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Abstract
Background: APOBEC3 (A3) proteins deaminate DNA cytosines and block the replication of
retroviruses and retrotransposons. Each A3 gene encodes a protein with one or two conserved zinc-
coordinating motifs (Z1, Z2 or Z3). The presence of one A3 gene in mice (Z2–Z3) and seven in humans,
A3A-H (Z1a, Z2a-Z1b, Z2b, Z2c-Z2d, Z2e-Z2f, Z2g-Z1c, Z3), suggests extraordinary evolutionary
flexibility. To gain insights into the mechanism and timing of A3 gene expansion and into the functional
modularity of these genes, we analyzed the genomic sequences, expressed cDNAs and activities of the full
A3 repertoire of three artiodactyl lineages: sheep, cattle and pigs.

Results: Sheep and cattle have three A3 genes, A3Z1, A3Z2 and A3Z3, whereas pigs only have two, A3Z2
and A3Z3. A comparison between domestic and wild pigs indicated that A3Z1 was deleted in the pig
lineage. In all three species, read-through transcription and alternative splicing also produced a catalytically
active double domain A3Z2-Z3 protein that had a distinct cytoplasmic localization. Thus, the three A3
genes of sheep and cattle encode four conserved and active proteins. These data, together with
phylogenetic analyses, indicated that a similar, functionally modular A3 repertoire existed in the common
ancestor of artiodactyls and primates (i.e., the ancestor of placental mammals). This mammalian ancestor
therefore possessed the minimal A3 gene set, Z1-Z2-Z3, required to evolve through a remarkable series
of eight recombination events into the present day eleven Z domain human repertoire.

Conclusion: The dynamic recombination-filled history of the mammalian A3 genes is consistent with the
modular nature of the locus and a model in which most of these events (especially the expansions) were
selected by ancient pathogenic retrovirus infections.
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Background
Mammalian APOBEC3 (A3) proteins have the capacity to
potently inhibit the replication of a diverse set of reverse-
transcribing mobile genetic elements [1-5]. Susceptible
exogenous retroelements include lentiviruses (HIV-1,
HIV-2, several strains of SIV and FIV), alpharetroviruses
(RSV), betaretroviruses (MPMV), gammaretroviruses
(MLV), deltaretroviruses (HTLV), foamy viruses and the
hepadnavirus HBV (e.g., [6-14]). Susceptible endogenous
retroelements include the yeast retrotransposons Ty1 and
Ty2, the murine endogenous retroviruses MusD and Pmv,
the murine intracisternal A particle (IAP), the porcine
endogenous retrovirus PERV and, potentially, extinct ele-
ments such as chimpanzee PtERV1 and human HERV-K,
all of which require long-terminal repeats (LTRs) for rep-
lication [15-23]. In addition, some A3 proteins can also
inhibit L1 and its obligate parasite Alu, retrotransposons
that replicate by integration-primed reverse transcription
[24-30]. An overall theme is emerging in which most – if
not all – retroelements can be inhibited by at least one A3
protein.

However, it is now equally clear that the retroelements of
any given species have evolved mechanisms to evade
restriction by their host's A3 protein(s). For instance, HIV
and SIV use Vif to trigger a ubiquitin-dependent degrada-
tion mechanism, foamy viruses use a protein called Bet for
an imprecisely defined inhibitory mechanism and some
viruses such as MPMV, HTLV and MLV appear to employ
a simple avoidance mechanism (e.g., [6,31-34]). Thus, it
appears that all 'successful' retroelements have evolved
strategies to resist restriction by the A3 proteins of their
hosts.

The defining feature of the A3 family of proteins is a con-
served zinc(Z)-coordinating DNA cytosine deaminase
motif, H-x1-E-x25–31-C-x2–4-C (x indicates a non-conserved
position [35,36]). The A3 Z domains can be grouped into
one of three distinct phylogenetic clusters – Z1, Z2 or Z3.
(Figure 1 & Additional File 1). The Z-based classification
system, proposed originally by Conticello and coworkers
[35], was revised recently through a collaborative effort
[37]. From hereon, the new A3 nomenclature system will
be used. Z1 and Z2 proteins have a SW-S/T-C-x2–4-C
motif, whereas Z3 proteins have a TW-S-C-x2-C motif. Z1
and Z2 proteins can be further distinguished by H-x1-E-x5-
X-V/I and H-x1-E-x5-W-F motifs, respectively. Z1 proteins
also have a unique isoleucine within a conserved RIY
motif located C-terminal to the zinc-coordinating resi-
dues. At least one protein of each of the Z classes and
nearly all identified A3 proteins have exhibited single-
strand DNA cytosine deaminase activity. For instance,
human A3F, A3G and A3H possess catalytically compe-
tent Z2, Z1 and Z3 domains, respectively (e.g., [38-41]).

We previously reported a double-domain A3Z2-Z3 gene
(formerly called A3F) from the artiodactyls, sheep (Ovis
aries), cattle (Bos taurus) and pigs (Sus scrofa) [42]. How-
ever, the fact that mammals have varying numbers of A3
genes (e.g., 7 in humans and only 1 in mice) led us to
wonder whether additional A3 genes would be present in
artiodactyls. To address this point and to learn more
about the evolution and functionality of A3 genes in
mammals, we sequenced and characterized the full A3
repertoire of sheep and pigs. Here, we demonstrated that
sheep and cattle actually have three A3 genes, A3Z1, A3Z2
and A3Z3, with a conserved potential to encode at least
four active and distinct proteins (A3Z1, A3Z2, A3Z3 and
A3Z2-Z3). We further showed that porcine lineage has a
deletion of the orthologous A3Z1 gene and the capacity to
encode only three proteins. These data enabled us to
deduce that the common ancestor of artiodactyls and pri-
mates possessed an A3 repertoire consisting of three Z
domains (Z1, Z2 and Z3). Our data further suggested an
evolutionary model in which most of the human A3 gene
expansion occurred more than 25 million years ago, dur-
ing early primate evolution and possibly even associated
with pathogen-induced population bottlenecks.

Results
Sheep and cattle have three A3 genes with a Z1-Z2-Z3 
organization
We previously used degenerate PCR, RACE and database
mining to identify a cDNA for sheep A3Z2-Z3 (formerly
called A3F; [42]). However, because humans have seven
A3 genes and mice have only one, we postulated that arti-
odactyls such as sheep and cattle might have an interme-
diate number. To address this possibility unambiguously,
we sequenced the entire sheep A3 genomic locus. First, a
sheep A3Z2-Z3 cDNA was hybridized to a sheep BAC
library to identify corresponding genomic sequence. Sec-
ond, hybridization-positive BACS were screened by PCR
for those that also contain the conserved flanking genes
CBX6 and CBX7. One BAC was identified that spanned
the entire CBX6 to CBX7 region, and it was sheared, sub-
cloned, shotgun sequenced, assembled and analyzed
(Methods).

DNA sequence analyses revealed that the sheep genomic
locus contained another A3 gene between CBX6 and A3Z2
(Figure 2A). This gene was called A3Z1, because it had
sequence characteristics of a Z1-type A3 protein. We there-
fore concluded that sheep have three A3 genes and,
importantly, that each mammalian A3 Z-type was present.
This conclusion was supported by the bovine genome
assembly, which was released during the course of our
studies and showed that cattle also have a sheep-like,
three gene A3 repertoire (Figure 2A; Btau_4.0 http://
www.hgsc.bcm.tmc.edu/projects/bovine/). The predicted
A3Z1 coding sequences of sheep and cattle are 86% iden-
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tical, consistent with the fact that these two ruminant arti-
odactyls shared a common ancestor approximately 14–25
million years ago (MYA) [43-45].

The pig has two A3 genes with a Z2–Z3 organization
PCR reactions failed to identify an A3Z1-like gene in pigs.
Since pigs and cattle/sheep last shared a common ancestor
approximately 70–80 MYA [43,44], we considered the
possibility that the negative PCR result was not a technical
failure and that pigs might actually have a different A3
repertoire. Again, to unambiguously address this possibil-
ity, the pig A3 genomic locus was sequenced in entirety. A
porcine BAC library was probed with pig A3Z2-Z3 cDNA

and two hybridization-positive BACS were shotgun
sequenced. The sequence assemblies revealed that pigs
have only two A3 genes A3Z2 and A3Z3 between CBX6
and CBX7 (Figure 2A).

The cattle, sheep and pig A3 locus genomic sequences
were compared using dotplot analyses (Figure 2B & Addi-
tional File 2). A 22 kb discontinuity was detected between
the cow and the pig sequences. The sheep and pig
genomic sequences aligned similarly. Multiple (likely
inactive) retroelements were found to flank A3Z1 in sheep
and cattle. Two were particularly close to the ends of the
22 kb A3Z1 region, a LINE/L1 and a SINE/tRNA-Glu. It is

The mammalian A3 Z domains form three distinct phylogenetic groupsFigure 1
The mammalian A3 Z domains form three distinct phylogenetic groups. Bootstrap values are indicated in red. The 
scale bar represents 0.1 nucleotide changes per codon. See the Methods for details. Abbreviations for mammals: Hs = human, 
Bt = cow, Oa = sheep, Ss = pig, Tt = peccary, Ec = horse, Cf = dog, Fc = cat, Mm = mouse and Rn = rat. Other abbreviations: 
n = amino terminal domain and c = carboxy terminal domain.
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possible that one of these elements mediated a simple
direct repeat recombination event that deleted the A3Z1
region in pigs. However, we were unable to identify such
a causative retroelement in the pig genomic sequence.

To begin to address whether the potential A3Z1 deletion
in pigs occurred recently (e.g., a rare deletion fixed by
selective breeding) or whether it was more ancient, we
asked whether a non-domesticated, distant relative of the

The A3 genomic repertoire of sheep, cattle and pigsFigure 2
The A3 genomic repertoire of sheep, cattle and pigs. (A) An illustration of the A3 genes of the indicated mammals. Z1, 
Z2 and Z3 domains are colored green, orange and blue, respectively. The conserved flanking genes CBX6 and CBX7 are shown 
and the scale is indicated. Solid lines represent finished sequence and dotted lines represent gaps or incomplete regions. Non-
mammalian vertebrates such as frogs lack A3 genes. (B) A dotplot analysis shows A3Z1 in cattle but not in pig genomic 
sequence. The x- and y-axis numbers designate nucleotide positions within the indicated genomic consensus sequences. (C) 
PCR analysis of genomic DNA from the indicated species showing that a 250–256 bp Z1-specific amplicon can only be obtained 
from a subset of mammals. The human 51 and 54 cycle amplicons were too abundant to be run on the same gel. Monkey 
genomic DNA is from the African green monkey. The ALDOA gene was used as a positive control (115 bp).
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pig, the collared peccary (Tayassu tajacu), has an A3Z1
gene. Lineages leading to present-day domesticated pigs
and the peccary diverged approximately 25–35 MYA [43].
A pan-species, A3Z1 PCR primer set was developed and
used in these experiments. In contrast to human, African
green monkey, horse, cow and sheep genomic DNA which
yielded a 250–256 bp Z1-specific PCR products confirm-
able by DNA sequencing, the genomic DNA of domesti-
cated pig, the collared peccary, mice and opossum failed
to yield a product even after 54 cycles (Figure 2C). A
highly conserved gene, ALDOA, was used as a PCR control
to demonstrate the integrity of the genomic DNA samples.

Interestingly, Z1 PCR product sequencing and recently
released EST sequences revealed that the related hoofed
mammal, the horse, also has a Z1-type A3 gene (Figure 1C
& Additional File 3). Two-'toed' hoofed animals such as
sheep, cattle and pigs belong to the ungulate order artio-
dactyla (even-toe number), and one-'toed' hoofed ani-
mals such as horses belong to the ungulate order
perissodactyla (odd-toe number). Since these two ungu-
late orders diverged approximately 80–90 MYA [43,44]
and both have species with Z1-type A3 genes, it is highly
likely that the common ancestor also had an A3Z1 gene
(as well as A3Z2 and A3Z3 genes). It is therefore highly
unlikely that an A3Z1 gene independently appeared at the
same genomic position in artiodactyls, perissodactyls and
primates. Rather, all of the data support a model where a
common ancestor of the domesticated pig and the col-
lared peccary experienced a 22 kb deletion that resulted in
the loss of A3Z1 (i.e., a divergent evolutionary model).
Furthermore, since artiodactyls, perissodactyls and
humans shared a common ancestor approximately 80–
120 MYA [43,44], the presence of Z1-type A3 genes in
both the primate and the artiodactyl limbs of the mam-
malian tree is also most easily explained by common
ancestry. Thus, our combined datasets indicated that this
ancestor possessed a full A3 Z repertoire, with one of each
type of Z domain (Z1, Z2 and Z3), the minimal substrate
required to evolve into the present-day eleven Z domain
human A3 locus (discussed further below).

The artiodactyl A3Z2 and A3Z3 genes combine to encode 
3 distinct mRNAs and proteins
We previously characterized several activities of the dou-
ble-domain A3Z2-Z3 protein from cattle, sheep and pigs
[42]. While re-confirming the 5' and 3' ends of the A3Z2-
Z3 transcripts by RACE, we discovered two interesting var-
iants that were conserved between these three species.
First, using sheep and cattle PBMC or cell line cDNA (FLK
and MDBK, respectively), 3' RACE frequently produced a
smaller than expected fragment. The sequence of this frag-
ment indicated the existence of a short 1037 bp transcript
due to premature termination 329 or 330 nucleotides into
intron 4 for sheep and cattle, respectively (Figure 3). This

truncated transcript was readily amplified from sheep and
cattle PBMCs and represented by existing EST sequences
(Additional File 3 and data not shown). Therefore, this
novel transcript was predicted to result in a single-domain
Z2 protein, A3Z2, with a length of 189 and 202 amino
acids for sheep and cattle, respectively (Figure 3 & Addi-
tional File 3). A pig A3Z2 transcript was also identified by
RACE and EST sequences but, in contrast to sheep and cat-
tle, exon 4 was spliced to two additional exons before ter-
minating prematurely (Figure 3 & Additional File 3). As a
consequence, pig A3Z2 was predicted to be 265 amino
acids. These analyses indicated that artiodactyls have the
capacity to express a single domain A3Z2 protein, in con-
trast to what we had deduced previously [42].

Second, 5' RACE data and cattle and pig EST sequences
suggested that yet another mechanism served to broaden
the coding potential of the artiodactyl A3 locus (Addi-
tional File 3 and data not shown). Several transcripts
appeared to originate from the region immediately
upstream of A3Z3, whereas our prior studies had only
detected transcripts originating upsteam of A3Z2 [42]. A
comparison of cDNA and genomic sequences revealed the
presence of an exon in this location (A3Z3 exon 1 in Fig-
ure 3). Transcripts initiating here produced 941 (sheep),
964 (cow) or 1003 (pig) nucleotide messages. The result-
ing A3Z3 protein was predicted to be 206 residues for
sheep and cattle and 207 for pigs (Figure 3).

The A3Z3 mRNA data strongly suggested the existence of
an internal promoter. This was supported by cis-regula-
tory element prediction algorithms, which identified a
conserved interferon-stimulated response element (ISRE)
upstream of A3Z3, as well as upstream of A3Z2 (Figure 3
& Additional File 4). These ISREs were strikingly similar to
those located in the promoter regions of human A3DE,
A3F and A3G, supporting the likelihood that interferon-
inducibility is a conserved feature of many mammalian
A3 genes (e.g., [8,46-49]). These putative ISREs significant
similarity to functional elements in known interferon-
inducible genes ISG54 and ISG15 [50-52]. We also pre-
dicted binding sites for another well-known transcription
factor, Sp1, upstream of the A3Z3 transcription start site.
This activator was also recently reported for human and
cat A3 genes ([53,54]; LaRue & Harris, data not shown).

Together with our previous data on the double domain A3
protein of these artiodactyl species, A3Z2-Z3 [42], these
expression and promoter data revealed that two single-
domain A3 genes can readily encode at least three distinct
proteins – A3Z2, A3Z3 and A3Z2-Z3. A similar strategy
may also be used by rodents, which also have an A3 gene
with Z2 and Z3 domains. A similar modularity was
reported recently for the cat A3 locus, where two single
domain A3 genes combined to produce a functional dou-
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The coding potential of the sheep, cow and pig A3 genesFigure 3
The coding potential of the sheep, cow and pig A3 genes. Z1, Z2 and Z3 domains are colored green, orange and blue, 
respectively. The exons are shown below the gene schematics with coding regions represented by filled boxes and untrans-
lated regions by open boxes. The gene schematics and exon blow-ups are drawn to scale. Arrows indicate approximate posi-
tions of predicted ISREs (Additional File 4). See the main text and the Methods for details.
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ble-domain A3 protein [54]. We suggest that combining
single-domain A3s to yield functionally unique double-
domain proteins may be a general strategy used by many
mammals to bolster their A3-dependent innate immune
defenses.

All four artiodactyl A3 proteins – A3Z1, A3Z2, A3Z3 and 
A3Z2-Z3 – elicit DNA cytosine deaminase activity
All currently described A3 proteins have elicited single-
strand DNA cytosine to uracil deaminase activity in one or
more assays (e.g., [24,41,42,54-59]). For instance, we
showed that the artiodactyl A3Z2-Z3 proteins could cata-
lyze the deamination of E. coli DNA and retroviral cDNA
[42]. However, catalytic mutants indicated that only the
N-terminal Z2 domain of cow, sheep and pig A3Z2-Z3
was active. This observation contrasted with data for the
double-domain human A3B, A3F and A3G proteins,
where the C-terminal domain clearly contains the domi-
nant active site (e.g., [30,38-40,42,60]). Nevertheless,
these datasets suggested that the double-domain A3 pro-
teins have separated function, with one domain predom-
inantly serving as a catalytic center and the other as a
regulatory center.

However, a recent study with human A3B indicated that
both Z domains have the potential to be catalytically
active [61]. It was therefore reasonable to ask whether the
single domain A3Z2 and A3Z3 proteins of artiodactyls
would be capable of DNA cytosine deamination in an E.
coli-based activity assay. Elevated frequencies of
rifampicin-resistance (RifR) mutations in E. coli provide a

quantitative measure of the intrinsic A3 protein DNA
cytosine deaminase activity (e.g., [38,40,56,57]). In con-
trast to full-length cow A3Z2-Z3, which triggered a modest
2-fold increase in the median RifR mutation frequency
over the vector control, non-induced levels of cow A3Z2
caused a large 50-fold increase (Figure 4A). The pTrc99-
based vector used in these studies has an IPTG-inducible
promoter, and induced levels of cow A3Z2 prevented E.
coli growth, presumably through catastrophic levels of
DNA cytosine deamination. In contrast, induced levels of
sheep or pig A3Z2 proteins were not lethal, but their
expression also caused significant increases in the median
RifR mutation frequency (Additional File 5 and LaRue &
Harris, data not shown). Thus, as anticipated by our prior
studies, the A3Z2 proteins of cattle, sheep and pigs
showed intrinsic DNA cytosine deaminase activity.

We were therefore surprised that induced levels of the cow
single-domain protein A3Z3 also caused a significant 4-
fold increase in the median RifR mutation frequency (Fig-
ure 4B). This result contrasted with the related Z3 protein
of humans, A3H, which appeared inactive in this assay
(Figure 4B & Additional File 3). However, it is worth not-
ing that other Z3-type A3 proteins, a different human A3H
variant, African green monkey A3H, rhesus macaque A3H
and cat A3Z3 (formally A3H), all showed evidence for
DNA deaminase activity in the E. coli-based mutation
assay and/or in retrovirus infectivity assays [41,54,62,63].
Thus, our intended human A3H control appears to be the
exception rather than the rule and that the single-domain

The artiodactyl A3 proteins catalyze DNA cytosine deaminationFigure 4
The artiodactyl A3 proteins catalyze DNA cytosine deamination. (A) Cow A3Z2 triggers a strong mutator phenotype 
in E. coli. RifR mutation frequency of 4–6 independent bacteria cultures expressing basal levels of indicated A3 proteins (each X 
represents data from a single culture). To facilitate comparisons, the median mutation frequency is indicated for each condi-
tion. (B) Cow A3Z3 triggers a modest mutator phenotype in E. coli. Labels and conditions are similar to those in panel (A), 
except IPTG was used to induce protein expression. (C) Non-induced cow A3Z1 triggers a strong mutator phenotype in E. coli, 
which is completely abrogated by substituting the catalytic glutamate (E58) for alanine. Labels are similar to those in panel (A).
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A3Z3 protein of artiodactyls is capable of DNA cytosine
deaminase activity.

We also observed that the artiodactyl A3Z1 protein was
capable of robust DNA cytosine deaminase activity (e.g.,
Figure 4C and LaRue and Harris, unpublished data). This
result was fully anticipated based on the fact that the
related Z1 domain proteins of humans A3A, A3B and A3G
are catalytically active [24,30,61,64]. However, it is worth
noting three observations suggesting that cow A3Z1 is the
most active of all reported A3 proteins. First, we were
never able to directionally clone (even non-induced)
A3Z1 of sheep or cattle into pTrc99A, which has a leaky
promoter. Second, we were only able to topoisomerase-
clone cow A3Z1 in a direction opposite to the lac pro-
moter (n > 12). Finally, even with cow A3Z1 in the pro-
moter-opposing orientation in the topoisomerase cloning
plasmid, we observed 100-fold increases in RifR mutation
frequency in the E. coli-based mutation assay that were
fully dependent on the catalytic glutamate E58A (presum-
ably due to expression from a cryptic promoter; Figure
4C). To summarize this section, all four of the A3 proteins
of artiodactyls demonstrated intrinsic DNA cytosine
deaminase activity.

A3Z1, A3Z2, A3Z3 and A3Z2-Z3 differentially localize in 
cells
Fluorescent microscopy was used to examine the subcellu-
lar distribution of each of the artiodactyl A3 proteins
fused to GFP. Like the human A3 proteins, which each
have unique overall subcellular distributions, we imag-
ined that distinct localization patterns might correlate
with differential functions. For instance, the first column
of Figure 5 shows representative images of live HeLa cells
expressing human A3F-GFP, A3A-GFP, A3C-GFP and
A3H-GFP, which predominantly localize to the cyto-
plasm, cell-wide with a nuclear bias, cell-wide and cell-
wide with a clear nucleolar preference, respectively. Cow
A3Z1-GFP showed an indiscriminate cell-wide distribu-
tion similar to that of human A3A-GFP and GFP alone
(Figure 5, second row and data not shown).

As shown previously, cattle and pig A3Z2-Z3-GFP localize
to the cytoplasm, with some cells showing bright aggre-
gates (Figure 5, row 1; [19,42]). Cattle and pig A3Z2 also
appeared predominantly cytoplasmic, but a significant
fraction clearly penetrated the nuclear compartment (row
3). The subcellular distribution of cattle and pig A3Z2 dif-
fered from the similarly sized Z2 protein human A3C,
which was cell-wide, and it is therefore likely that an
active process underlies the cytoplasmic bias of the artio-
dactyl A3Z2 proteins. Interestingly, the A3Z3 proteins of
cattle and sheep, like human A3H, localized cell-wide
with clear accumulations in the nucleoli (row 4). Similar
data were obtained using these GFP fusion constructs in
live cattle MDBK cells and in live pig PK15 cells (LaRue &

Harris, data not shown). These fluorescent microscopy
observations demonstrated that all of the artiodactyl A3
proteins can be expressed in mammalian cells and that
they have both distinct and overlapping subcellular distri-
butions.

The artiodactyl A3 genes show evidence for positive 
selection
Many human, non-human primate and feline A3 genes
show signs of strong positive selection, which can be
interpreted as evidence for a history filled with pathogen
conflicts [41,54,65,66]. However, given the relative stabil-
ity of the artiodactyl A3 locus, at least in terms of gene
number, we wondered whether the artiodactyl A3 genes
might be under less intense selective pressure (perhaps
even neutral or negative). This possibility was assessed
using two methods to compare the number of mutations
that resulted in amino acid replacements to the number
that were silent between pairs of artiodactyl species. This
ratio of replacement (dN) to silent (dS) mutations yields
an omega (ω) value, which if greater than one is indicative
of positive selection, if equal to one of neutral selection
and if less than one of negative selection. We focused
these analyses on the single exon that encodes the con-
served Z domain to minimize potentially confounding
effects from recombination.

We first generated a combined phylogeny for each distinct
A3 Z domain and its inferred ancestral sequences (Addi-
tional File 6). Using the PAML free ration model, the arti-
odactyl A3Z1 and the A3Z2 genes appeared to be under a
weak negative selection pressure, with ω values uniformly
below one (Additional File 6). Similarly, since the exist-
ence of the last common ancestor of cattle and sheep or of
the pig and peccary, the artiodactyl A3Z3 genes showed
evidence for weak negative selection pressure (Additional
File 6C). However, a comparison of the inferred ancestral
ruminant sequence with the inferred porcine sequence
yielded a ω value of 1.5, suggesting that the ancestor(s) of
modern day artiodactyls may have experienced intermit-
tent positive selection (Additional File 6C). These values
were not as high as those for primate A3Z3 (A3H data
originally reported by [41] and re-calculated here with a
representative clade shown in Additional File 6C). More-
over, all of these data contrasted sharply with the artiodac-
tyl and primate AID genes, which are under an obvious
strong negative selection pressure presumably for essen-
tial functions in antibody diversification.

However, because the free ratio model averages all possi-
ble sites and has a tendency to underestimate instances of
positive selection, we subsequently used PAML NsSites to
do a more focussed examination of artiodactyl A3 Z
domain variation. Several distinct selection models were
used (M2 and M8 and two codon frequency models F61
and F3 × 4), and each yielded significant signs of positive
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The subcellular distribution of cow and pig A3 proteins in comparison to human A3 proteins with similar Z domainsFigure 5
The subcellular distribution of cow and pig A3 proteins in comparison to human A3 proteins with similar Z 
domains. Representative images of live HeLa cells expressing the indicated A3-GFP fusion proteins are shown. The scale bar 
represents 25 μm.
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selection (Table 1; see Methods for procedural details and
Additional File 3 for sequence information). The Z3
domain A3 genes of sheep, cattle, pig, peccary and horse
showed the highest dN/dS ratios, ranging from 4.4 to 5.8
and indicating that 22–31% of the residues were sub-
jected to positive selection. Lower but still significant pos-
itive dN/dS ratios were obtained for the Z2 domain A3
genes (1.7 to 2.3 with 33 to 46% of the residues under
positive selection). Moreover, together with available dog
and horse Z1 sequences, the Z1 A3 genes of cattle and
sheep showed intermediate degrees of positive selection,
with dN/dS ratios of 2.5 to 3.9 and 28 to 50% of the resi-
dues under some degree of positive selection (Table 1 &
Additional File 3). Thus, similar to most other mammals
analyzed to date, the artiodactyl A3 genes have been sub-
jected to strong evolutionary pressure (see Discussion).

A3 Z domain distribution in mammals
Our studies strongly indicated that the present-day A3
locus of sheep and cattle resembles one that existed in the
common ancestor of placental mammals, consisting of
precisely one of each of the three phylogenetically distinct
Z domains: Z1, Z2 and Z3 (Figure 6; also see Figure 1 &
Additional File 3). Molecular phylogenetic data helped us
infer that such a common ancestor existed approximately
100–115 MYA [43,44]. However, the bulk of the primate
A3 gene expansion most likely occurred more recently
because the main branches leading to rodents and
humans split 90–110 MYA. It is therefore likely that
rodents lost a Z1 A3 gene after branching off of the main
mammalian tree (like pigs, cats and some humans; see
Figure 6 &Discussion). Moreover, the recently published
draft of the rhesus macaque genome helped to further
whittle-down when the bulk of the primate-specific

expansion occurred, because these animals also possess a
human-like A3 gene repertoire (Figure 6; [41,67,68] and
our unpublished data). Thus, since the human and
macaque lineages diverged approximately 25 MYA
[43,67,69], the massive expansion from the inferred
sheep/cow-like Z1-Z2-Z3 A3 gene set to a locus resem-
bling the present-day human repertoire must have
occurred within a relatively short 65–85 million year
period (indicated by an asterisk in Figure 6).

A minimum of 8 recombination events were required to 
generate the present-day human A3 locus from the 
common ancestor of artiodactyls and primates
The inferred ancestral Z1-Z2-Z3 locus was used as a start-
ing point to deduce the most likely evolutionary scenario
that transformed it into the much larger eleven Z domain
human A3 repertoire. Two types of recombination events
were considered, tandem duplications (obviously
required for A3 gene expansion) and deletions. Self-simi-
larities in the DNA sequence of the human A3 locus pro-
vided strong evidence for prior tandem duplications by
unequal crossing-over (for more details on tandem dupli-
cation modeling see [70,71]). This mode of evolution is
also supported by the fact that the human A3 locus con-
tains many retroelements that could serve as substrates for
homologous recombination [35]. Since our present stud-
ies showed that the Z domains are highly modular and
capable of individual function, they were considered as
the core units for duplications in our inference procedures
(i.e., an unequal cross-over event can simultaneously
duplicate one or more tandemly arranged Z-domains and
associated flanking sequences). Similarly, deletions could
involve one or more Z domains and result from unequal
crossing-over or intra-chromosomal events.

Table 1: Evidence for positive selection in the artiodactyl Z domains.

Z domaina Codon frequency modelb Comparison of null and positive selection 
modelsc

Significance Tree lengthd dN/dS (%)e

Z1 F61 M1–M2 p = 0.01 2.6 2.5 (50)
M7–M8 p = 0.01 2.6 2.5 (50)

F3 × 4 M1–M2 p = 0.04 3.9 3.9 (28)
M7–M8 p = 0.02 3.9 3.9 (33)

Z2 F61 M1-M2 p = 0.005 2.4 2.3 (46)
M7–M8 p = 0.004 2.4 2.3 (45)

F3 × 4 M1–M2 p = 0.3 3.0 1.7 (27)
M7–M8 p = 0.04 3.0 1.7 (33)

Z3 F61 M1–M2 p < 0.001 2.4 4.5 (30)
M7–M8 p < 0.001 2.4 4.4 (31)

F3 × 4 M1–M2 p < 0.001 3.1 5.8 (22)
M7–M8 p < 0.001 3.1 5.7 (23)

aOnly the sequences of Z domain-encoding exons were used in these analyses (see Table S1 for GenBank accessions).
bTwo different codon frequency models were used to minimize potentially artificial results.
cLikelihood ratio tests were done to compare the null models M1 and M7 to each positive selection model M2 and M8, respectively, using PAML 
NsSites.
dTree length provides a measure of nucleotide substitutions per codon along all combined phylogenetic branches.
eThe percentage of all codons influenced by positive selection is indicated in parentheses.
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An 8-event model for human A3 Z domain history is
shown in Figure 7 (see Additional File 7 for an alternative
representation). This model can be appreciated by consid-
ering the present-day human locus and then working
backward in time using highly similar local sequences
within the A3 locus, which provide 'footprints' for recent
recombination events. First, full-length A3A and the Z1
domain of A3B are 97% identical, and they are flanked by
nearly homologous ~5.5 kb regions (i.e., direct repeats of
95% identity). These footprints strongly suggested that a
recent duplication of two consecutive ancestral domains
(Z1–Z2) gave rise to present-day A3B (event 7). Second,
we inferred that this recent duplication resulted in a ves-
tigial Z2 domain upstream of A3C, which was subse-
quently deleted prior to the divergence of human and
chimpanzee lineages (event 8). Such a deletion event was
supported by the fact that ~3 kb regions of 92% identical
DNA reside upstream of the present-day A3B and A3C Z2

domains (these repeats lack similarity to other DNA
within the locus). Third, a 92% similarity between two
regions (~10 kb) encompassing the A3DE and A3F genes
suggested they originated from a recent duplication.
Moreover, a similar level of identity was found between
two other regions (~10 kb) encompassing the Z2 domains
of A3F and A3G. This strongly supported a common
ancestral origin for the N-terminal domains of the A3DE,
A3F and A3G genes (events 5 and 6). The likelihood of
these four relatively recent events suggested that the ances-
tral locus configuration prior to event 5 [Z1-(Z2)3-Z1–Z3]
was a key intermediate in the evolution of the primate A3
locus (event 4 product in Figure 7).

Unequal crossing-over events prior to the ancestral inter-
mediate were harder to infer because the footprints have
been erased by sequence divergence. We therefore devel-
oped an algorithm to compute the minimal series of

The distribution of A3 Z domains in mammalsFigure 6
The distribution of A3 Z domains in mammals. The common ancestor of the indicated placental mammals was inferred 
to have a Z1-Z2-Z3 A3 gene repertoire. Z1, Z2 and Z3 domains are colored green, orange and blue, respectively. A question 
mark specifies the original AID-like ancestor. An asterisk indicates the likely period in which the bulk of the primate A3 gene 
expansion occurred (see main text, Figure 7 and Additional File 7). Some humans are A3B deficient (minor allele; [75]). The 
boxed A3 Z domain repertoires constitute the minimal set inferred from incomplete genomic sequences and EST data (Addi-
tional File 3).
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An 8-event model for the duplication and deletion history of the human A3 repertoireFigure 7
An 8-event model for the duplication and deletion history of the human A3 repertoire. Z1, Z2 and Z3 domains are 
colored green, orange and blue, respectively. Five duplication and three deletion events were predicted to transform the 
ancestral locus into the present-day human A3 repertoire. The first event was predicted to occur between two copies of the 
ancestral Z1-Z2-Z3 locus. The Z domain(s) affected by each unequal crossing-over (UCO) event is shaded gray. The crossing-
over points are indicated by a dashed line arrows, and the resulting Z domain configurations are shown (we assumed that new 
configurations achieved homozygosity prior to being involved in a subsequent UCO). Although deletion events 3 and 4 are 
illustrated as interchromosomal UCOs, they could have also been caused by intrachromosomal events. Event 4 is depicted 
before an inferred 'intermediate ancestor' common to nearly all of our models and therefore considered parsimonious, but this 
event could have occurred any time after event 2. The underlying phylogeny for this model is identical to that shown in Figure 
1, except the N-terminal domain of human A3B diverged prior to the point at which the N-terminal domains of human A3F/
A3DE and A3G split. An alternative depiction of this model is shown in Additional File 7 and details can be found in the main 
text and Methods.
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duplication and deletion events that could have generated
this intermediate locus from the Z1-Z2-Z3 ancestor. Three
minimal scenarios were found and each involved 4
events. However, when phylogenetic data were consid-
ered, only one scenario was plausible and it involved a 2-
domain duplication, a 3-domain duplication and two sin-
gle domain deletions (respectively, events 1 to 4 in Figure
7 & Additional File 7). Thus, together with the events
detailed above, we inferred that the current human A3
repertoire is the product of 8 recombination events – 5
duplications and 3 deletions.

Theoretically, models with as few as 5 events are possible
if the likely intermediate locus configuration is ignored.
However, these models are also untenable as they clash
with phylogenetic and local sequence alignment data. It
should be noted that 8 events represent only a lower
bound to explain the evolution of the A3 human locus.
Scenarios involving more than 8 events could also lead to
the same domain organization, and some events may
have left no observable trace in the human lineage. Thus,
this lower bound could increase when the complete A3
locus sequence of more mammals, and especially more
primates, comes available. Finally, it is worth emphasiz-
ing that most (if not all) of the 8 recombination events
modeled here happened in the 65 to 85 million year
period between the points when the rodent and Old
World monkey (e.g., rhesus macaque) lineages split from
the phylogenetic branch that led to humans (the time
frame indicated by the asterisk in Figure 6).

Discussion
The present studies were initiated to gain a better under-
standing of the full A3 repertoire of three artiodactyl line-
ages – cattle, pigs and sheep – and to achieve insights into
the mechanism and timing of the A3 gene expansion in
mammals. We demonstrated that sheep and cattle have
three A3 genes, A3Z1 A3Z2 and A3Z3. However, the latter
two genes and their counterpart in pigs have the unique
ability to produce a double-domain protein A3Z2-Z3, in
addition to single-domain polypeptides. Thus, the A3 pro-
teome of these species is more formidable than gene
number alone would indicate. Our studies also help high-
light the important point that, although A3 proteins con-
sist of either one or two conserved Z domains, each of
these domains can function and evolve independently.

Prior to the present studies, it was clear that most (if not
all) placental mammals had Z2- and Z3-type A3 domains
(e.g., human, mouse, cat, pig, sheep and cow
[35,36,42,54,72]). It was far less clear how broadly the Z1
domain distributed. Here, we presented two critical lines
of evidence strongly indicating that the Z1 distribution is
equally broad and, importantly, that the common ances-
tor of placental mammals had a Z1-Z2-Z3 A3 gene reper-

toire, similar to that of present-day sheep and cattle. First,
the sheep and cattle A3 genomic sequences demonstrated
the presence of a Z1-type A3 gene outside of the primate
phylogenetic branches (Figure 6). Second, our pan-species
Z1 PCR data, public EST data and draft genomic
sequences from horses and dogs combined to show that a
A3Z1 gene exists in other parts of the artiodactyl-contain-
ing phylogentic branch set. These data supported a model
in which the common ancestor of the primate- and the
artiodactyl-containing mammalian super-orders, Euar-
chontoglires and Laurasiatheria, respectively, had a A3Z1
gene and precisely one of each of the three conserved Z
domain types (i.e., a divergent model for A3 gene evolu-
tion, as opposed to one in which A3Z1 genes evolved
independently in several limbs of the mammalian tree).
We have therefore established a critical foundation for
understanding the function(s) and evolutionary history of
the A3 repertoire of any other placental mammal.

It is noteworthy that our pan-species Z1 PCR analyses
failed to generate product from opossum genomic DNA
and that the recently released opossum and platypus
genomic sequences lack A3 genes (Figure 2C; [73,74]).
This is unlikely to be a gap in the DNA sequence assem-
blies because, like non-mammalian vertebrates, DNA and
protein searches clearly revealed the A3-flanking genes
CBX6 and CBX7 in both animals (LaRue & Harris, unpub-
lished data). Thus, unfortunately, these two interesting
non-placental mammals are unlikely to provide signifi-
cant insights into the earliest stages of A3 gene evolution
(i.e., pre-dating the Z1-Z2-Z3 ancestor described here).
Perhaps data from the other two placental mammal
super-orders, Afrotheria and Xenarthra (e.g., represented
by animals such as aardvarks and anteaters, respectively),
will help shed light on earlier stages of A3 gene evolution,
when presumably an AID-like gene transposed between
CBX6 and CBX7 and duplicated to give rise to the ances-
tral Z1-Z2-Z3 locus. Nevertheless, because all current data
indicate that the A3 genes are specific to placental mam-
mals, we hypothesize that a unique role of these genes
may relate to the placenta itself, where the A3 proteins
may function to help protect the developing fetus from
potentially harmful retrotransposition events and/or ret-
roviral infections.

A growing body of evidence indicates that the sole func-
tion of the A3 genes of mammals is to provide an innate
immune defense to retrovirus and retrotransposon mobi-
lization. This is supported by the fact that the single A3
gene of mice is dispensable and that many of the mamma-
lian A3 genes show evidence for a strong diversifying
selection ([10,41,65,66] and this study, Table 1).
Although the reason(s) are presently unknown, a large A3
repertoire is clearly more important for some mammals
than it is for others. Humans, chimpanzees and rhesus
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macaques have 11 Z domains, approximately 3- to 4-fold
more than any other known non-primate mammal (Fig-
ure 6). Indeed, our studies indicated that the ancestors of
humans and chimpanzees experienced at least eight Z
domain recombination events, which is more than the
total combined number of events for other known mam-
mals. Therefore, despite the fact that the artiodactyl A3
genes show evidence for positive selection, their relative
stability in copy number suggests that a considerable dis-
advantage – such as the potential to mutate genomic DNA
– may outweigh the innate benefit of having numerous
A3s to combat potentially invasive retroelements. This
possibility may very well relate directly to an emerging
trend in mammals, which is the frequent loss of a A3Z1
gene which encodes a protein that can penetrate the
nuclear compartment (e.g., Figure 5). An A3Z1 deletion
was shown here for pigs, inferred here for cats and mice/
rats, and demonstrated recently for some human popula-
tions (Figure 6 and [75]).

Finally, a major question is what selective pressure(s)
drove the A3 expansion from an ancestral Z1-Z2-Z3 reper-
toire to the present day human Z1-Z2-Z1-(Z2)6-Z1-Z3
repertoire? We propose that large-scale events such as
gene expansions were selected by extremely pathogenic or
lethal retroviral epidemics, because rare expansions
would have been easily lost amongst a population of non-
expanded alleles. A powerful selective pressure such as a
lethal epidemic has the potential to produce a population
bottleneck such that mostly (or only) pathogen-resistant
individuals would survive (i.e., those with the appropriate
disease-resistant A3 repertoire). Such powerful selective
pressures would have the potential to promote and per-
haps even cause speciation events. We further predict that
such events may be marked by changes in A3 Z domain
copy number. It is therefore quite plausible that at least
some of the eight recombination events required to trans-
form the ancestral Z1-Z2-Z3 repertoire into the present
day human Z1-Z2-Z1-(Z2)6-Z1-Z3 repertoire may have
protected our human ancestors from ancient retroviral
infections and thereby facilitated the evolution of pri-
mates (a process that we have termed primatification).

Conclusion
The A3 locus of sheep and cattle consists of three genes,
A3Z1, A3Z2 and A3Z3, and the potential to encode four
functional proteins, three directly and one (A3Z2-Z3) by
read-through transcription and alternative splicing. The
A3 locus of pigs experienced a deletion and therefore lacks
A3Z1. The artiodactyl A3 repertoire demonstrates a
unique modularity centered upon the conserved zinc-
coordinating motifs. DNA deaminase activity data and
subcellular localization studies suggest that this modular-
ity may also correspond to a broader functionality. All of

the data combined to indicate that the common ancestor
of artiodactyls and humans possessed a sheep/cattle-like
A3 gene set, with the organization and capacity to evolve
into the present day repertoires. The remarkable A3 gene
expansion in the primate lineage – from the three ances-
tral genes (A3Z1-A3Z2-A3Z3) to the present-day eleven Z-
domain human repertoire – was predicted to require a
minimum of eight recombination events, most of which
may have been required to thwart an ancient retroviral
infections.

Methods
Genomic DNA sequences
A combination of array hybridization, A3-, CBX6- and
CBX7-specific PCR was used to identify one A3-positive
BACs for sheep (CHORI-243 clone 268D23; a kind gift
from P. de Jong, BACPAC Resources Center, http://
bacpac.chori.org/library.php?id=162) and two for pigs
(RPCI-44 clones 344O17 and 408D3; [76]). E. coli were
transformed with these BACs, grown to saturation in 50
ml cultures and used for DNA preparations as recom-
mended (Marligen Biosciences). Purified BAC DNA was
sheared to an average of approximately 3000 bp (Hydros-
hear method, Genomic Solutions). Fragment ends were
blunted with T4 and Klenow DNA polymerases (NEB)
and ligated into pBluescriptSK- (Stratagene) or pSMART-
HC (Lucigen). Individual subclones were picked ran-
domly and sequenced (ABI3730; Applied Biosystems).
Phrap (P. Green, 1996, http://www.phrap.org/phred
phrap/phrap.html) and Sequencher 4.8 (Gene Codes
Corp.) were used to assemble DNA sequences and they
were groomed manually. Sequence coverage for the sheep
A3 locus averaged 4.5 sequences and the pig 27 sequences.
The genomic sequences were compared using Jdotter soft-
ware (http://www.jxxi.com/webstart/app/jdotter-a-java-
dot-plot-viewer.jsp; [77]). Repetitive sequences were iden-
tified using RepeatMasker http://www.repeatmasker.org.

A3 exons were identified by directly comparing the
genomic DNA sequences with cDNA, EST and RACE
sequences (below, Additional Files 3 &8 and [42]). Pre-
dicted ISREs were identified and compared using the
TransFac and Biobase databases through the softberry
NSITE portal http://www.softberry.com. The sheep CBX6
exons were identified with the help of GenBank EST
sequences EE808826.1, DY519385.1 and EE822736.1.
The pig CBX6 exons were also identified in this manner
using BP158234.1, BP997823.1 &BP153834.1. The sheep
and pig CBX7 exons were identified by homology to the
cow gene (below). Other CBX6 and CBX7, sequences,
respectively, were NM_014292.3 and NM_175709.2
(human), NM_001103094 and XM_604126 (cow),
NM_028763.3 and NM_144811 (mouse) and
NM_001016617.2 &NM_001005071 (frog).
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A3Z1 gene degenerate PCR analyses
Genomic DNA was isolated from the following tissues or
cell lines: opossum kidney tissue, mouse NIH-3T3 cells,
pig PK-15 cells, peccary brain tissue, cow MDBK cells,
sheep FLK cells, horse blood cells (PBMC), African green
monkey COS7 cells and human 293T cells (DNeasy, Qia-
gen). 10ng genomic DNA was used as template for PCR
using primers designed to anneal to all known A3Z1
genes: 5'-GCC ATG CRG AGC TSY RCT TCY TGG and 5'-
GTC ATD ATK GWR AYT YKG GCC CCA GC-3'. Two PCR
rounds were used to achieve the final number of cycles
(30 plus 18, 21 or 24 cycles). Amplicons were analyzed by
agarose gel electrophoresis, TOPO-cloned (Invitrogen)
and subjected to DNA sequencing. In all instances, the
expected A3Z1 fragments were recovered (e.g., Z1 of
human A3A, A3B and A3G could all be detected in a single
reaction). 30 PCR cycles using identical conditions and
degenerate primers for the ALDOA gene were used as a
positive control (5'-CGC TGT GCC CAG TAY AAG AAG
GAY GG-3' and 5'-CTG CTG GCA RAT RCT GGC YTA).

Identifying expressed mRNAs by RACE
RNA was extracted from fresh pig (Sus scrofa Landrance/
Yorkshire cross), sheep (Ovis aries Hampshire) and cattle
(Bos taurus Hereford) PBMCs using the QIAamp RNA
Blood mini kit (Qiagen). 5' and 3' RACE was performed
using reagents from the FirstChoice RLM-RACE kit
(Ambion). The protocol was modified slightly by using
SAP (Roche) instead of CIP to remove 5'-phosphates. A3
cDNA 5' and 3' ends were amplified using Phusion high-
fidelity polymerase (NEB), purified and TOPO-cloned
(Invitrogen). All A3-specific primers used in conjunction
with the 5' and 3' RACE primers are listed in Additional
File 8.

A3 expression plasmids
The pTrc99A-based E. coli expression plasmids for sheep,
cattle and pig A3Z2-Z3 and for human A3C and A3H were
reported previously [42,56]. Other pTrc99A-based con-
structs were made by ligating KpnI- and SalI-digested PCR
fragments into a similarly cut vector. Cow A3Z2 and A3Z3
were amplified from PBMC cDNA (above) using primers
5'-NNN NGA GCT CAG GTA CCA CCA TGC AAC CAG
CCT ACC GAG GC & 5'-NNN NGT CGA CTC ACC CGA
GAA TGT CCT C and 5'-NNN NGA GCT CAG GTA CCA
CCA TGA CCG AGG GCT GGG C & 5'-NNN NGT CGA
CCT AAA TTG GGG CCG TTA GGA T, respectively. Pig
A3Z2 was amplified from the USMARC1 cDNA library
[78] using primers 5'-NNN NGA GCT CAG GTA CCA CCA
TGG ATC CTC AGC GCC TGA GAC and 5'-NNN NGT
CGA CTC AGC GGT AAC AAA TCC.

Cow A3Z1 was a special case (see main text). It was ampli-
fied from PBMC cDNA (above) using primers 5'-NNN
NGA GCT CAG GTA CCA C CA TGG ACG AAT ATA CCT

TCA CT and 5'-NNN NGT CGA CGT TTT GCT GAG TCT
TGA G and TOPO-cloned into pCR-BLUNT-II-TOPO
(Invitrogen). As a control, human A3A was amplified
using 5'-NNN NGA GCT CGG TAC CAC CAT GGA AGC
CAG CCC AGC and 5'-NNN NGT CGA CCC CAT CCT
TCA GTT TCC CTG ATT CTG GAG and TOPO-cloned. Cat-
alytic mutant derivatives of the cow A3Z1 and human A3A
plasmids were constructed by site-directed mutagenesis
(Stratagene) using oligonucleotides 5'-CCT GCC ATG
CAG CGC TCT ACT TCC TG & 5'-CAG GAA GTA GAG
CGC TGC ATG GCA GG and 5'-GGC CGC CAT GCG GCG
CTG CGT TCT TG & 5'-CAA GAA GCG CAG CGC CGC
ATG GCG GCC, respectively.

The artiodactyl A3 proteins were expressed in Hela cells as
N-terminal fusions to eGFP (pEGFP-N3; Clontech). Cow
and pig A3Z2-Z3-eGFP and the human A3A-, A3C-, A3F-
and A3H-eGFP constructs were reported previously
[42,79]. Cow and pig A3Z2-eGFP plasmids were made by
cloning SacI/SalI-digested PCR products generated using
primers 5'-NNN NGA GCT CAG GTA CCA CCA TGC AAC
CAG CCT ACC GAG GC & 5'-NNN NGT CGA CCC CGA
GAA TGT CCT CAA G and 5'-NNN NGA GCT CAG GTA
CCA CCA TGG ATC CTC AGC GCC TGA GAC & 5'-NNN
NGT CGA CCC ACC TGG CGT GAG CAC C, respectively.
Cow and pig A3Z3-eGFP plasmids were made similarly
using primers 5'-NNN NGA GCT CAG GTA CCA CCA
TGA CCG AGG GCT GGG C & 5'-NNN GTC GAC TCC
AAT TGG GGC CGT TAG GAT and 5'-NNN NGA GCT
CAG GTA CCA CCA TGA CCG AGG GCT GGG CT & 5'-
NNN GTC GAC TCC TCT CGA GTC ACT TCT TGA, respec-
tively

Due to the toxicity of cow A3Z1 in E. coli, an A3Z1::intron-
eGFP plasmid was made by overlapping PCR to join 3
separate fragments: A3Z1 exons 1 and 2 (primers 5'-NNN
NGA GCT CAG GTA CCA C CA TGG ACG AAT ATA CCT
TCA CT and 5'-CCT GGA CTC ACC TTG TTG CGC), an L1-
derived intron ([80]; primers 5'-GTG AGT CCA GGA GAT
GTT TCA and 5'-CTG TTG AGA TGA AAG GAG ACA) and
A3Z1 exons 3–5 (primers 5'-CAT CTC AAC AGG GTT TGG
ATC A and 5'-NNN NGT CGA CGT TTT GCT GAG TCT
TGA G). The resulting PCR amplicon was digested with
EcoRI and SalI and then ligated into a similarly cut
pEGFP-N3 (Clontech).

RifR DNA deamination assays
Cytosine deaminase activity of the artiodactyl A3 protein
variants was measured by quantifying the accumulation
of RifR mutants in ung-deficient E. coli (e.g., [42,56]). All
A3 proteins were expressed from pTrc99A (AP Biotech),
with the exception of cow A3Z1 and human A3A, which
were expressed using pCR-BLUNT-II-TOPO (Invitrogen).
Experiments were done a minimum of three times, in the
presence or absence of IPTG as indicated.
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Fluorescence microscopy
To observe subcellular localization of A3 proteins, 5000
Hela cells were incubated for 24 h in Labtek chambered
coverglasses (Nunc), transfected with 200 ng of the
pEGFP-N3 based constructs and, after an additional 24 h
visualized on a Zeiss Axiovert 200 microscope at 400×
magnification. HsA3F, HsA3C, HsA3H, HsA3A, BtA3Z2-
Z3 and SsA3Z2-Z3 fusion constructs were previously
reported [19,42,79].

Phylogenies and positive selection calculations
Z domain exons were used for all phylogenetic, positive
selection and modelling studies. GARD showed no evi-
dence for recombination breakpoints within the Z
domain exons [81]. T_coffee version 5.31 was used for
multiple sequence alignments [82]. PAL2NAL software
was used to convert amino acid sequences to nucleotides
[83]. JalView was used to remove insertions/deletions
[84]. The dnaml program within the Phylip software pack-
age was used to generate a phylogenetic tree ([85]; an
identical tree was obtained with MrBayes version 3.1 [86],
except branch lengths differed slightly). Clustal W version
1.83.1 was also used for some individual domain compar-
isons [87].

Free ratio model positive selection studies were based on
a phylogenetic tree generated through Bayesian inference
using MrBayes version 3.1 [86]. Each tree was run for
250,000 generations with a burnin of 62,500 and stand-
ard default parameters. The PAML codeml program [88]
was used to generate dN/dS ratios (ω values) for phyloge-
netic tree branches. ω values from the free ratio model
using the F3 × 4 algorithm are shown in Additional File 6
(values from the F1 × 61 algorithm were similar and there-
fore not shown).

Positive selection was also evaluated in specific phyloge-
netic lineages using the NsSites model in the PAML
codeml program (Table 1). Individual Z domain phyloge-
netic trees were generated as described above and used in
these analyses. Z2 and Z3 comparisons were done for
sheep, cow, pig, peccary and horse sequences, and Z1
comparisons for sheep, cow, horse and dog sequences
(non-artiodactyl sequences were added for statistical sig-
nificance; GenBank accession numbers are in Additional
File 3). Models for neutral selection (M1 and M7) were
compared to those for positive selection (M2 and M8).
Likelihood ratio tests were performed to compare the null
and positive selection scenarios.

A3 gene expansion modelling
The aim was to infer the most likely histories of duplica-
tions and deletions that gave rise to the human A3 locus.
Instead of considering each gene as an individual element,

we subdivided it into its N-terminal and C-terminal Z-
domains. Hence, the present-day human locus configura-
tion was represented as follows: Z1-Z2-Z1-(Z2)6-Z1-Z3.
The considered duplications are 'multiple tandem dupli-
cations' resulting from unequal crossing over [70]. In
other words, a single duplication event can copy an arbi-
trary number of consecutive Z-domains, and place them
in the same order next to the original ones. Similarly, an
unequal crossing-over can remove an arbitrary number of
adjacent domains and cause deletions.

Various algorithms have been proposed to infer evolu-
tionary histories of tandemly arrayed gene families
[71,89-91], but none of them involve both multiple tan-
dem duplications and deletions. Consequently, we devel-
oped a brute force algorithm to enumerate all possible
evolutionary scenarios involving a minimum number of
duplications and deletions that can transform a particular
locus configuration into another. Such an exhaustive algo-
rithm has an exponential time complexity and it is
impractical for analyzing large gene families. However,
the limited size of the A3 locus and the classification of
the Z domains into three distinct categories made it useful
here (e.g., events 1 to 4 in Figure 7 & Additional File 7).

To infer the most recent evolutionary events (events 5 to
8 in Figure 7 & Additional File 7), we performed an anal-
ysis of the self-similarities within the human A3 locus. The
DNA sequence (hg18, chr22:37682569-37830946) with
identified interspersed repeats was downloaded from the
RepeatMasker web site http://www.repeatmasker.org. A
dot plot of this sequence with itself was obtained using
Gepard [92] to identify pairs of regions with very high
similarities. The three most significant were extracted and
further aligned using Blastz [93] with default parameter to
obtain the percentage of identity. These regions were used
to infer and model the most recent evolutionary events, as
described in the main text.

Data deposition
The GenBank accession number for the sheep A3 genomic
sequence is FJ042940. The GenBank accession numbers
for the two pig A3 genomic sequences are FJ042938 and
FJ042939. All A3 cDNA and EST sequences have also been
deposited (see Additional File 3 for a full list of GenBank
accession numbers).

Abbreviations
A.A.: amino acid; A3: APOBEC3; A3A: APOBEC3B; A3B:
APOBEC3C; A3C: APOBEC3C; A3DE: APOBEC3DE; A3F:
APOBEC3F; A3G: APOBEC3G; A3H: APOBEC3H; GFP:
Green Fluorescent Protein; PAML: Phylogenetic Analysis
by Maximum Likelihood; MYA: Millions of Years Ago; Z:
Zinc-coordinating motif
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