilibrium of linear momentum at an intermediate
time level t* between ™ and "+

pPd* — V- (F-S(d*) =0,

where zero body forces are assumed for brevity. Displacements, velocities and accelera-
tions of the structure are interpolated between the discrete time levels by

d® = (1 — a,,)d"™ + a,,d", (8)
dcx = (1 - Oéf)dn+1 + Oéfdn, (9)
d® = (1 — Oéf)dnJrl + Oéfdn. (10)

The integration constants are chosen such that the overall scheme has the desired spectral
radius p., while also minimal damping on low frequency modes is ensured. Evaluating
O, f, B and 7 from

2000 — 1 Poo
Ay = ) Qf =
Poo + 1 Poo + 1
1 1 9 1
amgafgia ﬂ:Z(l_am_‘_af)? 7:§_Qm+af

yields a second order accurate system.
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Temporal discretisation of the fluid equations is performed by means of different
schemes. The simplest implicit scheme is backward Euler (BE) which is just first order
accurate.

un+1 —u” 1
_ ot 11
A7 u (11)
Further the trapezoidal rule (TR)
un+1 —u® 1 _— 1 .
ks N 12
At % Tt (12)
and second order backward differencing (BDF2)
utl—u® lu"—u"! 2
B L 13
At 3 At 3" (13)

are considered.

The structural predictor is another important ingredient which influences the onset
of the instabilities observed. Following Mok! three different predictors of differing order
of accuracy shall be considered here. A simple predictor which is zeroth order in time is
given by

dpy = dp. (14)
As a first order predictor
dpt) = df + Atdp (15)

is used while

3

. 1.
diy = df + At <§d? — §d§‘1> (16)

is a second order accurate predicted interface displacement.

The boundary condition applied to the fluid at the boundary I' is also required to
fully specify the temporally discretised scheme. A first order interpolation yields

apt -y,
At '

Equation (17) is a backward Euler discretisation of the fluid velocity at the coupling

interface I'. Accurate conservation of the size of the fluid domain ‘QF requires to employ

a second order discretisation of the fluid boundary velocity ur = d in time yielding
a - dp,

n+l __
ur =

(17)
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Equation (18) uses the trapezoidal rule and ensures that the discrete velocity function
integrates in time to the discrete locations of the interface. Despite this desirable prop-
erty (18) exhibits the tendency of the trapezoidal rule to oscillations and can thus not
generally be recommended.

2.3 Observed Instability

Sequentially staggered schemes coupling structures and incompressible fluids exhibit
an inherent instability which increases with decreasing time step. This problem has been
described by Mok!? and its mathematical background has recently been provided by
Causin et al.?. The following observations have been made:

e With decreasing At the instability occurs earlier.

e The mass ratio between fluid and structure has a significant influence on the stability
F
of the staggered system. The bigger the mass ratio ’;—S the worse the instability gets.

e Numerical observations indicate that increased fluid viscosity increases the instabil-
ity while increased structural stiffness offers a light decreasing effect.

e The actual onset of unconditional instability depends upon the particular combina-
tion of temporal discretisation items.

Especially the first point indicates that the instability is not due to a too large time step
size. It is rather caused by too large eigenvalues of the amplification operator of the
explicit step.

3 DERIVATION OF THE ADDED MASS OPERATOR
3.1 Discretisation in space

The fluid equations (2) and (3) are discretised in space by means of finite elements.
The spatial domain QF is divided into non-overlapping patches, the elements. The spa-
tial discretisation maintains its topology while following the deformation of the domain.
Within the present investigation of the instability due to the sequentially staggered cou-
pling scheme the motion of the domain is a secondary matter and not taken into account
subsequently.

To define the Galerkin weak form we select C° Lagrangian finite element spaces V& C
H{(QF) and Vi ¢ HY(QF), where V" satisfies the time dependent Dirichlet boundary
conditions of the problem while all functions in 'V are zero on I'f;. The pressure is taken
from the space P" C L*(QF) of square integrable functions.

The discrete variational statement is as follows: seck u € V", p € P" such that

B({up} {v.a}) = (£7,v) + (0", v) e V(v,q) € (V5 PY), (19)
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where the discrete operator B ({u,p},{v,q}) is given by

B ({u,p}.{v,q}) = (@,v) + ((u—u®) - Vu,v) + (2ve(u),e(v))

Here (-, -) denotes the L? inner product on the fluid domain Q7 and v = - the kinematic
viscosity.
The spatially discretised equations are conveniently expressed in matrix notation
MPa + K u + Gp = fr

G'u=0, (21)
where M® and K°® denote the mass and ’stiffness’ of the fluid while G is the discrete
gradient operator on the pressure field. The vectors u and p contain the nodal velocity
and pressure values, respectively. In (21) the right hand side is built by contributions

from fluid structure interaction only.
Discretisation of the structural equation (1) yields

MSd + K9d = —f, (22)

where M® and K® denote the mass and stiffness matrix of the structure, respectively, and
d is the vector of nodal displacements. The right hand side consists of contributions at
the interface nodes which is the discrete representation of the traction in equation (5).

3.2 Spatially discrete representation of the added mass operator

In order to work out the instability of the staggered coupled system the spatially
discretised representations of the field equations (1) to (3) are employed. Further some
simplifications are made to ease the analysis.

e The discretisation of fluid and structure is conforming along the interface I'.
e Both field equations can be regarded as linear or have been linearised.

e The influence of mesh motion and thus the temporal change of all significant matrices
is negligible.

e The structural density p° remains constant.
e There are no external forces except the traction along I'.

e There is no physical structural damping assumed.
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The first assumption simply eases the presentation while the other assumptions are rea-
sonable as the instability we consider typically occurs at very early time steps i.e. when
no significant nonlinearity has been built up.

To further simplify the analysis the fluid stiffness is omitted in (21) at this point. This
is reasonable as the instabilities we consider increase with decreasing time step. After time
discretisation the discrete equations will be dominated by the mass and pressure terms
when very small time steps are employed. Thus, this simplification allows to clearly
highlight the reason of the instability. The simplified fluid system of equations is now
split up into degrees of freedom belonging to the interior of the fluid domain and others
at the interface. The assumption that the coefficient matrices do not change in time
allows to use the ALE time derivative of the divergence equation

T .
W =G'u=G"u (23)
X
and thus
ME ME G [a; 0
M, M{. Gr| |or| = [fr]. (24)
Gi G. 0] |p 0

Using the prescribed interface acceleration obtained from the structural prediction, the
system (24) yields the solution vectors

_ -1 _
p=(6f M) "6) {-6F (M) 'Mf+6T} (25)
- . - - _1 - .
i = — (Mf) " Mipar+ (M7) 6, (67 (M) ' 6r) {6F (M) " Mf - 6T} ar.
(26)

Employing the second line of the system (24) the interfacial coupling force fr can now be
expressed in terms of the interface acceleration.

_ _ -1 _
fr = { (Mf; (Mf) "6~ Gr) (67 (M) " 6;)  (GF (Mf) ' M - 6F)
- Mg (Mf})*l Mir + Mgr} up (27)

The discrete operator in curly brackets has the dimension of a mass. It can be normalised
by a characteristic fluid mass m!" (which is for example a nodal mass of a lumped mass
matrix) to recover a discrete representation of the added mass operator.

Ma: = (ME (ME) 76— 6r) (67 (M) ' 6r) (6] (M) M~ 6f)
1

-1 1
T ML (M) M+ m—Mgr (28)

F
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Employing the added mass operator (28) yields the fluid forces at the coupling boundary
fr = m’ M qir. (29)

The added mass operator M 4 contains the condensed fluid equations and maps a dimen-
sionless interface acceleration onto an also dimensionless force vector at the interface I'.
Thus the operator is purely geometrical. It can be observed from (28) that the discrete
added mass operator is symmetric and positive.

A further interesting simplification is to use a lumped fluid mass matrix which yields
the simple expression

M = 1 +2Gp (GTG,) ' GE (30)

for the lumped added mass operator. In (30) a regular mesh is assumed. Thus the nodal
mass of an interior node is twice as big as the mass of a coupled node which has half the
support of the former.

4 STABILITY OF THE SEQUENTIALLY COUPLED PROBLEM

Introducing the coupling force (29) into the discrete linearised structural equation (22)

yields
M7 M7 [d; Ky, Kir] [di 0
5 5 ST | s 5 =| _F _r (31)

where within the staggered scheme the fluid interface acceleration ur is obtained from a
structural prediction of the new interface displacement.

Equation (31) reveals why M 4 is named ’added mass operator’. Identifying the fluid
interface acceleration ur with the structural interface acceleration &p shows that the
product m? M 4 works as an additional mass on the interface degrees of freedom.

4.1 Schemes with stationary characteristics

The stability or instability of the scheme (31) solved in an sequentially staggered man-
ner depends upon the particular time discretisation employed. The most stable version of
the structural generalised-a time discretisation scheme is obtained when maximal numer-
ical dissipation is involved i.e. when the spectral radius of the scheme is set to p,, = 0.0.
This yields the parameter a,,, = —1, ay =0, § =1 and v = 2. By means of (6) to (8) an
expression for the structural acceleration in terms of displacements can be obtained

o1
d' =55 (

The fluid acceleration ur is also expressed in terms of structural displacements. Using
backward Euler time integration (12), the zeroth order interface predictor (14) and the

2d""" — 5d" +4d" " —d" 7). (32)
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first order interpolation of the boundary condition at the interface yields

o [ n-1_ qn—
aptt = N (df —2d7~! +di?) . (33)

Inserting (32) into the discrete linearised structural system of equations gives

1
MS@ (zdn+1 —5d" + 4dn71 . dnf2) + K.S'dn+1 _ fn+1’ (34)
where f"* represents all types of forces on the structure at the new time level n + 1.
For very small time steps (34) is dominated by the mass term while the stiffness looses
influence. Omitting the stiffness and lumping the mass term in a temporally discretised
version of (31) allows to reduce the system to the interfacial degrees of freedom

m® (2d" = 5d" +4d" " —d" ) + m M4 (df —2df T +d7?) =0, (35)

As the added mass operator M 4 is a real positive matrix all vectors in (35) can be
expanded in terms of the eigenvectors v; of M 4i.e. dp = ). d,;v,;. The scalar coefficients
d; have to satisfy

F
27! — 5} 44~ — &7 i (df =247+ d ) =0, (36)

where p; represents the ith eigenvalue of M 4. Inserting the amplification factor \; with
d = \d? into (36) yields the characteristic polynomial of (36) associated with ;.

F
m
2A2 — BAZ 44N — 1+ pon (A7 =2X+1) =p(\) =0 (37)
All solutions A; of (37) have to satisfy |\;] < 1 if the scheme (35) is stable. As p(—o00) =
—oo0 and p(—1) = —12+4 ;’;—i p; there exists a solution p(A\*) = 0 with \* < —1 as soon
as

mF

—smax i; > 3, 38
s
me i

which is thus an instability condition, i.e. the sequentially staggered system is unstable
if (38) is satisfied.

As all the ingredients of the above scheme are very good-natured in the sense that
high numerical damping on both the structural and fluid part is involved, (38) is a very
permissive result. Repeating the analysis by using BDF2 (13) rather than BE to discretise
the fluid part in time yields

- n+1 — 1

r 2 At2

(3dR — 7di ! + 5d 2 —dE 7). (39)

10
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In this case the characteristic polynomial is given by

F
ANE = 10N 4 8N — 20 + 1y —— (BN} = TAZ+ 50 — 1) = p(A,) = 0 (40)
m
and yields the instability condition
F
3
%miax,ui > 5 (41)

Changing from first order accurate BE to BDF2 on the fluid part of the problem results
in an instability condition which is twice as restrictive. Table 1 summarises the instability
constants Cj, of the instability condition

F

m

S HAXH t (42)
obtained with generalised-a time integration (with p,, = 0) of the structural domain, first
order interpolation at the interface I' (17) and the different structural predictors (14)-(16).

| predictor | BE | BDF2 |

Oth order | 3 g

3 3
1st order £ 5
2nd order % %

Table 1: Instability constant Cy,s; in condition (42) obtained for sequentially staggered fluid-structure
interaction schemes depending upon the structural predictors (14)-(16) and the fluid time discretisation
scheme

It shows that increased accuracy significantly increases the stability problems. Another
remarkable result is that switching from BE to BDF2 on the fluid domain results in an
instability condition twice as restrictive.

Clearly some of the combinations summarised here are not useful for practical computa-
tions as the overall order of temporal accuracy is governed by the lowest order ingredient.
For the purpose of the present analysis however the effect of the single items is of interest.
It can easily be observed that a combination of a number of higher order elements such as
BDF2 time discretisation on the fluid domain, a second order structural predictor at the
interface and a second order accurate interface boundary condition on the fluid domain
yields an even earlier instability.

4.2 Schemes with instationary characteristics

Couple schemes which employ the TR (12) for fluid time integration or use the ge-
ometrically correct version for the Dirichlet boundary condition on the fluid structure

11



Christiane Forster, Wolfgang A. Wall and Ekkehard Ramm

interface (18) are a little more difficult to treat than the previous ones. Such algorithms

do not exhibit an expression for the predicted fluid interface acceleration in terms of a

limited number of previous interface displacements comparable to (33) but rather require

all previous interface positions to be considered i.e. cycle down to the initial conditions.
To sample the following scheme is considered:

e structure:
— generalised-a with p,, = 0
o fluid:

— time discretisation: TR (12)
— predictor: zeroth order (14)
— Dirichlet boundary condition: first order (17)

Here we wish to investigate the particular influence of the trapezoidal rule employed on
the fluid domain. The results obtained for a fully second order scheme with TR and a
second order accurate predictor and boundary condition are even more restrictive.

While the structural acceleration is given by the expression (32), the fluid acceleration
is obtained from

: 1 :
urtt = x (2d} — 4d} + 2d771) — af, (43)
which cannot be expressed in interface displacements only. The amplification of the
scheme thus depends upon the actual time step. Assuming that the initial condition
includes zero acceleration of the interface i.e. il = 0 the first step (n = 0) yields

2! — 50+ Mo 2d? = 0 (44)
r I A ms
and the characteristic polynomial
F
2X — 5+ 2 — = p(A) = 0. (45)
m

With p(A = —o0) = —o0 and p(A = —1) = =7+ 2y, :’7”‘1—? one obtains the instability
condition for the first step; the first step will be unstable if

mf" 7
i—a > = 4
MAX i g > o (46)
With n =1 we get
mF
2d7. — 5dp + 4dp + M4 — (2dp — 6dp) = 0 (47)
m

12
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and

>\—5>\+4+ulmF(2)\ 6) = p(\) = 0. (48)

As p(A = —00) = 00 and p(A = —1) = 11 — 8y; "5 = this yields the instability condition

mt 11
Analogous the next (n = 2) step gives
mF
od} — 5d? 4 4df — d% + M A = (2d? — 6d}. + 8dy) =0, (50)

which by means of the characteristic polynomial

F
23 5A2+4A—1+m < (20 =61 +8) = p(A) = 0. (51)

yields the instability limit of the third step:

mF
max uz

3
- 52
> (52)
The instability conditions of all further steps n is obtained by simple calculation. It is
given by
F
m 12
max ; —= > — Vn > 1, 53
axpi g > o (53)

which shows that the scheme with fixed geometry and mass ratio becomes unstable after
a limited number of steps irrespective of the mass ratio or the added mass operator
themselves. Similar results can be obtained when the coupling condition (18) is employed.
Additionally, the combination of higher order ingredients (time discretisation scheme,
predictor, coupling condition) and a sub-cycling scheme destabilises even faster.

Thus a fluid time discretisation scheme which employs the trapezoidal rule (or also the
one-step-6 scheme with 6 # 1) or the geometrically correct coupling condition (18) cannot
be employed in a sequentially staggered scheme for stable long-time simulations.

4.3 General instability

Irrespective of the particular time discretisation schemes the sequential staggered cou-
pling scheme itself carries an inherent instability as stated by the following theorem.

For every sequentially staggered scheme constructed as described in section 2.2, a mass
ratio 2—? exists at which the overall algorithm becomes unstable.

13
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For every sequentially staggered scheme the structural predictor for the displacement
of the interface I' at time level n + 1 contains previous structural information up to time
level n only. Thus the general appearance of the scheme is

n+1 Fn
i m j
a; —— ; =V,
‘ F+MAmSZdeF 0 (54)
=0 7=0
where a;,b; € R are the coefficients defining the particular time discretisation scheme.
Equation (54) yields the characteristic polynomial

mF

PN + i —p"(A) = p(A) =0, (55)

where the polynomial defined by the time discretisation of the structure is denoted by
p*(\) = S a; X' while the polynomial p¥'(\) = > i_biM contains the temporal dis-
cretisation of the fluid partition, the type of the structural predictor and Dirichlet coupling
velocity. The polynomial p°()\) is one degree higher in A due to the sequential structure

of the problem. Thus we have

p*(\ = —o0)
PFO= o) "

i.e. both polynomials are of different sign in the infinite negative. As the polynomials are
continuous this implies that a point A* < —1 can be found which satisfies

p°(\Y)
P (W)

Thus there exists a positive coefficient a such that

< 0.

p°(A*) +ap” (X)) = 0.

Hence for a = max; mg—i the characteristic polynomial (55) exhibits a solution with
|A*] > 1 and the underlying scheme is thus unstable.

4.4 Discussion of further influences

For a simplified coupled model problem an added mass operator can be defined the
eigenvalues of which precisely predict the onset of instabilies®. Real fluid structure inter-
action problems however introduce a significant number of additional influences. There
are physical effects which bring more complexity:

e First of all fluid viscosity and structural stiffness cannot be ignored within such
applications. Using implicit time discretisation on both fields results in a stabilising

14
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effect of structural stiffness on the added mass instability. Viscous fluid forces
however increase the influence of the instability. Clearly both effects depend upon
the time step At as a reduced time step size decreases the influence of the stiffness
terms compared to the mass matrices. Following the results obtained without the
influence of the stiffnesses (42) a rough way to get an idea of the stiffness influence
is

mP + aAtkr

S+ bARs e Gt (56)

where a and b denote constants emerging from the time discretisation while &
and k° are characteristic stiffness values representing the positive portion of the
stiffnesses. The inequality (56) confirms numerical observations which indicate a
stabilising influence of the structural stiffness and a slight destabilising effect of an
increased fluid viscosity. If the time step size is decreased the stabilising effect of the
structural stiffness decreases faster than the destabilising effect of the fluid viscosity.
Thus confirming the destabilising effect of small time step sizes.

Further there are nonlinearities due to the convective fluid term and also material
or geometrical nonlinearities of the structural behaviour. Typically simulations
start from a reference configuration and zero velocities and thus the nonlinearities
not dominating within the first few steps build up and preclude the existence of a
linear added mass operator the eigenvalues of which could predict the stability or
instability of a calculation for the entire simulation time.

Additional nonlinearities also emerge from the geometrical changes due to the dis-
placement of the interface I'. Changing geometry means changing integration do-
main and thus a change of all coefficient matrices encountered.

When compressible structures are employed a change of the effective structural
density p° has to be expected which may also influence potential instabilities.

On top of these physical influences the numerical approximation may introduce further
difficulties. However numerical studies confirm the theoretical observation and show that
the overall behaviour can well be predicted even if a prediction of the precise onset of the
instability is almost impossible.

5 NUMERICAL INVESTIGATION

The classical driven cavity problem equipped with a thin flexible bottom is used to
numerically investigate the added mass instability within a full fluid structure interaction
environment. The example which is taken from Mok!? is depicted in figure 1. The fluid
domain is discretised by 32 x 32 residual based stabilised fluid elements®%7. We wish to
examine the influence of different parameters and discretisation schemes on the onset of

15
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uy(t) =1 — cos 22t
-

fluid viscosity: ¥ = 0.01
fluid density: p = 1.0

—_— —_—
inflow free outflow structure density: p° = 500
structure stiffness: £ = 250

Poisson’s ratio: v° = 0.0

fluid domain: QF =1x 1
structure thickness: ¢ = 0.002

e
o

A flexible bottom

Figure 1: Geometry and material data of driven cavity example with flexible bottom

the instability within the time interval ¢ € [0;100]. To diagnose stability or instability
the history of the vertical component of the FSI coupling force at point A is observed.
Oscillations in the coupling force indicate instability. We will call a scheme temporally
stable if no such oscillation is observed within the stated time interval of interest.

0.003 : . : :
o025 | MHHHHHH‘H,’
0.002 + ¥ e
0.0015 |- J 0.003 .
<. | 0.0028
0.001 — | 0.0026 .
' 0.0024
0.0005 0.0022 N
. 0.002 )
!
-0.0005 ' ' ' '
0 20 40 60 80 100

— default p° = 500 time
— reduced p® =321

Figure 2: Evolution of the vertical coupling force at point A for the default configuration of parameters
and a problem with lower structural mass density both evaluated with BE time discretisation of the fluid

The default algorithm is the most stable scheme to be found. We used generalised-a
time integration of the structure with zero spectral radius and BE on the fluid domain.
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Further the simple predictor (14) and Dirichlet boundary condition (17) is employed. At
a time step of At = 0.1 the problem can stably be integrated in time up to at least 1000
time steps.

The influence of the structural density p° is compared for BE and BDF2 time
discretisation on the fluid domain. From the prediction summarised in table 1 we expect
that roughly half the structural density required to stably integrate with BDF2 suffices
if BE is used on the fluid domain. Starting from the default parameter setting and
decreasing the structural density p° the simulation becomes unstable towards the end of
the investigated time interval at p° = 321. The begin of this instability is depicted in the
diagram in figure 2.

A similar procedure is repeated with BDF2 time discretisation on the fluid domain. In
this case the problem shows unstable at p° = 500 and the structural density is increased
until the simulation remains stable within the time interval of interest. Results are shown
in the diagram in figure 3. Increasing the structural mass density from p° = 500 to

0.003 T 'R T T T
0.0025 |- i ‘ | h { [\ h ‘ f
0.002 - & Al y
i LR
:I: il zm
0.0015 - # NIt
<5 1 i
0.001 | i 0.005 -
3 0.004
0.0005 ; % 8'88%
' 1 A 0.001 AX o
! \ A W
0 ! -0.001 % W |
: 1 0002 ¢ 4
v l 0008 0 15 20 25 30
-0.0005 ‘ ' ' L '
0 20 40 60 80 100
time
—— default setting, BE p® =500 --- BDF?2, p° =550
----- BDF2, p° = 500 —— BDF2, p° =590

Figure 3: Evolution of the vertical coupling force at point A obtained with the default parameter setting
and problems with different structural mass densities obtained with BDF2 time discretisation on the fluid
field

p° = 550 delays the onset of the instability and also slightly damps the instability itself.
At p® = 590 no instability is observed within the time interval of interest. This indicates
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that within stabilised real FSI applications the instability ratio between BE and BDF2
might be less strict than predicted for the simplified problem as summarised in table 1.

The influence of the structural predictor Further the influence of different struc-
tural predictors shall be investigated. Employing the first order accurate predictor (15)
rather than (14) yields an immediately unstable scheme at p° = 500 even if BE is used to
integrate the fluid equations in time. Using the second order accurate predictor (16) the
behaviour gets even worse as shown in the diagram 4. From table 1 an estimate of the
structural density necessary to stabilise the simulation can be obtained. The zeroth order
predictor is stable down to p° = 322, thus the first order predictor should be stable for
structural densities larger than p° = 1610. This prediction fits very well as the first stable
simulation with the first order predictor is obtained at p® = 1635. Similar observations
can be made when the second order accurate predictor is used which yields an instability
condition nine times as rigorous as the zeroth order one. Thus the smallest structural
density which should allow for a stable computation is p° = 2898. Actually at p° = 2300
no oscillations are observed within the time interval of interest while in this case it starts
to oscillate within the next few steps.

0.003 , , , ,
0.0025 |
0.002 | d
0.0015 | 0.01 — . _
- : 0.008 | | |
s 0.006 | | i
0.001 ? 0.004 L | 1 i
f 0.002 ! _
0.0005 £ oL AL ] s
1 LS
; -0.002 L Vo -
0p -0.004 Ly v . -
_ 0 0.5 1 L5 2
_00005 i | | | |
0 20 40 60 30 100

time
— default algorithm: zeroth order predictor
first order predictor
—_- second order predictor

Figure 4: Evolution of the vertical coupling force at point A evaluated with default parameter setting
and different predictors: within the first few time steps violent instabilities are observed if higher order
predictors are employed
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6 CONCLUSIONS

The destabilising added mass effect in the context of fluid structure interaction com-
putations is not an artifact of a particular discretisation scheme. It rather is an inherent
property of sequentially staggered scheme itself and cannot be decreased by increasing
the accuracy. Nevertheless there are time discretisation schemes for the fluid equations
which allow for a stable calculation at high ratios between structural and fluid density.
Such schemes which exhibit stationary characteristics of the respective time discretisation
schemes yield an instability condition of the form

F
m_s max p; > C'

m (3

indicating instability when satisfied. It turns out that the constant C' is the smaller the
higher the temporal accuracy of the scheme. Thus stability and high accuracy cannot be
achieved at the same time when sequentially staggered schemes are employed.

Schemes with recursive characteristics yield an instability condition of the form

m¥ C

— maxp; > —

mS i n
and will thus definitely become unstable for every density ratio if the simulation time is
long enough. While ‘long enough’ is usually reached rather soon. Among the schemes
considered here the trapezoidal rule (and more generally the implicit one-step-6 method
for all § < 1) yield such necessarily unstable schemes. But also the use of the correct
second order boundary condition along the interface I' (18) results in a scheme with
recursive characteristics which is thus unstable after a small number of steps.

The artificial added mass effect imposes a lower bound on the time step for schemes
which allow for conditionally stable computations. An upper bound on the time step
results from the CFL condition introduced by the explicit character of the sequential
coupling. Thus for practical applications the range of allowed time step sizes might be
rather small or even empty due to an overlap of both restrictions.

There is further a limit density ratio for every scheme irrespective of the actual rep-
resentation of the added mass operator which provides an ultimate instability condition.
Thus no sequentially staggered scheme can be constructed which would be unconditionally
stable with respect to the density ratio.

In the case that residual based stabilisation is employed on the fluid field the discrete
representation of the added mass operator and thus its eigenvalues are influenced by
stabilisation terms. Consequently further effects can be observed®.

The actual parameters at which the instability will occur are hard to predict precisely
especially when significant nonlinearities have to be considered. However the relationship
between different time discretisation schemes with respect to their influence on the insta-
bility provides some information which applies also to real FSI calculations. Numerical
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investigations further indicate that for FSI calculations coupling slender structures with
incompressible flow the density ratio at which stable simulations can be performed is
very restrictive. Thus the conclusion drawn by Mok!'? is justified; iteratively staggered
schemes are to be preferred within most such FSI calculations.
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