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The Artificial Compression Method for Computation of
Shocks and Contact Discontinuities:
III. Self-Adjusting Hybrid Schemes

By Amiram Harten

Abstract.   This paper presents a new computational method for the calculation of dis-

continuous solutions of hyperbolic systems of conservation laws, which deal effectively

with both shock and contact discontinuities.   The method consists of two stages: in the

first stage a standard finite-difference scheme is hybridized with a nonoscillatory first

order accurate method to provide for the monotonie variation of the solution near dis-

continuities, and in the second stage artificial compression is applied to sharpen transi-

tions at discontinuities.   This modification of a standard finite-difference method results

in a scheme which preserves the order of truncation error of the original method and

yet yields a sharp and oscillation free transition for both shocks and contact disconti-

nuities.   The modification can be easily implemented in existing computer codes.

1.   Introduction. The capturing approach to the calculation of discontinuous solu-
tions of hyperbolic systems of conservation laws by finite-difference methods has two
essential defects:   1.   A jump discontinuity in the solution of the partial differential
equation is approximated in the solution of a finite-difference scheme by a continuous
transition connecting the states on both sides of the jump discontinuity.  When this
jump discontinuity is an admissible shock, the transition occurs within a finite number
of mesh points (typically 4-10, depending on the scheme and the strength of the
shock).   However, if the jump discontinuity is a contact discontinuity, then the width
of the transition is typically unbounded in time; it behaves like n1^R + 1^ where n is
the number of time steps taken and 7? is the order of accuracy of the finite-difference
scheme.   As a result of the smearing of the discontinuity in the numerical solution one
has to use a mesh finer than is actually needed in smooth regions of the solution.
However, this causes computational difficulties, especially in multidimensional calcula-
tions.   2.  The transition in the finite-difference approximation to a jump discontinuity
is not always monotonie.   Finite-difference schemes, in particular those with order of
accuracy larger than one, may produce overshoots or undershoots when applied across
a discontinuity.  These oscillations not only damage the accuracy of the numerical
solution, but can also induce nonlinear instabilities (see [1]), and trigger convergence
to nonphysical solutions (see [11]).

Following the pioneering work of von Neumann and Richtmyer [27], many
other viscosity type methods have been developed (e.g. see [17], [15], [12], [13]).
These methods are capable of suppressing the post shock oscillations, but at the ex-
pense of introducing extra smearing of the discontinuity.
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364 AMIRAM HARTEN

Methods to reduce the spread in the finite-difference approximation to disconti-
nuities have been developed only recently. Examples are the antidiffusion (or flux
corrected transport) method of Boris and Book [1 ], Chorin's implementation of the
Glimm scheme [3], and the artificial compression method (ACM) of the author [8].
Discontinuities computed with these methods are very sharp and oscillation-free; how-
ever, these schemes are only first order accurate.

In this paper, the third in a series on the ACM, we describe how to combine the
idea of the ACM with that of the self-adjusting hybrid schemes [13], to obtain oscilla-
tion-free sharp transitions of discontinuities while maintaining high order of truncation
error in the smooth part of the solution.   In Section 2 we share our ignorance of
monotonicity with the reader.   The first order accurate ACM is described in detail and
analyzed in [9] and [10] ; for the convenience of the reader we review it briefly in
Section 3.  In Section 4 we discuss hybridization and automatic switches.  In Section 5
we describe the combined hybrid ACM.   In Section 6, we examine the reasons for
implementing the hybrid ACM idea.  We conclude the paper with a summary.

2.   Monotonicity of Finite-Difference Schemes.   We consider finite-difference
solutions to hyperbolic systems of conservation laws

(2.1a) wt+f(w)x=0,

where w = (w1,_wM)T, f(w) = (fl(w), ... , fM(w))T and the matrix

(2.1b) A(w) = gradw /

has M real and distinct eigenvalues ax(w), . . . , aMiw).  We say that the finite-difference
operator

(2.2) Wj = (Lv), = H(v¡_k, vf_k+l,..., vf+ k)

is in conservation form (or conservative) if the function H can be written as

(2.3a) H(Vj_k, . . . , vj+k) = 17,. - \(hj+, /2 - h¡_, /2),

where

(2.3b)     hj+ x /2 = h(v¡_ k+.,..., vj+ k),   hf_ , /2 = h(vf_k, ..., vf+k_, );

the consistency condition on the numerical flux h is

(2.3c) hiw, w,...,w)= fiw),

A = Af/Ax, where Ar and Ax are the time and space increments, respectively. The
conservation form is important since it guarantees that the computed discontinuities
propagate with the correct speed (see [17]).

It is of particular computational interest to derive conditions under which a finite-
difference scheme does not generate oscillations upon crossing a discontinuity; such
schemes are a posteriori termed nonoscillatoiy schemes.   We say that the finite-difference
operator (2.2) is monotone (or positive) if

(2A)        "' - ärL(ü/-*' ü/- *+1 > • • • > vi+k) > °>    -*</<*■uuj+l
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In the matrix case inequality (2.4) is taken to mean that the eigenvalues of H¡ axe
nonnegative.   It was shown in [11] that monotone schemes are of first order accuracy;
the leading term in the truncation error is of second order.  The solution of the differ-
ence equation satisfies, modulo smaller truncation error, the parabolic equation

(2.5a) wt +f(w)x = Mt3(w, X)wx]x,

(2.5b) B(w, a) = 2^2
k

£   l2Ht(w, w,...,w)- \2A2(w)
l=-k

(2.5c) B(w, X) > 0,      B(w, X) ̂  0.

Equation (2.5a) is called the modified equation (see [28]).
In the scalar case (M = 1) a monotone finite-difference operator L, (2.2) and

(2.4), is monotonicity preserving, i.e. its operation, LV, on any monotonie mesh func-
tion v, is also monotonie and in the same sense (see [5]).  Hence, monotone schemes
are nonoscillatory.   In the linear case f(w) = Aw, A = constant,

(2.6a) H(Vj_k, vj_k+x, . . . , v¡+k) =   £   Cju,+,
l=-k

with

(2.6b)
fc fc

^   C,=/,      X   lci = 'KA>    ci = constant.
l=-k l=-k

A scheme is monotone if and only if

(2.6c) C,>0,      -£</<£

When the coefficients C¡ are simultaneously diagonalized the scheme (2.6) sepa-
rates into M decoupled scalar schemes for the Riemann invariants; these scalar schemes
are monotonicity preserving. In the general case of nonlinear systems we have not as
yet succeeded in proving that monotone schemes are nonoscillatory; however, there is
enough numerical evidence to support such a conjecture.

We remark that, in the linear scalar case (2.6) monotonicity of a scheme is a
necessary and sufficient condition for it to be oscillation-free (see [5]); in general
monotonicity is sufficient but not necessary (see [9]).   Even in the case of a scalar
linear flux, / = constant,  w, a nonlinear scheme, can be monotonicity preserving with-
out being monotone.  In fact, in Section 4 of this paper we construct a monotonicity
preserving scheme which is second order accurate (see also [26] ).

Next we derive a necessary condition for a scheme to be monotonicity preserving.
Subtract (2.2) at ; = i from (2.2) at / = i + 1 and use the mean value theorem to
obtain
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366 AMIRAM HARTEN

w,+ l - wi = H(vi-k+X> • • • > vi+k + x) - H(vi-k> ■ • • . ü, + fc)

fcz
7=-fc

(2.7a) =   Z   #.(üi-* + V(Vi_k+1 - »,_*), . . . , üi+fc + T,(u/+fc+ ! - üi+k))

Choosing i7,._fe = • • • = ü/+l = uL, vi+l+x =■ ■ ■ = vi+k+x =uk,-k<l< k, (2.7a)
becomes

(2.7b) wi+x - w¡ = H,(vL, ... ,vL+(vR- vL), vR,... )(i7R - vL).

Hence a necessary condition for (2.2) to be monotonicity preserving is

(2.8) H,(vL, ...,vL+ v(vR - vL), vR,...)>0

for all-£</<£ and 0 < t? < 1.
Condition (2.8) will be used in Section 4 in order to derive nonoscillatory

schemes.  A necessary and sufficient condition to characterize nonoscillatory schemes
is not yet available.

3.   First Order Accurate ACM.   Let

(3.1) ">t+f(w)x=0

be a scalar conservation law.   Denote by (wL, wR, S) the progressive wave solution to

(3.1),
iwL,      x<St,

(3.2a) w^ 0 = {
[wR,      x>St,

(3.2b) fiWR) - fiwL) = SiwR - wL),

where (3.2b) is the Rankine-Hugoniot (RH) relation.   Let

s(w, wL) = \fiw) - j\WL)} l(w - wL);

note that s(wL, wR) = S.   A progressive wave solution (wL, wR, S) is admissible (or
physical) if it satisfies Oleinik's entropy condition (see [21])

(3.2c) s(w, wL) > S

for all w between wL and wR.  If (3.2c) is a strict inequality, then (wL, wR, S) is a
shock; if in (3.2c) equality holds for all w between wL and wR, then (wL, wR, S) is a
contact discontinuity.

Jennings [14] showed that if (wL, wR, S) is a shock, then every monotone
scheme in conservation form possesses a steady progressing monotonie profile (discrete
shocks).   The number of cells W(w_, w+), occupied by values lying between w_ and
w+ in the profile, is approximately equal to the width of the viscous profile of the
modified equation (2.5) which is given by

(3.3) Uli ^       ^ f   + B(W, A) dWW(w  , w+) = A        -j-p-^r—irr?-r+ Jw    [s(w, wL) - S](w - wL)
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where s(w, wL) is given by (3.2c). If (wL, wR, S) is a contact discontinuity, i.e. s(w, wL)
= S for all w between wL and wR, then linear finite-difference schemes do not possess a
steady progressing solution, i.e. W —> °° as n —► °°.

The artificial compression method (ACM) is motivated by the following observa-
tion: let g(w) be an artificial compression flux (ACF) defined by

(3.4a) g(w) = ot(w)(w - wL),

where

(3.4b) <x(wr) = 0;   oi(w) > 0 for all w between wL and wR.

Then, if (wL, wR, S) is a contact discontinuity or a shock of the original conservation
law (3.1), it is a shock of the equation

(3-4c) wt + \f(w) + g(w)]x = 0.

The essence of the ACM is to compute admissible discontinuities of the original con-
servation law (3.1) as solutions of an equation of the type (3.4c), i.e., to modify a
nonoscillatory scheme L for the solution of (3.1) by replacing the flux /in L by / + g.
Denote the modified scheme by L.  Note that increasing g(w) in (3.4) increases the
denominator in (3.3), thereby improving the resolution of the computed discontinuity.
Even if (wL, wR, S) is a contact discontinuity, its numerical approximation is a non-
smearing profile.

It is convenient to separate the artificial compression from the main calculation
by operator splitting.   Let L = CL, with L a finite-difference approximation to the
solution operator of the original conservation law (3.1) and C some finite-difference
approximation to the solution operator of the equation

(3-5) wt + g(w)x = 0.

Note that if (wL, wR, S) is an admissible solution of (3.1), then (wL, wR, 0) is a
stationary shock of (3.5).   The artificial compression operator is denoted by C.

We choose C to be the one-sided scheme

(3.6a) W¡ + 1 = < -(X/2)(^1/2 -G^1/2),

(3.6b) c;+1/2 =g" +g»+x - \gf+i -gj\sgn(wf+x -wf);

here gf = g(w?).  The one-sided scheme is monotonicity preserving under the discrete
Courant-Friedrichs-Lewy (CFL) condition

ci c \ A    max(3.6c) w.^.+ 1
£/+1    &/•

w/+i ~wj
< 1,

and it is capable of producing maximal resolution of stationary shocks.
We have dealt, for purposes of analysis, with profiles of admissible discontinuities.

wL and wR used in the construction of the ACF g in (3.4) are in general not known
in advance.  Nevertheless, we can construct a mesh function g", which has properties
similar to (3.4a) and (3.4b), by extracting the required information directly from the
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numerical solution w" (see [9] ).  Define g? by

^=sgn(w"-W")
(3.7a)

• max{0, min[\wj+x - wj\, (wf - w>¡_x)sgn(w?+x - w»)]}.

It follows directly from the definition (3.7a) that

(3.7b) \g,-+x -gj\<\wj+x-wj\;

thus, as a consequence, the CFL condition (3.6c) is satisfied when A < 1.   The artificial
compression operator CA, is the one-sided scheme (3.6) with g defined by (3.7a); CA
is called an artificial compression operator since successive applications of CA to initial
data of the form

(3.8a) <={"/>       Jl<Í<'r'

r>      jr <U

where Uj   = uL, Uj   = uR and « is a strictly monotone function of /, converges
pointwise to the stationary shock-like solution

(3.8b) w ul + ~n(uR - uL),    / = /„,

"«> />/„■

Here 0 < n < 1, JR > J„ > JL. When CA is applied in a region where wxx is bounded

(3.9) CAw = w + 0((Ax)2).

Equation (3.9) is not true where w or wx is discontinuous; consequently, one should
not apply CA to an inadmissible discontinuity or to end points of a rarefaction wave.

We now turn to a description of the ACM for a system of conservation laws.  As
in (2.1) w corresponds to an M-vector w = (wx, . . . , wM)T, and f(w) is the vector
function f(w) = (fx(w), . . . , fM(w))T.  The matrix A = gradw /has M real and dis-
tinct eigenvalues ax, . . . , aM; we denote by rx, . . . , rM the corresponding right
eigenvectors of A and by SL the shock set of wL, i.e. all states w that satisfy the RH
relation with wL for some scalar s(w, wL)

(3.10) /(w) - f(wL) = s(w, wLXw - wL).

For M > 1, SL consists of M distinct one-parameter families, each originating from wL
in the direction of rk(wL).  wR is on one of these one-parameter families; denote by
SL R the part of this one-parameter family which connects wL with wR.  We define
the entropy condition for systems to be the same as the entropy condition (3.2c),
where "w between wL and wR" means w E SL R (see [17]).  Similarly, we define the
ACF g for systems to be the same as (3.4), where a(w) is a scalar function, and "w
between wL and wR" again means that w E SL R.  The ACF g (3.4) is now approxi-
mated by the vector
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(3.11a) gf = ajiw"+x-wf_x),
where the nonnegative scalar a" = a(w") is defined by

(3.11b)

(                mi" K../+1 - <.,/' «,/ - Ki.j-1 ) sgn«../+1 " w"mß
a¡iw ) = max^O,    min   -¡-j-_   „ ,    _-¡-

' J     Km<M \wm,j+l      wmJ + \wm,j     wm,j-1I

Observe that for M = 1, (3.11) is identical to (3.7a) and that (3.7b) is satisfied for
each of the components gm . of the vector g. in (3.11).  The artificial compression
operator CA, for M > 1, consists of applying the scalar one-sided scheme (3.6) to each
of the components wnm with g"m ¡ = ofiwJJ, /+1 ~~ ̂m,/-1); X, 0 < X < 1, is taken to
be the same for all components and usually X = 1.

In [9] and [10] we have presented examples of computations with the ACM
L = CAL, where L is a monotone scheme and CA is the artificial compressor described
in this section.   These computations exhibit oscillation-free transitions with excellent
resolution of shocks and contact discontinuities.  In fact since L = CPAL with p > 1 is
also a possible operation, one can control the spread of discontinuities.

4.   Self-Adjusting Hybrid Schemes.   Let Lx and LR be two conservative schemes
such that Lx is a nonoscillatory first order accurate scheme, LR is an 7?fh order accu-
rate scheme with R>2:

(4.la) (¿iv)j = »j - W¡}+1 /2 - */-1/2)>

(4.1 b) (LRv)j = v, - X(hf+ x /2 - hf_ j /2).
As in [13] we consider self-adjusting hybrid schemes:

(4.2a) (Lv)j = "j - Uhj+ i/2-hj_x/2),

(4-2b) h¡+. /2 = 6j+, /2A/+1/2 + (1 - ö/+,/2)Äf+ !/2 ;

0 is a scalar quantity, 0 < 0.+ 1 /2 < 1.  0, the automatic switch, is so constructed that
0 « 1, at discontinuities.  There the behavior of the hybrid scheme is close to that of
the nonoscillatory scheme L x.  Note that (4.2) is in conservation form.

By rewriting the hybrid scheme (4.2) as

(4.3a)    (Lv)j = (LRv)f + X[0/+, /2(hj+, /2 - hf+, /2) - 0;._,/2(/i/_ x /2 - Af_,/2)],

we see that if 0 is 0((Ax)p) wherever the solution is smooth, then for p > R - 1,

(4.3b) (Lop = (T^u),. + OdAxï« +1 ),

and the order of truncation error is preserved.  We remark that the hybrid scheme
(4.3a) can be regarded as the scheme LR modified by an adoptive artificial viscosity
term.   For example, when Lx is the first order accurate Lax-Friedrichs scheme and L2
is the second order accurate Lax-Wendroff scheme (LW), then (4.3a) takes the form of
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(£o); = (L2o)y + ±f_0/+1/2(/ - 2^+1   x     i _   )
(4.4a)

-ö/_1/2(/-24_1/2)(u/-IJ/_1)].
Thus, hybridization adds a viscosity term to the LW scheme of the type

(4.4b) (^L[e{I-X2A2)Vx]x

(see [13]).  Observe that if 0 = O(Ax), then (4.4b) is of the same order as the trunca-
tion error in the LW scheme.

When we set 0 to be a constant, 0 < 0 < 1, then (4.2) becomes L = 6LX +
(1 - 0)LR.  It follows immediately from the inequality

(4.5) \\L\\<e\\Lx\\ + (l-e)\\LR\\

that the hybrid scheme L is stable if Lx and LR axe stable.  It follows, therefore, that
L is stable under the stricter of the stability conditions of the two schemes Lx and LR.
This statement remains valid in the presence of discontinuities, although the derivation,
based upon the assumption of a locally constant 0, becomes somewhat dubious.   A
much finer technique treating the discontinuity as a moving boundary is needed for a
rigorous proof (see [6] ).

In the following we shall deal primarily with Lax-Wendroff-type schemes, i.e.
schemes that in the linear case f(w) = Aw, A = constant, are identical with the LW
scheme L2 :

(4.6a) (L2v)j = v¡ - i^A(v)+x - vf_t) + -\2A2(vj+x - 2v¡ + Vj_x),

(4.6b) X    max    |aj < 1.
Kk<M

The popular schemes of Richtmyer [23, pp. 330-338], MacCormack [19] and
Thommen [25] are all schemes of this type.   Each LW-type is hybridized with the
corresponding first order accurate scheme

(4.7a) (L, v)j = (L2v); + \(vj+, - 2v¡ + v,-_, ).

The linear stability condition of Lx is

(4.7b) X   max    \ak\ < ^f- « 0.866.
Kfc<u 2

The hybrid scheme L composed of Lx and L2 is

(4.8) w, = (Lo)y = (L2v), + |[fl/+1/2(o/+1 - vj) - 0/_1/2(t7/. - v,-_x)].

L is clearly stable under condition (4.7b) which is the stricter of the stability conditions
of Lj and L2.

We now turn to analyze the linear scalar case.  The LW scheme (4.6) is a linear
second order accurate scheme and, therefore, is not monotonicity preserving.  The first
order accurate scheme (4.7) is monotonicity preserving, as is evident from the nonnega-
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tivity of the coefficients in (/,, V), i.e.,

(4.9) iLxv)¡ = V40i + ^)\_x + (% - M2>;- + %0 - ¥t)2vj+, ;
here /a = XX.  To check whether the hybrid scheme (4.8) is monotonicity preserving,
we follow the procedure of (2.7) and (2.8).   Denote by A the differencing operator
A-+X,2v = v+x - Vj.  Let v be any monotone mesh function and let 5 be the sign of
its variation (6 = 1 if increasing, 5 = - 1 if decreasing); thus §A-+1,2u = |A+1,2u|.
Subtracting (4.8) at / = i from (4.8) at /' = / + 1, and then multiplying by S, we get
after rearrangement that

SA/+1/2w = H [Ox + K)2 - V4(l - 0!._1/2)]|Ai._1/2u|

(4-10a) + W-»2 +y^-ei+ll2)]\Ai+x/2v\

+ *[(p-*)2-Y*(i-ei+3l2)]\A1+3l2v\.

The hybrid scheme (4.8) is monotonicity preserving if and only if 6Af_, ,2w > 0.
However, when p = 1/2, |Ai_1,2v\ = |A(+1/2i7| = 0, |AI+3,2i7| > 0, we get from
(4.10a)

(4.10b) ôA/+1/2w = -|(1 - fff+3/2)IAi+3/2o| < 0.

Similarly, when p = -%, \Ai_x/2v\ > 0, |A/+1/2o| = |Ai+3/2u| = 0,

(4.10c) ÔA,.+ 1/2w = -i(l -0,._1/2)|A,._1/2u|<O.

We conclude from (4.10) that the property

(4.11) 0/+1/2 = l     when|A/+1/2í7|>0,    IA,._1/2o||A/+3/2o| = 0

is a necessary condition for the hybrid scheme (4.8) to be monotonicity preserving.
Observe that condition (4.11) corresponds to a case where the solution has a sharp
corner, which typically occurs at the end points of a jump discontinuity.

Next we describe an automatic switch which satisfies condition (4.11).   Let a(w)
be a function of w which is discontinuous at shocks and at contact discontinuities;
denote by o- = a(vX A-+1,2o = a+1 - oy, and define

|A/.+ 1/2o|-|A/_1/2a| r

(4.12a)      fly =
for lA/+i/2ff| + lA/-i/2CTl >e>

|A/+i/20, + IA/_i/aa|

0 for |A/+1/2a| + lA^j^al < e.

Here e > 0 is some suitably chosen measure of insignificant variation in a(w).  It is
easy to see that 0- = 0((Axy) wherever the solution is smooth; 0 < 0- < 1, and
0- = 1 only when either A+1,2a = 0 and |A;-_ 1/2a| > e or when |A/+1,2a| > e and
A-_ j ,2o = 0.  We define the automatic switch by

(4.12b) 0/+1/2 =max(0/,fl/+1).

It follows immediately that 0 < 0,+ j ,2 < 1 and that 0/+ j /2 satisfies the corner
condition (4.11).
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Analysis of a general 2k + 1 point hybrid scheme, based on the same reasoning
as (2.7), (2.8), (4.10) and (4.11), suggests defining dj+x/2 by

(4.12c) ej+x/2 =max(6j_k+,,..., fl/+fc).
We would like to point out that (4.12) is a very sensible way to define an auto-

matic switch.  There are two ways to detect a discontinuity on a fixed mesh:
1. Look for a large variation of the solution. This is a tricky business which

usually requires a certain familiarity with the solution; a switch so constructed will
usually have its maximum at the center of the transition (see [13]).

2. Look for abrupt changes in the variation of the solution; such abrupt changes
occur at the end points of the transition.

The switch (4.12) follows the second recipe.   0- in (4.12a) is a sensor of abrupt
changes in the variation of the solution (this was already observed by Van Leer in
[26]); and the switch 0,+ 1/2 in (4.12b) is « 1 at the end points of a transition of a
discontinuity.   Since the presence of a corner in the solution drives nonmonotone
schemes to generate oscillations, avoidance of oscillations requires the use of a mono-
tonicity preserving scheme at corners; a switch which is « 1 at corners does just that.

Theorem.   Let fl,+ 112 be the automatic switch (4.12) defined with a(w) = w
and p = 1.   Then the hybrid scheme (4.8), where L2 is the Lax-Wendroff scheme
(4.6), is monotonicity preserving for at least \p\ < yJ2/2.

A proof is given in the appendix.
The switch (4.12) detects abrupt changes in the variation of a(w), independent of

their size.  When a(w) is constant for the exact solution, its values for the numerical
solution might fluctuate and, in so doing, trigger the switch.   Such an occurrence can
be prevented by choosing an appropriate tolerance e in (4.12a).

We now turn to a discussion of hybridization for the case of systems of equations.
It is possible to extend the definixion of the automatic switch (4.12) by

1. Taking aiw) to be a vector function of w and then replacing the absolute
values in (4.12a) by norms, or

2. Taking a(w) to be a scalar function of the vector w.   a is to exhibit the fol-
lowing properties: a will have a jump discontinuity when w is a shock or a contact
discontinuity; otherwise it is smooth.   Equation (4.12) then need not be modified.

The second possibility, because it seems computationally more attractive is used
in the following computations.   As in the scalar case, aiw) forms a corner at the end
points of an abrupt transition; consequently, 0 « 1 there, so that at such a point the
hybrid scheme (4.8) is almost the same as the nonoscillatory /,,.  Thus, we expect the
hybrid scheme (4.8) for systems to produce transitions which are practically oscillation-
free.   Figures 1 —3 show numerical solutions of (4.8) to the following Riemann problem
for the Eulerian equations of a polytropic gas:

(4.13a) wt+fiw)x=0,

r\        iü \
(4.13b) w = \ m ),    fiw) = uw + \  P    ,    P=iy-IXE- Vzpu2),
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(4.13c)   w(x, 0)
wL,      x<0,

wL=\0.5l     j,
x > 0,

'.8.928/ \1.4275,
Here p, u, P and E are the density, velocity, pressure and total energy, respectively;
m = pu is the momentum, y = 1.4.  The exact solution of this Riemann problem,
which consists of a shock propagating to the right followed by a contact discontinuity,
and a left propagating rarefaction, is shown in the figures (continuous line).  L2 in (4.8)
is the MacCormack scheme [19] :

(414a) o?+1 =vf-\\f(vj+x)-f(vf)],

v?+1 =\(v1 + v1+1)-\\f(v1+1)-f(v1^)]
(4.14b)

+ ^+i/2^+x-vJ)-e"_x/2(vf-v^_x)].
Figures 13 show the solution of (4.14) after 200 time steps under the condition

(4.15) ^£- maxd«" \ + c") = 0.950,

where c = iyP/p)1^2 is the sound speed and Ax = 0.1.
Figure 1 shows the second order accurate MacCormack scheme, i.e. 0 = 0 in

(4.14); ß in (4.15) is 1.   Observe the large overshoots at the shock and the large under-
shoots at the contact discontinuity.   The resolution of the shock is much better than
that of the contact discontinuity; the latter is smeared at the rate tí1'3.  Note that
although the rarefaction wave is accurately computed oscillations are generated at its
right end point.

Figure 2 shows the solution of the first order accurate scheme (4.7), i.e., 0 = 1
in (4.14); ß in (4.15) is \f3/2.  Observe that the solution is oscillation-free.  The transi-
tion of the shock occupies 5-6 cells; the transition of the contact discontinuity, which
is being smeared at the rate tí1'2, occupies about 25 cells (n = 200).  The constant
state between the contact discontinuity and the shock is not fully realized.  Note the
excessive rounding of the corners at the end points of the rarefaction wave.

Figure 3 shows the solution of the hybrid scheme (4.14) with 0?+1,2 defined by
(4.12) with aiw) = p and p = 1; ß in (4.15) is V3/2.   Observe that the solution is
oscillation-free and that the resolution of the discontinuities is better than that of the
first order accurate scheme in Figure 2.  The transition of the shock occupies 3-4
cells; the transition of the contact discontinuity occupies 14-15 cells.  Note that the
rarefaction wave is also resolved more accurately than the one in Figure 2; the corners
at the end points of the rarefaction wave are only slightly rounded.

The restriction on the size of the time step iß in (4.15)) in the first order scheme
(4.7) and in the hybrid scheme (4.8) (j3 = V5/2) is 13.4% more severe than that in the
MacCormack scheme iß = 1).   It is interesting to note that the total time after 200
time steps, is T = 3.5 for the two computations shown in Figures 2 and 3 and only
T = 2.9 for the calculation shown in Figure 1.
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Figure 1.  MacCormack scheme (4.14)

24.90

5.   Self-Adjusting Hybrid ACM.   In Section 4 we have shown how to hybridize
an Rxh order accurate scheme LR with a nonoscillatory first order accurate scheme
Lx so that the hybrid scheme L is almost Lx at discontinuities and yet L - LR =
OHAx)R + ' ) wherever the solution is smooth.   Discontinuities computed with such a
hybrid scheme are oscillation-free, although smeared.   In Section 3 we have shown how
to correct the smearing of discontinuities in first order accurate nonoscillatory schemes
by ACM.   The ACM described there is based on the assumption that in the numerical
solution, a discontinuity is approximated by a continuous but rapid transition, very
similar to nonoscillatory viscous profiles.   Consequently, the ACM is inherently limited
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Figure 2.    77re first order scheme (4.7)

to nonoscillatory first order accurate schemes; attempts to apply ACM to high order
accurate schemes result in an increase of overshoot and in some cases convergence to a
nonphysical solution (see [11]) occurs.  In this section we show how the combination
of high order schemes, hybridization and ACM leads to the "ultimate scheme".

We consider a corrective type ACM L = CAL ; L is now a nonoscillatory hybrid
scheme (4.2) for the solution of the original problem (2.1), e.g. scheme (4.14).  Since
L « Lx at discontinuities, the use of the first order accurate ACM of Section 3 is
meaningful; the application of CA to Lv corrects the smearing of a discontinuity by L
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Figure 3.  The hybrid scheme (4.14)

and brings the discontinuity closer to its maximal resolution (3.8b).  This, due to the
corner property (4.11) of the automatic switch (4.12), makes the change of L into L,
even more complete.  Therefore, we expect L = CAL to produce the same oscillation-
free sharp transitions of the discontinuities as in [10].   To preserve the high order of
the truncation error of LR in regions of smoothness of the solution, we switch off the
first order accurate ACM in these regions and switch on the infinitely accurate identity
operator Iv = v.  This leads to the following hybrid artificial compressor

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ai
to"?!co-
LÜ
0£
Q-

0.00

0.00

>■

LU
a

0.00

THE ARTIFICIAL COMPRESSION METHOD

4.15

4.15

4.15

8.30
-H-
12.45

-H-
16.60

8.30
—I-
12.45

-H-
16.60

8.30 12.45
X

20.75

20.75

16-60 20.75

Figure 4.    The hybrid ACM L = CAL, (4.14) and (5.1)

iCAv)j = Vj - (X/2)(0/+ j j2Gj+ ,/2 - B¡_ x,2Gj_ x /2);

,2, the 772th component of the vector C7/+1/2, is given by

Gm,/+,/2 = S«,/+Sm./+i - Iíih.z+1 _ W sgnOVz+i " V/>»

24

24

24

gm,j = aj(v)(vm,j+\ -vm,j-l)
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Figure 5.   Time evolution of an interaction between
a rarefaction wave and a contact discontinuity

and ctj(v) is defined by (3.11b).   0/+1/2 is the automatic switch (4.12a)-(4.12c) with
p> R - I.  The hybrid artificial compressor (5.1) is stable under X < 1 (we usually
take X = 1) and is completely independent of the choice of L, as long as L is a non-
oscillatory scheme.  The automatic switch in the artificial compressor (5.1) need not be
the same as that given by (4.2).

The only function of the hybrid ACM (5.1) is to improve resolution of the com-
puted solution in the neighborhood of admissible discontinuities; in regions devoid of
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Figure 6. Richtmyer scheme (5.3)

—i-
20.75 24.90

the discontinuities, the artificial compression does not improve the accuracy of the
computation.   In regions where \vxx\ is bounded, the operator (5.1) preserves the order
of truncation error in LR ; thus the formal order of accuracy is not affected.   However,
in regions where vxx is unbounded, such as at inadmissible discontinuities or at end
points of a centered rarefaction wave, the artificial compression should not be applied
because it might interfere with the proper evolution of the numerical solution.  To
restrict the region where CA contributes to the solution to the immediate vicinity of
admissible discontinuities, we need, in (4.12), a function a(w) that exhibits a jump
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24-90

24-90

20-75 24.90

Figure 7.   The first order scheme (5.4) with 0 = 1

discontinuity at shocks and contact discontinuities with little variation otherwise.   A
natural thermodynamic function is readily available:   entropy.   The automatic switch
(4.12) with a(w) identified with the entropy will be referred to as the entropy switch.
As was mentioned in Section 4, (4.12) detects abrupt changes in the variation of a(w),
independent of their size.   Although entropy in the exact solution is constant except
for jump discontinuities at shocks and contact discontinuities, its value for the numeri-
cal solution might fluctuate and as such trigger the switch.   To prevent such an occur-
rence, one should choose in (4.12a) an appropriate tolerance e, which is larger than the
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Figure 8.  The hybrid scheme (5.4)

maximal numerical fluctuation in the entropy.
The entropy switch is somewhat expensive to compute.   Following Rosenbluth's

idea [23, p. 310], we can use one of the already computed variables, such as a(w) = p,
to construct the automatic switch (4.12), and set it to zero in regions of expansion.
In the case of Eulerian gas equations we set 0- in (4.12a) to zero when:*

•I thank G. Kleinstein for suggesting this test.
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Figure 9.   The hybrid ACM L = CAL, (5.4) and (5.1)

(5.2)
ißU)j+ ,   - (ßU)j_ x

Pi7+1 Ji-i
sgn(Uj) <0.

We recommend using the test (5.2) even while using the entropy switch; this is a pre-
caution against an inappropriate choice of the tolerance e.  We remark that part of the
extra computing time spent on the test (5.2) (or on calculating entropy) is regained,
since we set G-+x/2 = 0 wherever 0;+i/2 = 0; thus G)+x,2 is actually evaluated only
at a few points.
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Figure 4 shows the solution of the Riemann problem (4.13) after 200 time steps
under condition (4.15) with ß = \f3/2 of the scheme L = CAL, where L is the self-
adjusting MacCormack scheme (4.14) and CA is the artificial compressor (5.1).  The
automatic switch in both L and CA is (4.12) with a(w) = p and p = 1, with the pro-
vision that 0- in (4.12a) for the artificial compression is set to zero when condition
(5.2) is satisfied.  The discontinuities are practically oscillation-free and their resolution
is almost maximal; if better resolution is needed, one can apply CA one more time so
that in effect L = CAL.   Observe that the constant state between the contact discon-
tinuity and the shock is fully realized (the error is in the 4th significant figure); the
rarefaction wave is the same as for the hybrid scheme in Figure 3.

Figures 5-9 show numerical solutions of an interaction between a rarefaction
wave and a stationary contact discontinuity (see [4, pp. 197-199]).  The centered
rarefaction wave starts from a jump discontinuity situated to the left of the contact
discontinuity (TV = 0 in Figure 5 and the continuous line in Figures 6—9), and propa-
gates toward it.  As the rarefaction wave hits the contact discontinuity (TV = 50 in
Figure 5), it is partially transmitted and partially reflected.   As a result of the inter-
action, the contact discontinuity propagates to the left with a constant velocity (TV =
100, 150 and 200 in Figure 5).

Figure 6 shows the solution after 200 time steps under condition (4.15) with
ß = 1 of the Richtmyer scheme v"+1 = L2v":

(5.3a) „I*1/2 =i(o; +V¡+í)-¿\\f(vf+i)-f(vf)),

(5.3b) v?+1= vf - \[f(vf++1/22) - f(v?_+1/2)].

Figures 7 and 8 show the solution after 200 time steps; the solution was comput-
ed subject to stability condition (4.15) with ß = \/3/2 and the difference operator

(5.4)      «,«+' =(Lvn)j = (L2v")i+±[8"+xl2(v"+x -vp-8"„xl2(v"-v"_x)]

with L2 designating the system (5.3).   Figure 7 shows the solution of the first order
scheme (5.4) with 0 = 1.   Figure 8 shows the solution of the hybrid scheme (5.4),
where the automatic switch 0 + j ,2 is defined by (4.12) with a(w) = p and p = 1.

Figure 9 shows the solution obtained from the hybrid ACM / = CAL after 200
time steps.   Here L is the same as in Figure 8 and CA is the artificial compressor (5.1).
The automatic switch 0 in the artificial compressor is (4.12) with oiw) = entropy, with
the provision that 0- in (4.12a) is set to zero when condition (5.2) is satisfied; e in
(4.12a) is taken to be e" = 0.01 max-|A-+1,2a"\.  The result shown in Figure 5 was
computed exactly the same way as the result shown in Figure 9.   Observe that there is
a slight "step" in the constant state on the left of the contact discontinuity. We con-
sider this "step phenomenon" to be tolerable; if desired, it can be eliminated by an
operation described in [10] which increases the convexity of the ACF (3.11).  Note
that maximal resolution of the contact discontinuity is achieved and that there is only
a slight rounding of the corners at the end points of the rarefaction waves.
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6.   To Hybridize or Not to Hybridize: That is the Question.   There are many
important questions in shock computations which are still open.   As a result, many
ideas are still controversial and new approaches require justification; we devote this
section to justification.  We argue, that the idea of the self-adjusting hybrid ACM does
make sense.   The main points in the argument are:

(i)  The change to a nonoscillatory first order accurate scheme at discontinuities
is physically and mathematically desirable.

(ii)  This change does not damage the accuracy at discontinuities and in fact
improves it.

(iii)  Even in the presence of discontinuities there is a gain in using high order
accurate schemes wherever the solution is smooth.  We elaborate.

(i)  Shock waves in the physical world as well as in mathematical thought are
usually conceived as a result of some limiting process.  In the physical world shocks
are discontinuities which are conceptualized as a boundary layer phenomenon with
vanishing small boundary layer thickness.  Mathematical theory, because of nonunique-
ness of discontinuous solutions of the inviscid problem (2.1), relies upon a limiting
process to determine which of the solutions is a physical one, i.e., it admits only those
discontinuities which can be realized as the limit e —*■ 0 of the viscous equation

(6.1) wt +fiw)x = ewxx.

Numerical schemes behave very much like the solution operator of the corresponding
modified equations; in particular first order monotone schemes behave like the viscous
equation (2.5).  The limit Ar —► 0 in (2.5) mimics the limit e —► 0 in (6.1), thus
providing monotone schemes with a built-in selection mechanism to determine the
physically relevant solutions.   Oscillations at discontinuities in solutions of nonmonotone
schemes introduce nonphysical states that might trigger the selection of an inadmissible
solution.   Solutions to problems where the flux f(w) in (2.1) is nonconvex, are especial-
ly susceptible to such occurrences.  Therefore, switching to a nonoscillatory first order
accurate scheme at discontinuities is a natural thing to do.

(ii)  Does the use of high order accurate schemes to compute discontinuities
improve the local accuracy of the computation?   To answer this question we study a
computation of an admissible discontinuity (wL, wR, S) with S i= 0.  Let w" be the
solution of any conservative finite-difference scheme after n time steps.   Denote by
z(x, f) the exact solution

<St,
(6.2) z(x, t) = '

iwL,      x ■

\wR,      x

The initial data wf = zijAx, 0)

>St.

Wf
\wL,      ;<0,

[wR,      }>0,

remains unchanged under refinement of the mesh.  The finite-difference operation itself
depends only on X = Ar/Ax.   Thus, the standard refinement process Ax —► 0 with X
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fixed is the same as n —► °°.  The first order accurate ACM approaches, as tí —► °°, a
steady progressing profile with an almost optimal resolution (3.8b) for both shocks
and contact discontinuities (see [9] and [10]).  These steady progressing profiles also
have the least L-error, e(T) for T = nAt:

(6.3) eiT) Ax   X    K - z(/Ax, nAt)Y
7 =

1/2

As Ax decreases (same as n increases), the sum in (6.3) tends to a constant; thus the
/2-error in the ACM is eij) = OifAx)1^2) for both shock and contact discontinuity.
Standard /?th order accurate schemes smear a contact discontinuity as well as a scalar
linear discontinuity at the rate of tz1^r + 1;; consequently, the l2-error (6.3) becomes
e(D = 0((Ax)°-SÄ/(Ä + 1)) (see [22] and [8]).  Although lAR/iR + 1) is an increasing
function of R, it is smaller than the optimal 0((Ax)1/2) of the ACM for all finite R.

(iii)  It follows from the above analysis that in the presence of discontinuities
there are regions in the numerical solution in which the local l2 -error is at best
OUAx)1!2).   Does this error spread into regions where the solution is smooth?   If so,
does the error produced at the discontinuity dominate the error produced by the high-
er order schemes making such schemes ineffective?  At present there is a clear cut
answer only in the case of a shock in the solution of a scalar equation.  In this case
the characteristic field which is convergent towards the line dx/dt = S at the locality
of the shock, acts to confine the ¿/((Ax)1'2) error to this region.  The 0((Ax)A) error
of an 7?th order accurate scheme is, therefore, preserved for points sufficiently far away
from the shock.  We cannot use the same argument to show such a containment of
error mechanism in the case of systems, as out of the 2M characteristics on both sides
of the shock (see [17]) only M + 1 characteristics converge towards dx/dt = S, while
M - 1 characteristics diverge away from it, possibly spreading the error.  Nevertheless,
computations in a fixed mesh indicate that there is a definite improvement in the solu-
tion if a scheme with a higher order of accuracy is used.   Because of insufficient analy-
sis and numerical experimentation we cannot ascertain that the full order of accuracy
t9((Ax)Ä) is maintained at points sufficiently far removed from the shock, nor assess
the damage, if any, to the order of accuracy.   However, we feel that there is enough
evidence of improvement in the solution generated by a fixed mesh computation to
make the use of a hybrid scheme of the type (4.8) desirable.

The presence of a contact discontinuity in the solution is even more troublesome,
because it is a discontinuity in a linearly degenerate field.  Analysis of a system of
linear equations in [20] shows that in this case, the accuracy in the whole domain of
influence of the initial discontinuity is at most O(Ax).   The ACM causes the character-
istic fields at a discontinuity to be artificially more convergent; a contact discontinuity
is changed into a shock.  Thus the ACM acts to decrease the propagation of the error
from discontinuities.

7. Summary. In the previous sections of this paper we have shown how to
modify standard difference schemes so that they self-adjust to the computation of
discontinuities.   The modification of the standard finite-difference scheme, which is a
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combination of hybridization and ACM, preserves the order of truncation error and
yet allows sharp oscillation-free transitions of discontinuities.  This hybrid ACM, being
a modification of a standard scheme, is easy to implement in existing computer codes.
In particular, it is easy to implement the hybrid ACM for the LW-type schemes (4.8)
and (5.1):   All one has to do is to add the adoptive artificial viscosity term
(l/8)[0 -+ j i2(i7.-+1 - 17,-) ~ 8 ■_ , ,2(v- - o•_ , )] to the subroutine of a LW-type scheme
and call a short independent ACM subroutine thereafter.   The particular choice (4.8)
for the LW-type schemes was primarily motivated by its generality and simplicity.   It
causes a reduction of the stability condition by at most 13.4%; judging from compari-
son of the physical time in Figures 1-9 (shown in the upper left part of the figures),
this limitation is not severe.  Condition (4.7b) can be somewhat relaxed by taking into
account the variation of the automatic switch 0.  In dealing with a particular scheme,
one can hybridize it with a nonoscillatory first order accurate scheme with a maximal
stability condition, and by this prevent a possible cut of the permissible time step.

The additional computing time required for the use of the hybridization and the
artificial compression depends strongly on the particular problem as well as on pro-
gramming skill. We have experienced an average increase of 25%—30% with respect to
the computing time of the unmodified LW-type schemes. In evaluating this additional
investment in computing time one should take into account that the use of the hybrid
ACM eliminates the need to add artificial viscosity terms.

The extension of the hybrid ACM to multidimensional problems is immediately
available through a Strang-type dimensional operator splitting (see [24] and [7]).
Both the hybridization technique (see [13]) and the ACM (see [8]) extend to several
space dimensions without conceptual changes.   A detailed discussion is deferred to a
subsequent article.
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Appendix.   Let L be the hybrid scheme (4.8), v" + l = Lv",

W, = iLv)j = Vj - \p(vj+ l-Vj_x)+ |ü2(l7/+ ,   - 2Vf + Vj_x)
(A.I)

+ gPy+i/aGV+i - vj) - 6j-i/2(Vj " 0/-i)l.
where p = \A and ö/+1/2 is the automatic switch (4.12) with a(v) = v and p — 1,

i-e-Ai+l/2U = U/+l  "»I»

(A.2a) ö/+i/2=max(Ö/,^+1),
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(A.2b) 6j = d(\A¡_x/2v\,\A¡+xl2v\),    8(x,y)
x~y
x + y

Theorem.   The hybrid scheme (Al) and (A2) is monotonicity preserving for
\p\ < V2/2.

Proof.   Let v be any monotone mesh function, and let ô be the sign of its varia-
tion (S = 1 if v is increasing, S = -1 if 17 is decreasing).   Subtracting (A.l) at / = i
from (A.1) at / = 1 + 1, and then multiplying by 5, we get after rearrangement

oA/+1/2u> = J4[ûi + K)2 - V41 - e«_1/2)]IA,-_1/2ui

(A.3) + [%-p2 + %(l - 8i+x/2)]\Ai+x/2v\

+ V2[(p - K)2 - V4\ - 0,-+3/2)]lA,-+i/2"l-

It follows from (A.2a) that 0,_1/2 > 8¡ and 0,-+3/2 > 8i+x; therefore, the right-hand
side of (A.3) is decreased upon replacing 0,-_1/2 by 8¡ and 0, + 3/2 by 0,-+1.   Hence,

ÔA,.+ 1/2w > U[(ji + V2)2 - %(l - 0,.)]|A,._1/2(7|

(A.4) + p/4 - p2 + %(l - 8i+ x /2)]|A,-+, /2o|

+ [(p - Vz)2 - y4(l - ëi+x)]\Ai+3/2v\ = F.

Denotingx = |A(._1/2u|,y = |Ai+1,2v\ and z = |A/+3,2u|, the right-hand side of
(A.4), F(p; x, y, z) can be rewritten as

(A.5)     F(p; x, y, z) = Dipt; x, y) + Di~p; z, y) + y [1 - p2 - V40(x, y, z)],

where 0(x, y, z) = max(0(x, y), 0(y, z)) and

(A.6) Dip.; x, y) = Vi[fji + xh)2 + V4(8(x, y) - l)]x.

We prove the theorem by showing that

(A.7) F(ß; x, y, z) > 0    for |u| < \/2/2 and all nonnegative x, y, z.

Since F(p; x, y, z) = F(-p; z, y, x) it is sufficient to show that F(p; x, y, z) > 0 for
0 < p < V2/2.   Evaluation of (d/dz)[z(8(y, z) - 1)], where 0 is defined by (A.2b),
yields

/       2y2
d     . \-(T+-y?      f0TZ>y>

j-[z(8(y,z)-\)] = \dz 2z(z + 2y)
I ~~ 7—;—^— t°r z ^ y-
\     (z + y)2

Thus, (d/dz)[z(§(y, z) - 1)]  < 0 for all z > 0 and y > 0; consequently,

(A.8) z(00', z) - 1) > lim z(8(y, z) - 1) = lim —¡77- = -2y.
2—»oo 2-*°°y

Using (A.8) in D(-p; z, y), we get

D(-p; z, y) > Vz(p - Vi)2z - %y.
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Using the above inequality in (A.5), we get

Fip; x, y, z) > L\p; x, y) + tt(p - K)2z
(A.9)

+ [%-/i2 +74(1 -0(x,y,z))ly;
but D(p; x, y) > 0 for p > 0 and the last term in the right-hand side of (A.9) is non-
negative for \p\ < \/2/2.   Hence the right-hand side of (A.9) is nonnegative for 0 <
p < V2/2.  This completes the proof.

Remark.   (A.4) for |u| = V2/2 is a strict inequality except for the trivial case
x — y = z = 0; thus, the theorem holds beyond |u| = \/2/2.
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