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Abstract

Behavior-oriented Al is a scientific discipline that studies how behavior
of agents emerges and becomes intelligent and adaptive. Success of the field
is defined in terms of success in building physical agents that are capable
of maximising their own self-preservation in interaction with a dynamically
changing environment. The paper addresses this artificial life route towards

artificial intelligence and reviews some of the results obtained so far.
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1 Introduction

For several decades, the field of Artificial Intelligence has been pursuing the study
of intelligent behavior using the methodology of the artificial [104]. But the focus
of this field, and hence the successes, have mostly been on higher order cognitive
activities such as expert problem solving. The inspiration for Al theories has mostly
come from logic and the cognitive sciences, particularly cognitive psychology and
linguistics. Recently, a subgroup within the AT community has started to stress em-
bodied intelligence and made strong alliances with biology and research on artificial
life [59]. This is opening up an ‘artificial life route to artificial intelligence’ [112],
which has been characterised as Bottom-Up Al [19], the Animat approach [133],
Behavior-based Al [108], or Animal Robotics [75]. These terms identify a loose
network of engineers and biologists who share the common goal of understanding
intelligent behavior through the construction of artificial systems. The researchers
also share a growing number of assumptions and hypotheses about the nature of
intelligence. In view of the strong links with biology and complex systems theory,
the research has so far received more attention in the Artificial Life community than

in the Artificial Intelligence field itself.

The aim of this paper is to review this approach and identify some major unresolved



issues. Given that substantial engineering efforts and non-trivial experimentation is
required, the first solid experimental and technical results have only recently begun
to appear. Good sources for tracking the field are the conferences on the Simulation
of Adaptive Behavior ([80], [79]) and the associated journal [102], the conferences on
Artificial Life ([59], [60], [124], [30]), and the associated journal [4]. There are also
occasional contributions to international conferences on Al (such as IJCAI, AAAI,
or ECAI), neural networks (NIPS), or robotics (IEEE). Reports of some milestone

workshops have been published ([65], [123], [112], [113]).

Section 2 of the paper delineates the artificial life approach to artificial intelligence.
Section 3 identifies the fundamental units of this approach, which are behavior
systems. Section 4 and 5 focus on contributions towards a central theme of artificial
life research, which is the origin of complexity through emergent functionality. A

short review of some other issues concludes the paper.

2 Delineating the field.

2.1 The subject matter is intelligent behavior.

The phenomena of interest are those traditionally covered by ethology and ecology
(in the case of animals) or psychology and sociology (in the case of humans). The
behavior by an individual or a group of individuals is studied, focusing on what

makes behavior intelligent and adaptive and how it may emerge. Behavior is defined



as a regularity observed in the interaction dynamics between the characteristics and
processes of a system and the characteristics and processes of an environment [106].

Behavior is intelligent if it maximises preservation of the system in its environment.

The main emphasis is not on the physical basis of behavior, as in the case of neural
network research, but on the principles that can be formulated at the behavioral
level itself. An example of a theory at the behavioral level is one which explains the
formation of paths in an ant society in terms of a set of behavioral rules without
reference to how they are neurophysiologically implemented [91]. Another example
is a study of how certain behavioral strategies (such as retreat when attacked) and

their associated morphological characteristics are evolutionary stable [72].

Given this emphasis on behavior, the term behavior-oriented seems appropriate to
distinguish the field, particularly from the more knowledge-oriented approach of

classical Al It will be used in the rest of the paper.

2.2 The methodology is based on building artificial systems.

Scientists traditionally construct models in terms of a set of equations which relate
various observational variables and hypothesised theoretical variables. Technological
advances in the second half of this century have resulted in two additional types of

models:

o Computational models: These consist of a process-oriented description in terms
of a set of datastructures and algorithms. When this description is executed,
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i.e., the algorithm is carried out causing the contents of the datastructures to
be modified over time, phenomena can be observed in the form of regularities in
the contents of the datastructures. If these synthetic phenomena show a strong
correspondence with the natural phenomena, they are called simulations and

the process descriptions constitute a theory of the natural phenomena.

e Artificial models: One can also construct a physical device (an artifact) whose
physical behavior gives rise to phenomena comparable to the natural phe-
nomena in similar circumstances. The device will have components with a
particular structure and functioning which have been put together in a par-
ticular way. The design and implementation of these components and their
mode of combination constitutes another possible way to theorise about the

phenomena.

Computational models and artificial models, or, what Pattee [92] calls simulations
and realisations must be clearly distinguished. For example, it is possible to build
a computational model of how a bird flies, which amounts to a simulation of the
environment around the bird, a simulation of the aerodynamics of the body and the
wings, a simulation of the pressure differences caused by movement of the wings, etc.
Such a model is highly valuable but would however not be able to fly. It is for ever
locked in the datastructures and algorithms implemented on the computer. It flies
only in a virtual world. In contrast, one could make an artifact in terms of physical

components (a physical body, wings, etc.). Such an artifact would only be viewed as



satisfactory if it is able to perform real flying. This is a much stronger requirement.
Very often results from simulation only partially carry over to artificial systems.
When constructing a simulation, one selects certain aspects of the real world that
are carried over into the virtual world. But this selection may ignore or overlook
essential characteristics which play a role unknown to the researcher. An artificial
system cannot escape the confrontation with the full and infinite complexity of the

real world and is therefore much more difficult to construct.

The term ‘artificial’ in ‘artificial life’ (and also in ‘artificial intelligence’) suggests
a scientific approach based on constructing artificial models. The methodological
steps are as follows: a phenomenon is identified (e.g. obstacle avoidance behavior),
an artificial system is constructed that has this as competence, the artificial system
is made to operate in the environment, the resulting phenomena are recorded, these
recordings are compared with the original phenomena. Potential misfits feed back

into a redesign or re-engineering of the artificial system.

Although Artificial Intelligence is sometimes equated with the simulation of intel-
ligent behavior, this is too narrow an interpretation. The goal is to build artifacts
which are ‘really’ intelligent, i.e. intelligent in the physical world, not just intelligent
in a virtual world. This makes the construction of robotic agents that must sense
the environment and can physically act upon the environment, unavoidable. Par-
ticularly if sensori-motor competences are studied. This is why behavior-oriented

AT researchers insist so strongly on the construction of physical agents [21], [130].



Performing simulations of agents (as in [15]) is of course an extremely valuable aid
in exploring and testing out certain mechanisms, the way simulation is heavily used
in the design of airplanes. But a simulation of an airplane should not be confused

with the airplane itself.

2.3 Behavior-oriented Al is strongly influenced by biology.

We have already identified two key ingredients of the behavior-oriented approach:
the study of intelligent behavior, and the methodology of constructing artificial
systems. The third ingredient is a strong biological orientation. Intelligence is seen
as a biological characteristic, and the ”core of intelligence and cognitive abilities is

[assumed to be]| the same as the capacity of the living” ([124], backcover).

The biological orientation clearly shows up in the way intelligence is defined. The
‘classical” AT approach defines intelligence in terms of knowledge: A system is in-
telligent if it maximally applies the knowledge that it has (cf. Newell’s principle of
rationality [87]). The behavior-oriented approach defines intelligence in terms of ob-
served behavior and self-preservation (or autonomy) (see e.g. [124], [76]). It is based
on the idea that the essence of biological systems is their capacity to continuously

preserve and adapt themselves [71]:

The behavior of a system is intelligent to the extent that it mazimises the

chances for self-preservation of that system in a particular environment.



The drive towards self-preservation applies to all levels of complexity: genes, cells,
multi-cellular structures, plants, animals, groups of animals, societies, species.
Behavior-oriented Al focuses upon the behavior of organisms of the complexity
of animals. Systems of this complexity are called agents. When several of them

cooperate or compete, we talk about multi-agent systems.

In order to explain how a system preserves itself even if the environment changes,

adaptivity and learning are corollary conditions of viable intelligent agents:

A system is capable of adapting and learning if it changes its behavior
s0 as to continue mazximising its intelligence, even if the environment

changes.

The biological orientation also shows up in a focus on the problem how complexity
can emerge. The origin of order and complexity is a central theme in biology [53] and
is usually studied within the context of self-organisation [95], or natural selection
[16]. Behavior-oriented Al research is focusing on the concepts of emergent behavior
and emergent functionality as a possible explanation for the emergence of functional
complexity in agents. These concepts will be discussed in more detail later. A

preliminary definition is as follows:

A behavior is emergent if it can only be defined using descriptive cate-
gories which are not necessary to describe the behavior of the constituent

components. An emergent behavior leads to emergent functionality if the



behavior contributes to the system’s self-preservation and if the system

can build further upon it.

Behavior-oriented Al studies the origin of complexity at different levels: from com-
ponents and complete agents to multi-agent systems. Systems at each level maximise
their self-preservation by adapting their behavior so that it comes closer to the op-
timal. Co-adaptation ensures that different elements at one level contribute to the
optimality of the whole. At every level there is cooperation and competition: Differ-
ent agents cooperate and compete inside a multi-agent system. Different behavior
systems cooperate and compete inside the agent. Different components cooperate
and compete to form coherent behavior systems. So the ingredients of cooperation,
competition, selection, hierarchy, and reinforcement, which have been identified as
crucial for the emergence of complexity in other areas of biology [59], are found at
the behavioral level, making it possible to carry over results from other biological

disciplines to behavior-oriented Al and vice versa.

All of the elements of the above definitions for intelligence, adaptivity, and emergence
can be quantitatively and objectively established. We can quantify the aspects of
the environment which act as pressures on the system considered, the success in self-
preservation, the optimality of particular behaviors with respect to their contribution
to self-preservation, and the success of adaptation and learning to improve this
optimality. All this has already been illustrated by McFarland and Boesser [76]. We

can also quantitatively identify the onset of emergence once a suitable mathematical



framework exists for defining the notion of a minimal description. An example of
such a framework can be found in Chaitin’s work on algorithmic complexity (see the
discussion in [89] The objective nature of these definitions makes them preferable to
those relying on the subjective assignment of knowledge or on subjective criteria of

similarity to human intelligence as in the Turing test.

2.4 Behavior-oriented AI is complementary to other ap-

proaches to artificial intelligence.

The behavior-oriented approach is complementary to the currently dominating trend
in Al (also known as the classical approach) which is almost exclusively concentrated
on the problems of identifying, formalising, and representing knowledge [38]. The
emphasis on knowledge leads almost automatically to a focus on disembodied intel-
ligence. Classical Al systems therefore do not include a physical body nor sensing or
acting. If intelligent robots have been considered (as in [90], sensing and action has
been delegated to subsystems which are assumed to deliver symbolic descriptions
to the central planning and decision making modules. Moreover knowledge-oriented
theories do not include environmental pressures on the self-preservation of the agent,
and the role of adaptivity and emergence is taken over by the programmer. However,
the claim (made for example in [66] that the classical, knowledge-oriented approach
works only for “simulated toy problems” and makes too many simplifying assump-

tions (e.g., static environments, single tasks, etc.) is simply not true. Objective
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results achieved in knowledge engineering for large-scale, extremely challenging real
world problems (like the assignment of train engines and personnel to routes tak-
ing into account a large number of possibly conflicting constraints, or the diagnosis
of printed circuit boards assembled in digital telephone switch boards) cannot and

should not be dismissed.

The behavior-oriented approach is also complementary to the artificial neural net-
work approach, which is based on an even more radical bottom-up attitude because
it focuses on the physical basis of behavior and hopes that this is sufficient to explain
or synthesise intelligence [56], i.e., that no separate behavioral level is necessary. The
distinction between the two fields is of course a matter of degree. Behavior-oriented
researchers heavily make use of neural network techniques to implement certain as-
pects of an overall design and some neural network researchers are beginning to

consider the problem of building complete agents (cf. Edelman’s NOMAD [34]).

There are obviously strong ties between behavior-oriented Al and robotics, because
the construction of physical agents is seen as a conditio sine qua non for applying
the method of the artificial properly. But the two fields should not be equated.
The goal of robotics is to identity, design, and engineer the most reliable and most
cost-effective solution for a sensori-motor task in a particular, usually fixed and
known, environment [17]. Behavior-oriented Al uses the tools of roboticists to study

biological issues, but very different criteria for success apply.
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2.5 The rest of the paper focuses on emergence.

A review of the field can be organised along several lines. One way would be to
look at the progress towards the achievement of specific competences, for example,
the different approaches for ‘navigation towards a target’: using potential fields [7],
cognitive maps with landmarks [70], phonotaxis [129], global reference frames [86],
pheromone trails or agent chains [41], and so on. Another approach would be to
review the large amount of work on building technical hardware and software plat-
forms which now make it possible to execute experiments easily and at low cost [35],
[31], [50]. This technical work is in some way a revival of earlier cybernetics work
by Walter [128] and Braitenberg [18] but now with better hardware and more ad-
vanced software. Yet another way is to look at progress on the theoretical questions
outlined earlier, for example the definition and use of optimality criteria [76], or the
development of quantitative behavioral descriptions using techniques from complex

systems theory [89].

These overviews would all be valuable but require much more space than available
here. Instead, we will focus on how behavior-oriented AI may contribute to the
field of Artificial Life as a whole, and more specifically to its central research theme,
which is the origin of complexity. The focus on the interaction between physical
agents and the world through sensing and effecting introduces a special perspective
which is not found in other Artificial Life work. The emergence of complexity must

come through the dynamics of interacting with an infinitely complex, dynamically
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changing, real world and not only through the internal dynamics as in the case of

cellular automata for example.

In order to further limit the scope of the paper, we will only focus on how the
behavior of a single agent is established. There is a lot of fascinating work on multi-
agent systems and often it is not even possible to study single agents without taking
other agents into account. Nevertheless, a review of work on multi-agent systems

would have doubled the size of the present paper.

3 Behavior systems

When studying multi-agent systems (like ant-societies), the units of investigation
are clearly visible. But the units causing the behavior of a single agent are not di-
rectly observable. Sensors, neurons, networks of neurons, propagation processes and
actuators, are the obvious building blocks. But many of these must work together
and interact with structures and processes in the environment in order to establish
a particular behavior, and the same components may dynamically be involved in
many different behaviors. This is the reason why it is so difficult to bridge the gap

between neurology and psychology.

There is a growing consensus in behavior-oriented Al research that behavior systems
be considered as the basic units [19]. Other terms for the basic behavioral unit are

task-achieving module [68], or schema [5].
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To define the notion of a behavior system we have to make a distinction between a

functionality, a behavior, a mechanism, and a component:

o Functionalities: A functionality is something that the agent needs to achieve,
for example locomotion, recharging, avoiding obstacles, finding the charging
station, performing a measurement, signalling another agent. Other terms
used for functionality are task, goal, and competence. Functionalities belong

to the descriptive vocabulary of the observer.

e Behaviors: A behavior is a regularity in the interaction dynamics between an
agent and its environment, for example, maintaining a bounded distance from
the wall, or having a continuous location change in a particular direction. One
or more behaviors contribute to the realisation of a particular functionality.
Behaviors belong also to the descriptive vocabulary of the observer. Looking
at the same agent in the same environment, it is possible to categorise the
behavior in different ways. This does not mean that behavior characterisation

is subjective. It can be defined and measured fully objectively.

o Mechanisms: A mechanism is a principle or technique for establishing a partic-
ular behavior, for example, a particular coupling between sensing and acting,

the use of a map, an associative learning mechanism.

o Components: A component is a physical structure or process which is used to
implement a mechanism. Examples of components are body parts, sensors,
actuators, datastructures, programs, communication hardware and software.
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A behavior system is the set of all mechanisms which play a role in establishing
a particular behavior. The structures of a behavior system which can undergo a
change due to learning are usually called behavior programs. Observed behavior
will of course depend almost as much on the state of the environment as on the
mechanisms and components of the agent. Often the name of the behavior system
indicates the functionality to which it contributes. But strictly speaking, we should
be more careful. For example, there could be a ‘homing in” functionality achieved
by a ‘zig zag behavior’ towards a goal location which is the result of a ‘phototaxis
mechanism’. Phototaxis means that the goal location has a light source acting
as beacon and that the robot uses light sensors to minimize the distance between
itself and the beacon. The reason why we need to be careful in mixing functional
and behavior terminology is because the same behavior system may contribute to

different functionalities.

Behavior systems may be very simple, implementing direct reflexes between sensing
and action (as in [19]. They may also be more complex, building up and using
cognitive world maps (as in [70]. When enough complexity is reached, a large col-
lection of interacting behavior systems may resemble a society of interacting agents
[84]. Each behavior system is most adapted to a particular class of environments.
This environment can be characterised in terms of a set of constraints [48] or cost

functions [75].

Note that a behavior system is a theoretical unit. There is not a simple one-to-one
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relation between a functionality, a behavior, and a set of mechanisms achieving the
behavior. The only thing which has physical existence are the components. This
is obvious if emergent functionality comes into play (see section 4 and 5). On the
other hand, behavior systems form a real unit in the same way that a society forms
a real unit. The interaction between the different mechanisms and the success in
the behavior to achieve tasks which contribute to the agent’s self-preservation give

a positive enforcement to all the elements forming part of a behavior system.

3.1 Behavior systems should be viewed as living systems.

In view of the biological orientation discussed earlier, it is not surprising that many
behavior-oriented Al researchers view behavior systems very much like living sys-
tems. This means that behavior systems are viewed as units which try to perserve
themselves. An analogy with cells which are the smallest biological autonomous
units helps to make this concrete (Fig. 1). A cell consists of a group of biochemical
structures and processes. The processes are guided by genes, which are themselves
represented as molecular structures inside the cell. The processes take place in in-
teraction with material outside the cell which is passing through the cell membrane
in both directions. Cells may change their internal structure and functioning, to a

certain limit, and thus adapt to the surrounding environment [97].

A behavior system consists also of a set of dynamic and static structures. The

structures include physical components like sensors and body parts, as well as net-
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cell behavi or system
bi ochem cal processes transfornmation processes
bi ochem cal structures electrical signals and states

genes behavi or programns
incom ng nateri al energy transduced by sensors
out goi ng materi al energy transduced by actuators
adaptation to cell adaptation to external

envi r onnent envi ronnment

Figure 1: Comparison between cells and behavior systems. Cells are guided in part by genes

whereas behavior systems are guided in part by a behavior program.

works, temporary states and electrical signals propagating in these networks. The
internal processes combine and transform signals. These transformation processes
are guided by a behavior program which is itself a (distributed) physical structure
and can thus be subjected to processes that change it. The transformation processes
are partially caused by energy coming from the outside through sensors which con-
vert this to internal energy and they produce signals impacting the actuators which
convert internal energy to mechanical energy so that there is a continuous in and
outflow of energy to the environment. Behavior systems that change their internal
structure and functioning are better adapted to the environment and may better
work together with other behavior systems. The main criterion for survival of a

behavior system is its utility for the complete agent.

This comparison between cells and behavior systems illustrates several points. (1) It
emphasises in the first place that the components of behavior systems are physical
systems and that behavior is a physical phenomenon. There are extreme function-

alist tendencies in Al (and also in Alife) that equate intelligence or living with
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disembodied abstractions, but this is not intended here. (2) The behavior programs
and the transformation processes can be interpreted in information processing terms,
but that is not necessary and may occasionally be harmful [107]. (3) The transfor-
mation processes can be implemented as computational processes but then only if
we remind ourselves that computational processes are physical processes, that hap-
pen to be instantiated in a physical system of a certain organisation that we call a

computer.

The comparison also emphasises the dynamical aspects. Like a cell, a behavior
system is continuously active and subjected to in and out flow of energy. Like a cell,
a behavior system adapts continuously to changes in the environment. Moreover
comparing behavior programs with genes immediately suggests the use of selectionist
principles as a way to arrive at new behavior systems without prior design (see

section 5.).

A concrete example for obstacle avoidance in an artificial agent may be helpful to
clarify the discussion (Fig. 2). Obstacle avoidance can be achieved by a behavior
system which maintains a certain distance from obstacles. The components of this
behavior system include a left and right infrared sensor, which emit infrared light
and capture the reflection coming from obstacles; a translational and rotational mo-
tor, which are connected with the wheels and can thus steer the robot left or right;
and a behavior program which causes processes to transform the changes in detected

infrared reflection into changes in the motor speeds. As already suggested in Brait-
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Figure 2: Typical robotic agent used in behavior-oriented Al experiments. The robot has a ring

of infrared sensors and a ring of bumper sensors. It has additional light sensors and microphones.
There is a translational motor for forward/backward movement and a rotational motor for turning
left or right. The agent has a central PC-like processor and dedicated hardware for signal processing

and interdevice communication.
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enberg [18], obstacle avoidance can be achieved by a direct coupling between infrared
reflection and rotational motor speed. If the amount of reflection increases on one
side, then the rotational motor speed going in the same direction increases. In a real
world environment adaptation is necessary because infrared reflection depends on
changing environmental circumstances (for example amount of background infrared
in the environment or battery level). Adaptation can here be achieved by incorpo-
rating structures that act as ‘weights’ on the effect of increased reflection. When the
weights become higher, less reflection will have a greater impact. The weights can
be subject to change depending on environmental conditions using Hebbian learning

mechanisms (see section 5).

3.2 Some guidelines are known for designing behavior sys-

tems.

At the moment, the design of behavior systems for artificial agents is very much an
art and the complexity reached so far is still limited. But there are some strong
tendencies among practitioners suggesting a set of design guidelines. Here are some

examples of these guidelines:
Guideline 1: Make behavior systems as specific as possible.

One of the important lessons from classical Al research is the specificity-generality
trade-off. More specific knowledge, i.e. knowledge more strongly tailored to the task

and the domain, is more effective than generic mechanisms, such as general problem
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solvers or universal representation schemes. Success in expert systems has depended
almost entirely on the encoding of situation-specific knowledge. This trade-off also
applies to behavior systems. Rather than trying to build a general purpose vision
module for example, it is much more effective to tailor the sensing and actuating to
a particular task, a particular domain, and a particular environment. Of course such
a solution will not work outside its ‘niche’. But it will perform well and in a very
cost effective way, as long as the conditions are appropriate. A good illustration
of this design guideline is a visual navigation system developed by Horswill [49].
He has shown that by making a set of strong assumptions about the environment,
the complexity of visual interpretation can be drastically reduced. One example
is the detection of the vanishing point which in theory can be done by identifying
edges, grouping them into line segments, intersecting the segments and clustering
on the pairwise intersections. Horswill shows that each of these activities can be
highly optimised. For example, although in general edge detection is complex and
computationally intensive, a simple algorithm based on a gradient threshold will do,
if the edges are strong and straight. This work goes in the direction of the theory of
visual routines [122], which has abandoned the idea that there is a general purpose
vision system and proposes instead a large collection of special purpose mechanisms

which can be exploited in particular behavior systems.

Specialisation and the pressure to act in real time suggests a horizontal organisation,

as opposed to a vertical or hierarchical organisation, typical for more classical ap-
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proaches [21]. In a vertical organisation, the different modules perform specific func-
tions like vision, learning, world representation, communication or planning. This
leads to a sense-think-act cycle which does not guarantee real-time response when
needed. In a horizontal organisation, every module combines all these functions
but specialised and optimised with respect to a particular behavior in a particular
environment. This is reminiscent of horizontal organisations now becoming more

common in corporations [93].
Guideline 2: Fxploit the physics.

Surprisingly, it is sometimes easier to achieve a particular behavior when the physics
of the world, the morphology of the body, and the physics of the sensors and the
actuators of the agent are properly exploited [21]. This is already the case for obsta-
cle avoidance. A robot may be equiped with bumpers which cause a (sudden) slow
down and an immediate retraction in a random direction. This may get the robot
out of situations which appear to be dead end situations in simulations. Another
good illustration of this design principle can be found in [129]. She has developed
a model in the form of an artificial system for navigation based on the phonotaxis
behavior of crickets. Webb points out that the determination of the direction in
crickets is not based on intensity or phase differences, which would require complex
neural processing, but on an extra tracheal tube which transfers vibration from one
ear to the other. The length and characteristics of this tube are such that the in-

directly arriving sound and the directly arriving sound interfere to give the final
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intensity, which varies strongly with the direction of the sound. This is an example
where “sensory mechanisms exploit the specificity of the task and the physics of
their environment so as to greatly simplify the processing required to produce the
right behaviour” ([129], 1093). Many more biological examples how physics may
‘solve’ problems, so that additional processing can be minimised, can be found in

[3] and [127].
Guideline 3: Do not think of sensing and acting in terms of symbol processing.

The classical Al approach has been criticised because the symbols and symbol struc-
tures on which planning and decision making are based are not grounded in the real
world [43]. The problem is that unequivocally decoding sensory data into a symbol
and turning a command without error into its intended action may be unsolvable;
not in principle but in practice. Behavior-oriented Al cannot escape the grounding
problem. But a novel solution is proposed. Rather than trying hard to establish a
better correspondence between symbols (like distance or turn with a given angle)
and the physical properties of the robot in the environment, it is also possible to
dispense altogether with the idea that a symbolic interpretation is necessary [107].
For example, rather than having a rule of the sort “if the distance is greater than
n, then turn away at a certain angle a”, a dynamical coupling between infrared
reflection and path deflection, implemented for example as differences between left
and right motor speed, can be set up. This coupling is designed without reference

to concepts like ‘distance’ and ‘turn away’. It is therefore truly subsymbolic.
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Guideline 4. Stmple mechanisms may give rise to complex behavior.

Another strong tendency in the field is to make the mechanisms underlying a be-
havior system as simple as possible and to rely strongly on the interactions be-
tween different mechanisms and the environment to get the required behavior. This
theme underlies other work in Artificial Life as well, and is related to the topic
of emergence which is discussed more extensively in section 4 and 5. This ten-
dency to search for simple mechanisms is particularly strong in the dislike of com-
plex ‘objective’” world models [22]. The de-emphasis of complex representations is
shared by researchers criticising cognitivism [125], and is related to the trend for
situated cognition [115], which hypothesises that intelligence is the result of sim-
ple situation-specific agent/environment mechanisms that are strongly adapted to
moment-to-moment decision making. Some biologists have called this the TODO
principle: do whatever there is to do at a particular moment, instead of making

complex representations and following elaborated plans [47].

It can be expected that many more design guidelines will become explicated as

experience in building robotic agents continues. Some more extensive overviews can

be found in [69], [22], [94], [66], a.o0.
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3.3 Different approaches are explored for designing the be-

havior programs.

Although there seems to be a consensus in the field that behavior systems are
appropriate units, different avenues are explored regarding the best way to design
the underlying behavior programs. They fall roughly in four groups: neural network

approaches, algorithmic approaches, circuit approaches, and dynamics approaches.
Neural networks approaches

Several researchers use artificial neural networks, in order to stay close to plausible
biological structures ([5], [27], [94]). This approach is strongly related to biologi-
cal cybernetics, and neuroethology [15]. A neural network consists of a set of nodes
linked together in a network. Each node receives input from a set of nodes and sends
activation as output to another set of nodes. Some inputs could come immediately
from sensors. Some outputs are linked with actuators. The links between nodes
are weighted. When the sum of the weighted inputs to a node exceeds a threshold,
activation propagates to the output nodes. There are many variants of neural net-
works, depending on the type of propagation and the adaptation mechanism that
is used for changing the weights [56]. Usually a single neural network (even with
multiple layers) is not enough to build a complete robotic agent. More structure is
needed in which different neural networks can be hierarchically combined. Several
architectures and associated programming languages have been proposed. One of

the best worked out examples is reported by Lyons and Arbib [62]. It centers around
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the schema concept [7].

An advantage of neural network approaches is that they immediately incorporate
a mechanism for learning. A disadvantage is that the global search space for an
agent is too big to start from zero with neural network techniques. Much more
initial structure must typically be encoded which is sometimes difficult to express

in network terms.
Algorithmic approaches

Other researchers have stayed closer to the methods traditionally used in computer
programming so that powerful abstraction mechanisms can be used to cope with
the complexity of programming complete robotic agents. One of the best known
examples is the subsumption architecture [19]. The subsumption architecture makes
two fundamental assumptions: (1) behavior programs are defined algorithmically,
(2) there is a hierarchical but distributed control between different behavior systems

based on subsumption relations.

The algorithmic descriptions in the subsumption architecture use a Turing-
compatible formalism in the form of an augmented finite state machine (Fig. 3).
An augmented finite state machine has a set of registers which can hold discrete
values. On a robot, some of the registers hold the most recent value obtained from
sensors. Others contain action parameters to be sent as fast as possible to the ac-
tuators. An augmented finite state machine also has a set of states in which the

automaton can be. Operations consist of changing the contents of a register or mov-
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ing to a new state. These operations can be controlled by first checking whether
a condition on the state of the registers is true. An important feature of the finite
state machines used by Brooks is access to a clock. This introduces an additional
kind of operation: wait for a certain period of time and resume operation after that.
It gives a handle on the difficult problems in fine-tuning the temporal aspects of

behavior.

o Fi n:;@ /_,_.

State . .

Machi ne \\

-

Figure 3: The augmented finite state automata have a set of internal registers, inputs and outputs,

and a clock. The automaton cycles through a set of states.

In a single agent there will be a collection of behavior systems whose behavior
programs are defined in terms of augmented finite state machines. The term sub-
sumption refers to the way different behavior systems are made to operate together.
It is assumed that in principle each behavior system is self-controlled, i.e. it is always
active and moving through its different states conditioned by the incoming sensory
signals. However one behavior system may inhibit that input values flow into the
automaton or that action parameters are sent to the actuators. Inhibition is done

by an explicit subsumption link which is under the control of the behavior system
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(Fig. 4, Adapted from [19]).

Ll up leg
trigger
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down pos Y advance
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Figure 4: Partial network of finite state automata for the locomotion of a 6-legged robot. The
boxes are state variables. Boxes with a line in the bottom right corner are finite state automata.
Alpha balance is another network. Nodes marked s establish a subsumption relation. For example

activation of ‘up leg trigger’ inhibits the inflow of ‘leg down’ to the ‘beta pos’ automaton.

In a concrete agent, the number and complexity of the finite state automata quickly
grows to hundreds of states and registers. A higher level language, known as the
behavior language [20], has therefore been designed to make the definition of large
collections of behavior systems possible. Many of the low-level details of program-
ming finite-state automata are thus removed and consequently more complex appli-
cations can be tackled. The behavior language and the subsumption architecture
have been implemented on various computational platforms (mostly of the 63000

family) in different robotic hardware structures.

The recognized advantages of the subsumption architecture are as follows: (1) a

universal computational formalism is used which gives a high degree of freedom and
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expressability to the developer, (2) subsumption allows the modular build up of new

competences by layering one behavior system on top of another.

Some of the disadvantages are: (1) algorithmic descriptions are more difficult to
acquire or adapt (although see the work on genetic programming by Koza [58] dis-
cussed in section 5.), (2) an algorithmic specification makes it more difficult to get
smooth behavior because conditions are expressed in terms of discrete thresholds,
(3) the subsumption relation works well for basic sensori-motor competence, like
6-legged locomotion, but seems weak to regulate the interaction of more complex

behavior systems which cannot be fined-tuned in advance.
Circuit approaches

A third approach stays closer to electrical engineering by assuming that behavior
programs, in order to be as efficient as possible, should take the form of combinatorial
circuits [2], [100]. This approach potentially leads to direct hardware implementation
using VLSI. A combinatorial circuit consists of a set of components which perform
a transformation from inputs to outputs. The outputs of one component may be
inputs to one or more other components, thus forming a network. Each component is
very simple, performing Boolean operations, equality tests, etc. On an autonomous
robot, the inputs would be connected to sensory signals and the outputs to action
parameters. Signals propagate through the network thus relating sensing to action.
A language (called REX) has been developed to describe circuits. Compilers and

interpreters exist which allow REX-defined circuits to run on physical robots.
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To make programming circuits more tractable, Rosenschein and Kaelbling [100] have
developed a higher level language which is based on a logical formalism known as
situated automata. A translator has also been developed that transforms expressions

expressed in this logical formalism into circuits.

A circuit approach has a number of advantages from an engineering point of view.
For example, performance can be predicted in terms of propagation steps needed.
However, the circuit is completely fixed at run-time and it is less clear how contin-

uous adaptation or the creation of new circuits can take place on-line.
Dynamics approaches.

Yet another approach is based on the hypothesis that behavior systems should be
viewed as continuous dynamical systems instead of discrete computational systems
as in the algorithmic approach. This dynamics approach has been put forward by a
number of researchers (see e.g. [107], [L14]). It is more in line with standard control
theory, which is also based on dynamical systems [42]. Artificial neural networks
are a special case of dynamical systems and can therefore be incorporated easily in

this paradigm.

An example of a worked out dynamics architecture is described in [114]. It supports
the formulation of processes and their combination in the design of complete be-
havior systems. Each process establishes a continuous relationship between a set of
quantities. The quantities are either sensory signals, action parameters, or internal

states. A process is always active. A collection of processes can be described in
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terms of a set of differential equations. Because of the implementation on digital
computers, the differential equations are turned into difference equations which can
be directly implemented, similar to the way cellular automata are discretised ver-
sions of continuous systems [120]. Each process partially determines the change to
a quantity enacted at the next time step, as a function of current values of the same
or other quantities. At each computation cycle, all the changes are summed and
the values of all the quantities take on their new values. The cycle time depends
on the speed of the processor and the number of processes. There is no addressable
global clock, as in the subsumption architecture. The complexity of the agent will
therefore be bound by its computational power. When the cycle time becomes too

slow, reactivity is no longer guaranteed.

A programming language PDL has been developed to make the implementation of
behavior systems using this dynamics architecture more productive (Fig. 5). The
PDL compiler links with the necessary low level software modules to handle sensory
input and action parameter output. It maintains the different internal quantities and
performs the basic cycle of determining all changes (by running the processes) and
then summing and enacting the changes. PDL has been implemented on different

PC-like hardware platforms for quite different robotic hardware structures.

void down_to_default_speed (void)

{

31



if (value(forward_speed) > 10)

add_value(forward_speed,-1);

void up_to_default_speed (void)
{
if (value(forward_speed) < 10)

add_value(forward_speed,1);

down to default
speed

f orward_speed

up to default
speed

Figure 5: Process descriptions in PDL implementing a process network that will maintain the

default forward speed at 10 by increasing or decreasing the speed in increments of 1.

A dynamics architecture approaches the problem of combining and coordinating
different behavior systems differently from the subsumption architecture. Control is
also distributed but one behavior system can no longer influence another one through
a subsumption link. Instead, each behavior system is active at all times and the

combined effect is added at the level of actions. For example, if one behavior system
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influences the motors strongly to go left and the other one weakly to go right, then
there will be a left tendency. The unsupervised combination of different behavior
systems poses no special problems when they are orthogonal. It also poses no
problem when temporal relations are implicitly present. For example, an infrared-
based obstacle avoidance behavior system will necessarily become active before a
touch-based obstacle avoidance behavior system because the infrared sensors will
‘see’ the obstacle earlier. No explicit control relations are therefore needed. When
behavior systems are not orthogonal or not temporally ordered by the interaction
dynamics, (partial) control of the actuators must take into account the fact that
other behavior systems will have an impact at the same time. In these cases the
interaction must be regulated by structural coupling [71] or co-adaptation: Behavior
systems develop in the context of other behavior systems and their internal structure
and functioning hence reflects this context. More complex control situations require
the introduction of motivational variables which causally influence behavior systems

and which have a dynamics on their own.

The advantages of a dynamics architecture are as follows: (1) The dynamical systems
paradigm is closer to descriptions used in physics, biology, and control theory. This
is an advantage because it makes it easier to carry over results from these fields (for
example on adaptive processes). (2) Dynamic control leads in general to smoother
behavior because it is not subject to sudden state changes due to discrete conditions.

(3) Additive control does not enforce a layering. All behavior systems are at the same
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level. In many cases, it is therefore easier to add behavioral competence than with
a subsumption architecture. In some cases, it is more difficult because a structural

coupling must be established.

Some of the disadvantages of a dynamics architecture are as follows: (1) Thinking
in terms of dynamical systems instead of algorithms requires quite a shift from
the viewpoint of developers who are used to algorithmic programming. Higher
level abstractions still need to be developed. (2) The developer cannot explicitly
control the timing of actions. This is an advantage because it removes one aspect of
complexity. It is also a disadvantage because the problem of timing must be handled
in different ways, for example by restructuring the behavior systems so that there is
as little cascading as possible, or by decomposing behavioral competences in other

ways.

There is still quite some work needed on additive control structures, particularly
for hierarchical behavior systems, i.e. behavior systems that control a set of other
behavior systems which are possibly internally temporally ordered. Work by Rosen-
blatt and Payton [99] and Tyrrell[?] shows the direction in which this is being

explored.

These four different approaches to the design and implementation of behavior pro-
grams (neural networks, algorithms, circuits, dynamical systems) will undoubtly be
explored further in the near future, and new approaches may come up. In any case,

all approaches need more high level abstractions to hide complexity and allow re-use
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of large chunks from one experiment to another.

4 Emergent Behavior

Agents can become more complex in two ways. First, a designer (or more generally
a designing agency) can identify a functionality that the agent needs to achieve, then
investigate possible behaviors that could realise the functionality, and then intro-
duce various mechanisms that sometimes give rise to the behavior. Second, existing
behavior systems in interaction with each other and the environment can show side
effects, in other words emergent behavior. This behavior may sometimes yield new
useful capabilities for the agent, in which case we talk about emergent functional-
ity. In engineering, increased complexity through side effects is usually regarded
as negative and avoided, particularly in computer programming. But it seems that
in nature this form of complexity buildup is preferred. Emergent functionality has
disadvantages from an engineering point of view because it is less predictable and
therefore appears less certain to a designer. Moreover the side effects are not always
beneficial. But for an agent operating independently in the world, it has advantages
because less intervention from a designing agency is needed. In fact, it seems the
only way in which an agent can autonomously increase its capability. This is why
emergent functionality has become one of the primary research themes in behavior-
oriented Al It is also the research theme that has the most connections to other

areas of Artificial Life.

35



4.1 Emergence can be defined in terms of the need for new

descriptive categories.

Many researchers in the Alife community have attempted to define emergence (see
for example [36], [59], [24], [111], [8]). For the present purposes, we will define
emergence from two viewpoints: that of the observer and that of the components of

the system.

From the viewpoint of an observer, we call a sequence of events a behavior if a certain
regularity becomes apparent. This regularity is expressed in certain observational
categories, e.g. speed, distance to walls, changes in energy level. A behavior is
emergent if new categories are needed to describe this underlying regularity which
are not needed to describe the behaviors (i.e. the regularities) generated by the un-
derlying behavior systems on their own. This definition is compatible with the one
used in chemistry and physics (see for example [88]). Thus the regularities observed
in the collective behavior of many molecules requires new categories like tempera-
ture and pressure over and above those needed to describe the motion of individual
molecules. Whether a behavior is emergent or not does not change according to
this definition, with respect to who acts as observer, nor is it related to an element
of unpredictability or surprise. Moreover it is not necessary that the two descrip-
tions (the emergent behavior and the behavior of the individual components) are at

different levels, although that is not excluded.
Emergence can also be defined from the viewpoint of the components implicated
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in the emergent behavior [111]. We can make a distinction between controlled and
uncontrolled variables. A controlled variable can be directly influenced by a system.
For example, a robot can directly control its forward speed, although maybe not
with full accuracy. An uncontrolled variable changes due to actions of the system
but the system cannot directly impact it, only through a side effect of its actions.
For example, a robot cannot directly impact its distance to the wall. It can only

change its direction of movement which will then indirectly change the distance.

We can also make a distinction between a visible variable and an invisible variable.
A visible variable is a characteristic of the environment which, through a sensor, has
a causal impact on the internal structures and processes and thus on behavior. For
example, a robot may have a sensor that measures distance directly. Distance would
then be a visible variable for this robot. An invisible variable is a characteristic of
the environment, which we as observers can measure but the system has no way
to sense it, nor does it play a role in the components implicated in the emergent
behavior. For example, the robot could just as well not have a sensor to measure

distance.

For a behavior to be emergent, we expect at least that the regularity involves an
uncontrolled variable. A stricter requirement is that the behavior (i.e. the regular-
ity) involves only invisible variables. So, when a behavior is emergent, we should
find that none of the components is directly sensitive to the regularities exhibited

by the behavior and that no component is able to control its appearance directly.
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A further distinction can be made between emergent behavior upon which the system
does not build further, and semantic emergence [24] or second order emergence [9],
in which the system is able to detect, amplify, and build upon emergent behavior.
The latter can only happen by operating on the behavior programs which causally
influence behavior, similar to the way genetic evolution operates on the genes. The
remainder of this section discusses first order emergence. The next section (section

5) looks at semantic emergence.

4.2 The most basic form of emergent behavior is based on

side effects.

The first type of first order emergence occurs as a side effect when behavior systems

are made to operate together in a particular environment (Fig. 6).

Consider the task of wall following. The behavioral regularity needed for this task
is to have a bounded distance between the agent and the wall. This regularity can
be achieved in a directly controlled, non-emergent way, by measuring the distance
and using feedback control to steer away or towards the wall. Note that in this case
the distance is required to describe the behavior causing wall following and that

distance is a visible variable.

Maintaining a distance from the wall can be achieved in an emergent way by the
simultaneous operation of two behavior systems (as demonstrated by Nehmzow and

Smithers [85]). The first one achieves regular obstacle avoidance, for example in
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Figure 6: Left. Emergent behavior occurs as a side-effect of the interaction between behaviors
and the environment. New descriptive categories are needed to describe it. Right. Example for
wall following resulting from the operation of the obstacle and wall seeking behaviors.

terms of a dynamic coupling between infrared reflection and deflection of the path as
described earlier. The second behavior system exhibits wall seeking. This behavior
system maintains an internal variable ¢ which reflects ‘the motivation of making
contact with the left wall’. The variable ¢ decreases to 0 when contact is made with
the left wall (sensed by infrared reflection) and moves up otherwise. It influences the
deflection of the forward motion path towards the wall. The higher ¢, the stronger
the deflection. The two behavior systems together implement an attraction and
repulsion behavior which added up and in the presence of a (left) wall gives the
desired (left) wall following behavior (Fig. 7). An analogous behavior system is

needed for making contact with a right wall.

Wall following is emergent in this case because the category ‘equidistance to the
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(left /right) wall’ is not explicitly sensed by the robot nor causally used in one of the

controlling behavior systems.

Figure 7: Emergent wall following implemented by an obstacle avoidance and a wall seeking
behavior system interacting together within a particular environment. The image is taken from
the ceiling and shows the robot arena. The path of the robot is automatically detected through a

camera.

Emergent behavior has two advantages compared to directly programmed behavior.
(1) No additional structure is needed inside the agent to get additional capabilities.
We therefore do not need any special explanations how the behavior may come

about. (2) Emergent behavior tends to be more robust because it is less dependent
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on accurate sensing or action and because it makes less environmental assumptions.
For example, the wall following mechanism described above continues to work even
if the robot is momentarily pushed aside, if the wall is interrupted, or if the wall has
a strong curvature. Emergent behavior usually has also disadvantages, for example,

it is typically less efficient.

Here is a second example of emergent behavior. Suppose we want an agent that
is able to position itself accurately between two poles which are part of a charging
station. The charging station has an associated light source and the agent has two
light sensitive sensors. The agent starts with two behavior systems: one based on
phototaxis resulting in a zig-zag behavior towards the light source (and therefore the
charging station), and one achieving obstacle avoidance by retracting and turning

away when sensing an obstacle.

Because the agent may approach the charging station from any direction, it might
seem that an additional positioning behavior is required, which makes sure that the
agent enters the charging station between the two poles. However, a positioning
behavior system is not necessary. The obstacle avoidance behavior causes retraction
and turning away when the poles are hit. Because the robot is still attracted by the
light source, it will again approach the charging station but now from a new angle.
After a few trials, the robot enters the charging station as desired. The positioning
behavior is emergent because position relative to the poles of the charging station

is irrelevant to describe the behavior of the implicated behavior systems (obstacle
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avoidance and phototaxis). There is no separate structure in the agent that is
measuring position with respect to the poles and causally influences motion based

on this measurement. The positioning behavior nevertheless occurs reliably without

any additional structure in the agent (Fig. 8).

Figure 8: Zig-zag behavior towards light source and positioning behavior between two poles of a
charging station located at the middle top of the figure. The positioning behavior is achieved in
an emergent way by the interaction of two behavior systems. One homing in on the light source

through phototaxis and the other performing touch-based obstacle avoidance.
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4.3 A second form of emergent behavior is based on spatio-

temporal structures

A second case of (first order) emergence is based on temporary spatio-temporal
structures (Fig. 9). These structures themselves emerge as a side effect of interac-
tions between certain actions of the agent and the environment. Local properties of
the temporary structure in turn causally influence the observed behavior. The tem-
porary structure is also emergent in the same sense as before, i.e. new descriptive
categories are needed to identify the structure. These categories are not needed to
describe the behavior of the underlying behavior systems that are causing the struc-
ture to appear nor are they sensitive to the structure as a whole. Also the behavior
that results from making use of the structure is emergent because new descriptive

categories are required that play no causal role in the underlying behavior systems.

tenporary used by conponent
structure —————— behavior systens
+ envi ronnent

si de{effect si de{effect
behavi or systens + ener gent
envi ronnent behavi or

Figure 9: A second type of emergence is based on the formation of a emergent temporary structure

which is then exploited by other behavior systems to establish the new emergent behavior.
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This phenomenon is most easily observed in multi-agent systems but can also be
used for establishing behaviors of a single agent. The classical example for multi-
agent systems is the formation of paths. It has been well studied empirically not
only in ant societies [91] but also in many other biological multi-element systems
[10]. It is also well understood theoretically in terms of the more general theory of
self-organisation [89]. The phenomenon has been shown in simulation studies [108],

[29], [32] and recently on physical robots [14].

The temporary structure in the case of path formation in ant societies is a chem-
ical pheromone gradient deposited in the environment. Ants are attracted to the
pheromone and therefore have a tendency to aggregate along the path. Ants deposit
the pheromone as they are carrying food back to the nest and are therefore responsi-
ble for the pheromone gradient in the first place. The pheromone dissipates so that
it will disappear gradually when the food source is depleted. This emergent tempo-
rary structure is the basis of a derived emergent behavior, namely the formation of
a path, defined as a regular spatial relation among the ants (Fig. 10). The path, as
a global structure, is emergent because it is not needed to describe the behavior of
the individual agents. Neither do any of the agents recognize the fact that there is a
path. The agents operate uniquely on local information of the pheromone gradient.
Only the observer sees the global path. The efficient transport of food benefits the

multi-agent system as a whole and thus contributes to its self-preservation.

A difference with the examples discussed in the previous paragraph is that the
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Figure 10: Path formation in ant societies is a classical example of emergent behavior due to the
formation of a temporary structure. The structure in this case is a chemical pheromone gradient

to which the ants are attracted.

emergent temporary structure sustains itself: As more ants are attracted to the
pheromone concentration, there is a higher chance that they will carry back food and
therefore deposit more pheromone. This increases the concentration of pheromone
which will attract even more ants, and so on. So there are three forces in the system:
build up of the path (by depositing pheromone), break down (by dissipation), and
autocatalysis (through the chance of increased build-up) (Fig. 11). These forces are
recognised as the essential ingredients for emergent temporary structures in general

[111],[59].

Emergent temporary structures have also been used in individual agents. For exam-
ple, several researchers have explored the creation of gradient fields over analogical
representations of the environment. The best known example are potential fields
[7], [6]. A potential field is a dynamical temporary structure created over an ana-

logical representation of the environment by various repulsion and attraction forces.
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Figure 11: Emergent phenomena usually involve a force that builds up the phenomenon, a force
that breaks it down, and an autocatalytic process so that the temporary structure builds upon

itself.

The attraction force may come from the location of the desired goal towards which
the agent wants to move. Repulsion may be generated by processes that are linked
to the sensing of obstacles. Locomotion is influenced by the combined impact of

attraction and repulsion forces (Fig. 12 from [7], p.99).

Other types of dynamics have been explored to generate and maintain emergent
temporary structures to aid in navigation, for example fluid mechanics so that a
fluid flow between the agent’s location in an analogical map and the goal location
emerges [28], or reaction-diffusion dynamics to generate concentration gradients that

can be exploited in navigation or movement control [109].

The creation of temporary structures through a self-organising mechanism that com-
bines build-up, break-down, and feedback giving rise to autocatalysis, has been used
also for other aspects of intelligent behavior. For example, Maes [64] describes an

action selection system (which maybe should be better called a motivational system )
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pot enti al

Figure 12: A potential field is a temporary structure created over an analogical representation of
the world. The structure consists of vector fields which can either attract or repell robot movement.
The sum of all the fields generates a path which the robot can follow. The example shows repulsion

from two obstacles and a left and right wall.

in which the strength of a motivation is subject to positive enforcement (for example
when the conditions for its satisfaction are sensed to hold) or negative enforcement
(for example if contradicting motivations are active). These two processes generate
a temporal ordering of the strength of motivations and consequently between the
strength with which an action should get priority in execution. There is also a feed-
back mechanism: as motivation builds up, it will be able to inhibit competitors more
effectively and thus gain additional strength. The temporary strength differences

can be used by a decision module to determine which action will be selected next.
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A particularly fascinating application of this mechanism for modeling spinal reflex
behaviors of the frog is reported by Giszter[39]. The behaviors include limb with-
drawal, aversive turns, and wiping away of noiceptive stimuli. The latter requires
for example different simpler component behaviors: optional flexion, then place mo-
tion and then whisk motion. Each of these has certain conditions that need to be
satisfied and each will make certain conditions true. If one behavior needs to be
executed (for example ‘place motion’) it will pass activation along its predecessor
link to ‘optional flexion” thus raising its level of activation. When flexion executes

it will establish conditions that make ‘place motion’ executable, and so on.

Another example of the creation of temporary emergent structures for a frame recog-
nition system is reported in [110]. Each frame has a particular strength which cor-
responds to the applicability of the frame in a particular situation. There is an
activation/inhibition dynamics and autocatalytic processes which create a temporal
ordering on the frames so that the most appropriate frame for the given situation

progressively gets the highest strength.

5 Emergent functionality

The examples in the previous section showed that complexity may arise as a side
effect of the operation of simpler mechanisms, but they do not indicate how there
could be a progressive build up of more complexity. The only way this can happen

is by the formation of new behavior systems. There is so far very little progress
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in this area and new ideas are needed. Lack of progress comes partly from the
practical difficulties in working with real physical agents, but these difficulties will
progressively be alleviated as the technology matures. The real challenge is to find
mechanisms which do not strain the limited resources of the agent and let the agent

remain viable in the environment as it builds up more complexity.

5.1 There are severe difficulties in using existing artificial

neural network techniques or evolutionary methods.

At first sight, it may seem that mechanisms developed in artificial neural network
research or genetic algorithms can be applied in a straightforward manner to the
development of new functionality in autonomous agents. This is however not the

case.

Let us first look at supervised learning, i.e. learning with the aid of examples or
counterexamples. One of the best known supervised learning algorithms is back
propagation [101]. Behavior programs could be represented as artificial neural net-
works associating sensory signals to actuator outputs. Changes in behavior programs
could then be based on the error between the desired outcome and the outcome de-
rived from using the association. For example, if X is a sensory signal, Y an action,
and w the weight with which X influences the action, then an error would be the
difference between the expected action and the action produced by Y = wX. There

exist methods for adapting the weights w, which will lead to convergence [98]. Con-
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vergence means that, given a consistent set of sense-act pairs, the learning method
will settle on a stable set of weights that ‘correctly’ relates X with Y. It can be
shown that certain functions (such as the XOR function) require a multi-layered
network [83]. The weights in multi-layered networks can still be learned if the error
is back-propagated through nodes at successive layers based on the relative contri-
bution of each node to the derived outcome [101]. See [56] (chap 5) for a review of

these and other supervised learning methods.

Although supervised learning methods have been demonstrated to be successful in
simulation experiments, their application to autonomous agents runs into several
problems. The first difficulty is that the methods require an adequate computation
of the error and therefore a good enough prediction of what the actual outcome
should be. A robot that is crashing into the wall gets feedback that there was a
control error but cannot necessarily compute what would have been the right control
actions to avoid the crash. Supervised learning methods therefore require a teacher
which is more intelligent than the agent. But this is in contradiction with the
objective of understanding how complexity might have arisen in the first place. A
second difficulty is that the dynamics of weight adaptation requires a large amount of
resources. The learning time grows very rapidly with the complexity of the network
and an unrealistically high number of presentations of the correct sense-act pattern is
typically required ([131], p. 87). A third difficulty is that not all networks will learn.

If the network is too complex (too many layers or too many nodes) or too simple, it
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will not be able to generalize. Too many presentations may degrade performance.
Moreover the input and output representation must be carefully chosen, increasing
the role of the designing agency ([131], 87). These difficulties explain why no one has
as yet been able to convincingly use supervised learning methods on autonomous

physical robots.

Another major neural network mechanism is known as reinforcement learning [118].
Reinforcement learning methods increase (and decrease) the probability that a par-
ticular association between sensing and acting will be used, based on a reward or
reinforcement signal. The reinforcement signal is produced as a direct or indirect
consequence of the use of the association. Many different associations may play a
role in a particular behavior, and there may be a delay between a behavior and
its (positive or negative) consequences. This introduces a credit assignment prob-
lem [82]. Early proposals ranked the possible situation-action associations, selected
the best one (possibly with some variation to avoid local minima), and increased
or decreased the probability of future choice depending on the effect of the chosen
action ([132], [12]). More recent mechanisms go in the direction of having the agent
develop a more sophisticated representation of the result of an action. For example,
a prediction of reward is introduced, or a prediction of (long-term) cumulative re-
ward, i.e. return [118]. A technique useful for learning temporal chains is to hand
out reinforcement to the last action and from there back to previous associations

which played a role. This technique is known as the bucket brigade algorithm and
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originally due to [46].

Reinforcement learning methods have been shown to be capable of impressive learn-
ing behavior in simulations or engineering contexts [81], but there are again serious
difficulties in the application to physical autonomous agents. The first major diffi-
culty lies in the determination of the reinforcement signal. It is unrealistic to assume
that the agent gets a clear scalar reinforcement signal after each action or series of
actions. The second difficulty is that reinforcement learning assumes a trial-and-
error search to find a viable association. Unless the agent is already close to the
desired behavior, it may take quite a while before such an association is discovered
[52]. The third difficulty is the credit assignment problem. Proposed solutions all
go in the direction of new complexity (in the form of models of return, or in more
recent cases world models predicting return [118], [61]). Often many simplifying
assumptions are made about the nature of sensory interpretations or actions. For
example, most methods assume that it is possible to select each time the ‘best’ ac-
tion. But agents always execute several actions at the same time and in many cases
actions (like turn left) are abstractions from the viewpoint of the designer which
do not correspond to explicit commands in the robot, particularly not in dynamics
architectures. Despite these difficulties, there are some preliminary experiments on
physical mobile robots ([67], [52]). The general conclusion seems to be that “current
reinforcement-learning algorithms can be made to work robustly on simple problems,

but there are a variety of dimensions in which they must be improved before it will
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be possible to construct artificial agents that adapt to complex domains” ([52], p.

16).

Supervised learning or reinforcement learning are both constructivist techniques:
they modify weights based on minimising the error or on reinforcement. The al-
ternative is known as selectionism: a complete behavior system is generated, for
example by mutation or recombination based on existing behavior systems, and
then tested as a whole. This mechanism is similar to evolution by natural selection

as operating on the genes.

Evolutionary development has been shown in other areas of Artificial Life to be an
extremely powerful source for generating more complexity (see e.g. [96]). It has
also been proposed by some neurobiologists to be the major mechanism underlying
the formation of new structure (and therefore functionality) in the brain [33], [25].
Evolutionary algorithms have been worked out in great detail and studied from
a mathematical point of view (see the review in ([11]). The major variants are
genetic algorithms [40] usually operating on classifier systems [45] and evolution
strategies [103]. Applications have focused mostly on parameter optimization [63].
More recently, higher level descriptions as opposed to bitstrings have been used for
the representation of the algorithm that needs to be derived and as a result more

complex algorithms have been generated [58].

Evolutionary techniques start from a population of individuals (which in the present

case would be equal to behavior systems) which each derive a different solution in
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the space of possible solutions. The population is initialized in an arbitrary fash-
ion. There is a fitness function which is defined over the space of all individuals.
Individuals with higher fitness reproduce more often and thus the distribution of
individuals of a certain type in the population changes. Reproduction means that
copies are made, possibly after mutation (which introduces a random change), or
recombination (which combines parts of two algorithms). Because mutation and
recombination may potentially result in a better algorithm and because this algo-
rithm will then be further reinforced by the selection step, the overall process evolves

towards better and better regions of the search space.

Although this technique has resulted in very impressive results in an engineering
context, the application to the development of autonomous agents poses some serious
difficulties. The first problem is that genetic evolution requires quite a number of
computational resources. The different individuals in the population need to be
represented in memory and a large number of cycles is required to arrive at working,
let alone optimal, solutions. This is a problem for a robot which has to remain
viable, and thus maintain real-time responses within limited resource constraints.
Consequently most researchers so far follow an off-line approach ([26], [57]). The
genetic algorithm runs on a computer external to the robot. When a valid solution
is found, it is loaded and integrated in the other behavior systems. Thus Koza
[57] has shown how to derive the behavior programs for wall following and obstacle

avoidance which were earlier demonstrated to function on a real robot programmed
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in the subsumption architecture [70]. The primitive building blocks of the behavior
programs are in this case the sensory inputs and action parameter outputs, Boolean
connectives, conditionals, and the subsumption primitives. Brooks [23] has however
criticised these results, mostly because the primitive building blocks were well chosen
(based on an analysis of a known solution) and simplifying assumptions were made

concerning the Boolean nature of certain conditionals.

Off-line evolution creates a new problem, which is the gap between the virtual world
of the simulator and the real world. Koza [57] uses a very simple virtual world. CIiff,
Husbands and Harvey [26] use a much more sophisticated simulation to test out the
fitness of a solution. But, as Brooks [23] points out, the gap between simulated and
real world will always remain quite large. One possible way out is to use the real
robot as soon as reasonable solutions have been discovered. An example application
of this technique is discussed in [105]. The application concerns the optimisation
of path planning. Each robot is assumed to have a (static) map of the world that
contains the obstacles and the goal towards which the robot needs to navigate. The
genetic algorithm is used to search for a path towards the goal. The path is then
executed and its quality evaluated with respect to effective use. Based on this new
evaluation and additional information derived from the execution of the path, a
new path is derived again using genetic techniques. The obvious problem with this
approach is that only few solutions can be tried which diminishes the chances that

a good solution is found in a genetic way.
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There is another yet more fundamental problem with current evolutionary tech-
niques which is the definition of the fitness function. The search towards a solution
critically depends on the prior definition of this fitness function. But this introduces
an important role for the designer. In the context of emergent functionality, we
expect that the fitness function should be subject to evolution and should be local
to the organism that evolves (as is indeed the case in [96]. Cariani [24] calls this

pragmatic emergence.

5.2 A selectionist approach may be the key for generating

emergent functionality.

Although convincing examples of emergent functionality on physical robots operat-
ing in the real world do not exist, we are beginning to see the glimpses of it and
breakthroughs can be expected soon. These examples build further on the tech-

niques discussed in the previous paragraphs but combine them in a novel way.

When we study synthetic examples of emerging complexity, like that of Ray [96], we
see that they are based on selectionist mechanisms and that they have in addition

two crucial features:

1. There is enough initial complexity to make a viable organism and there are many
diverse organisms. The build up of complexity is as much due to the competitive

interaction between organisms as to their interaction with the world.

2. The ecological pressures on organisms are real and come partly from other organ-
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isms. In other words, there are no predefined or static fitness functions or rewards,
as assumed in genetic algorithms and reinforcement learning. There is no teacher

around as assumed in supervised learning.

To make selectionism work for robots, it seems therefore appropriate to draw a
parallel between organisms and behavior systems. This means that we should not
concentrate on the acquisition of a single behavior system (e.g. for locomotion or
obstacle avoidance), but that there should be many diverse behavior systems which
are complementary but still in competition. Paradoxically it might be easier to
develop many behavior systems at once than to concentrate on one behavior system

in isolation.

Each behavior system, except for the basic reflexes, should remain adaptive, just
as each individual organism remains adaptive (within the bounds of the genotype).
New behavior systems begin their life by accessing the same or other visible variables
and the same or other controlled variables. The new behavior system monitors the
situation and adapts itself so as to have a similar impact on the controlled variables
as the base line behavior systems, but using other sensory modalities. The important
point here is that the generation of the new behavior system does not take place by

trial and error.

Most of the time, behavior systems will have a different functionality. If there are
behavior systems with the same functionality (for example obstacle avoidance), the

diversity should not lie in variants of the same approach to a solution, as in the
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case of genetic algorithms, but in fundamental differences in how the functionality
is approached (for example obstacle avoidance using touch-based reactive reflexes

versus obstacle avoidance using infra-red based classification).

We should also introduce real environmental pressures, such as limited internal en-
ergy availability, and real-time or memory constraints, in addition to real environ-
mental pressures such as limited external energy availability, avoiding of self-damage,
etc. These pressures should feedback on the formation or adaptation of behavior
systems. A behavior system is less competitive if the sensory patterns to which the
behavior system responds do not occur (for example its thresholds are too high),
if the time to make a decision on how to influence actuation is too long so that
the conditions for activation are no longer satisfied, if other behavior systems al-
ways override the influence on actuation, if many memory resources are needed, etc.
There may also be behavior systems that specialise in monitoring internal and ex-
ternal environmental conditions and act as a ‘reaper’ [96], weakening or eliminating

other behavior systems. An example of this is already shown in [86].

Large-scale experiments incorporating this approach do not exist yet. But reason
for the optimism that emergent functionality may be demonstrated soon, comes
from some initial experiments which show how new behavior systems may bootstrap
themselves in the context of other behavior systems. Let us look at one concrete
example in the context of obstacle avoidance. This example was first suggested and

tested in simulation by Pfeifer and Verschuere [94]. We have since done similar
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experiments on a real robot and with different sensory modalities in Brussels.

The base line behavior systems are:

Maintain a default speed in a forward direction.

Maintain a forward direction.

Reverse speed if touching an obstacle in the front.

o Turn away left if touched on the right side.

e Turn away right if touched on the left side.

Following a dynamics viewpoint, each of these behavior systems establishes a con-
tinuous relationship between sensory signals and action parameters. For example,
a positive default speed is maintained by increasing it, if it is below the default, or
decreasing it, if it is above. Reversing the speed is done by a sudden decrease of the
speed if a touch sensor is active. The positive default speed is then automatically

restored by the ‘maintain a positive default speed’ system.

The two emergent behavior systems (one that will do obstacle avoidance for obsta-
cles on the left and another one that will do the same for obstacles on the right) are
sensitive to the infrared sensors and they impact the rotational motor. They use
associative or Hebbian learning. In Hebbian learning, an association between two el-
ements (for example sensors and actuators) is made stronger based on co-occurrence
[44]. Tt is also made weaker, for example due to a constant forgetting rate. Asso-
ciative learning has been extensively studied in the artificial neural network field
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(reviewed in [56], chap 4)). In the present case, there will be a progressively stronger
association between particular states of the infrared sensors (determined by the en-
vironment) and particular action parameters of the rotational motor (determined
by the turn away left and turn away right behavior systems). We see thus a form
of classical conditioning with the touch sensors as the unconditioned stimulus, and

the infrared as the conditioned stimulus.

To get emergent functionality, an additional step is needed. The new behavior
systems so far perform the same activity as the base line behavior systems and are
therefore not yet competitive. A behavior system becomes competitive if it causes a
qualitatively different action which has an additional advantage for the agent. This
can happen in many ways. For example, the new behavior systems could involve
only some of the controlled variables so that some actions no longer take place,
giving an overall qualitatively different behavior, or a behavior system may sense
more quickly the upcoming situation and thus influence the action before the already

existing behavior systems.

In the present case, the infrared based obstacle avoidance system can become more
competitive because the infrared sensors have a further range than the touch sensors.
They can therefore react more quickly to the presence of obstacles. Due to the
progressive strengthening of the association, there will be a particular point in time
in which the infrared based behavior systems react earlier than the touch-based

ones. This is the point where the newly emergent functionality becomes visible.
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Without infra-red based obstacle avoidance, a reversing of speed took place so that
the robot is backing up while turning away. This reversal of speed is no longer
present when infrared based obstacle avoidance is strong enough because the agent
no longer touches the obstacles. Instead, we observe a deviation away from obstacles

(Fig. 13). This deviation is from the viewpoint of energy usage more beneficial to

the agent.

Figure 13: When the robot starts it bumps into obstacles and retracts based on a built-in touch-
based obstacle avoidance behavior system. Progressively it will associate infrared signatures with

rotational movement and no longer bump into obstacles.

The associative learning mechanism has an autocatalytic element because the trig-
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gering due to infrared itself also enforces the association. Thus the association
strengths in the new behavior systems feed on themselves and become progressively

stronger (Fig. 14).

Figure 14: Evolution of the weights based on Hebbian learning. The weights determine the
impact of the infrared sensors on the rotational motor. The increase feeds on itself. The decrease

due to constant forgetting is also clearly visible.

This is indeed an example of emergence, according to the earlier definitions. Different
sensory modalities are used compared to the original behavior systems, and there
is also a qualitatively different behavior which is more beneficial to the agent. The
example illustrates that emergent functionality is not due to one single mechanism
but to a variety of factors, some of them related to internal structures in the agent,

some of them related to the properties of certain sensors and actuators, and some
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of them related to the interaction dynamics with the environment.

Because the formation of the new behavior system here happens in the context of
other behavior systems, the agent always remains viable. For example, if the new
infrared based obstacle avoidance behavior systems fail, the touch-based solution is
still there and will immediately become active. Because the formation is guided by
existing behavior systems, it evolves quickly without trial-and-error or search. All

the time the agent remains viable.

It is obvious that more work is needed to achieve emergent functionality in physi-
cal autonomous robots, but current work exploring neural network techniques and
evolutionary algorithms gives a good starting point. Their integration into an over-
all selectionist approach where diverse behavior systems compete and co-adapt give

reasons for optimism.

6 Conclusions.

Behavior-oriented Al research has opened up an ‘artificial life route to artificial in-
telligence’. It has three aspects: First, the problem of intelligence is framed within
the general context of biology. Intelligent behavior is defined as maximising the
agent’s chances for self-preservation. Successful adaptation and learning is defined
as changes in the internal structure of the agent which maximise intelligence. Sec-

ond, the tasks being explored by behavior-oriented Al researchers are very different
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from those considered in classical Al. They center around sensori-motor competence
and the ability to operate autonomously in a dynamically changing environment.
Third, the models take inspiration from the way intelligent behavior appears to be
established in natural systems. It is hypothesised that the principles that underly
the living are also the ones that give rise to intelligent behavior. Many researchers
hope to contribute to biology by testing out in artificial models whether certain

biological hypotheses are plausible.

Behavior-oriented Al research made a slow start around the mid-eighties, but is
currently exploding. Many research laboratories have now acquired the competence
to build their own robots and to perform experiments. Rapid experimental progress
can therefore be expected in the coming five years, if only by pursuing further the
research lines that have been briefly summarised in this paper. What is particularly
needed are larger scale efforts: agents with many different behavioral competences
operating in ecosystems with a multitude of challenges, multi-agent systems with a
sufficient number and diversity of the agents, learning methods applied over suffi-
ciently long periods of time to get non-trivial build up of complexity, and so on. At
the same time, the experimental rigour needs to be increased so that quantitative

performance measures can be applied.

Given the current state of the art and the rapid evolution in mechanical engineering
and computer technology, we can also expect rapid technological progress, lead-

ing towards the first real world applications, possibly in the area of environmental
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monitoring, space exploration, or microsystems. In general, it takes about 10 years
before a technology becomes sufficiently accepted for serious real world applications.
Major hurdles are not only technical. In this respect, the state of the art of behavior-
oriented Al can be compared to that of knowledge engineering in the late sixties,
when the shift towards situation-specific knowledge and rule-based formalisms was
taking place. It took several decades to turn these results into a solid engineering
methodology and develop a number of well established industrial achievements, like

XCON for configuring computer installations [74].
Some open issues.

There are also many open problems beyond increasing the complexity of current
systems. One of them, that has hardly been addressed, concerns the relation between
the mechanisms used in behavior-oriented Al and those used in knowledge-oriented
Al Some researchers (on both sides) suggest that the other approach is irrelevant
to reach human-level intelligence. They then have to prove that their methods
will work all the way. Other researchers believe that the symbolic level exists as
an independent level, which is causally influenced by and causally influences the
dynamics level. No concrete proposals operational on physical autonomous robots
exist today to allow a technical discussion of the subject, but one day the problem

will have to be tackled.

Another question concerns adequate formalisation and theory formation. There is

already a wide literature with formal results for the mechanisms discussed earlier
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(error-driven learning, genetic evolution, etc.), but application to integrated phys-
ical agents operating in real world environments will require more work. Several
researchers have proposed a state-space approach for defining the dynamics of the
observed behavior and the internal operation of the agent (e.g., [77], [54], [37],
[119]). Once a state-space description is available, the concepts of dynamical sys-
tems theory (attractors, transients, recurrent trajectories, etc.) [1] can be used to
characterise qualitatively and quantitatively behaviors and internal structures like
perceptions, representations, and actions. Within this framework concepts like emer-
gent functionality can be formalised and the results of emergent functionality better
understood. At the same time work must proceed on developing formal theories to
characterise the challenges in ecosystems, the optimality of behavior, and thus the

chances of self-preservation of the agent [76].

The field of behavior-oriented Al research shows enormous signs of vitality. This
paper focused only on a few aspects, ignoring other topics such as multi-agent sys-
tems, communication and cooperation, the formation of new sensory modalities, and
so on. There is no doubt that major contributions can be expected in the coming

decade, particularly as the technical tools mature and more researchers get involved.
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