
Abstract. There is evidence that aspirin and other non-steroidal
anti-inflammatory drugs may be protective agents against
cancer in the gastrointestinal tract. These effects are particularly
well documented for the colon and rectum. Some epidemio-
logical and experimental studies have suggested that aspirin
could also be a chemopreventive agent against breast cancer.
We investigated the effects of the aspirin metabolite, salicylate
(SA), on 7,12-dimethylbenz[a]anthracene (DMBA)-DNA
adduct formation as well as on the expression of the enzymes
involved in the carcinogen bioactivation pathway, in particular
cytochrome P450 1A (CYP1A) and cyclooxygenases (COX-1
and COX-2). The effects of the test drug were examined in
both the human mammary carcinoma cell line, MCF-7, and
mammary cells derived from DMBA-induced rat mammary
tumours (RMTCs). In this study, we also reported the effects of
SA on cell growth and viability in breast cancer cells (BCCs).
The results demonstrated that DMBA-DNA adduct formation
in both cancer cell lines was inhibited by SA at concentrations
of ≥ 2.5 mM. CYP1A was undetectable in RMTCs while
CYP1A induction by ß-naphthoflavone in MCF-7 cells was
significantly inhibited by SA in a concentration-dependent
manner. Aspirin did not affect COX-1 expression in either of
the BCCs. COX-2 was not detected in MCF-7 cells, but its
expression in RMTCs was inhibited by SA treatment, which
also significantly reduced BCC growth, but failed to cause
cell death by necrosis or apoptosis. These data suggest that
inhibition of DMBA-DNA adduct formation may contribute
to aspirin breast cancer chemopreventive action and indicate
that this drug can act in the first stage of carcinogenesis.

Introduction

The high prevalence of breast cancer provides a strong rationale
for identifying new compounds, both natural and synthetic,
for use as cancer chemopreventive agents. There is evidence
that a variety of chemicals can inhibit, delay, and/or reverse
cancer induced by either environmental insults and/or life-style.
Non-steroidal anti-inflammatory drugs (NSAIDs) are among
the molecules that have emerged as promising candidates for
breast cancer prevention (1). Their chemopreventive action in
breast cancer has been suggested in several epidemiological
(2-11) and experimental studies (12-18). Different mechanisms
have been proposed to explain the antitumourigenic action of
NSAIDs, including inhibition of cell proliferation and angio-
genesis, stimulation and promotion of apoptosis, and inhibition
of cyclooxygenase-2 (COX-2)-mediated inflammation,
immunosuppression and enhanced invasiveness (19-31).
Many chemical agents with antitumourigenic properties can
modify the mutagenic and carcinogenic effects of environ-
mental carcinogens such as 7,12-dimethylbenz[a]anthracene
(DMBA). For the initiation stage of carcinogen-induced
tumourigenesis, a metabolic activation of the carcinogen to
reactive metabolites that bind covalently to DNA is required
(32). In particular, DMBA is biotransformed by cytochrome
P450s (CYPs) to electrophilic dihydrodiolepoxides leading to
DNA modifications, mutagenicity, and carcinogenicity. This
may proceed through a primary metabolic step carried out by
hepatic metabolism, or through complete metabolic activation
in the breast in situ, or a combination of both processes (33).
It has been reported that many xenobiotic metabolizing
enzymes are expressed in the breast and that cyclooxygenase
(COX), also referred to as prostaglandin H-synthase (PGHS),
may play an important role in carcinogen bioactivation in this
or other extrahepatic tissues (34). A variety of chemopreventive
agents have been shown to inhibit the in vivo formation of
DMBA-induced DNA adducts in rodent mammary cells
(35-44).

The main objective of this study was to investigate the
effects of the aspirin metabolite, salycilate (SA), on DMBA-
DNA adduct formation as well as on the expression of the
enzymes involved in the carcinogen bioactivation pathway,
in particular CYPs and COX. For this purpose we used the
human breast cancer cell line, MCF-7, because it derives from
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the mammary epithelium, the target tissue of DMBA, and
because carcinogen activation has been well characterized
in these cells (45,46). Furthermore, recent studies have
demonstrated that MCF-7 cells are similar to normal human
mammary epithelial cells with regard to expression and activity
of CYP1A1, the principal CYP isoform involved in DMBA
bioactivation in the liver (47-49). Since a recent in vivo study
has shown that SA inhibited DMBA-induced rat mammary
carcinogenesis (50), the same goal was pursued in mammary
cells derived from DMBA-induced rat mammary carcinomas
(RMTCs). In this work, we also reported the effects of SA on
cell growth and viability in breast cancer cells (BCCs). 

Materials and methods

DMBA tumour induction, mammary tumour cell separation
and culture. Mammary tumours were induced in 50-day-old
outbred female Sprague-Dawley rats (Charles River, Calco,
Lecco, Italy) by three intragastric intubation of 1 ml DMBA
(10 mg/ml in olive oil). All animal procedures were carried
out in compliance with the EC Directive 86/609/EEC and
with the Italian law regulating experiments on animals. When
the tumour mean diameter was approximately 1.5 cm, animals
were sacrificed by carotid bleeding under CO2 anaesthesia
and tumour tissue was isolated under aseptic conditions to
obtain primary cultures of RMTCs (51,52). Tissue was freed
from necrotic areas and minced with a scalpel in RPMI-1640
medium supplemented with 5% antibiotics. The minced tissue
was resuspended in the same medium containing 0.3%
collagenase and incubated for 90 min at 37˚C. Afterwards,
the suspension was passed through an 80-mesh sieve to remove
undigested masses, washed three times with RPMI-1640
(Sigma-Aldrich, Milano, Italy) supplemented with 10% foetal
bovine serum (FBS, Sigma-Aldrich) and plated into culture
dishes for a 90-min period. During this time, many stromal
elements adhered to the plastic surfaces, while epithelial and
blood cells remained in the supernatants. Remaining stromal
and blood cells were then removed and passed through a 270-
mesh sieve, while the ductal fragments, containing most of
the epithelial cells, were trapped on the sieve and then removed
from it by reverse flushing after washing. The tumour cells
thus prepared were resuspended in RPMI-1640 supplemented
with 10% FBS, 1% glutamine 200 mM, 1.6% antibiotics
(5000 units penicillin, 5 mg/ml streptomycin) and hormones
(0.5 μg/ml insulin, 1 μg/ml prolactin, 1 μg/ml corticosterone)
and plated in a 75-cm2 T-flask. Cells were grown until
confluence at 37˚C in an atmosphere of 95% air, 5% CO2.

The percentage of epithelial cells in culture was quantized
using immunohistochemical and flow cytometric analysis.
Immunohistochemical examination revealed positivity for
keratin (epithelial cell membrane antigen), and negativity for
vimentin (marker of mesenchymal cells). Flow cytometry
revealed positivity for keratin, negativity for muscle-specific
actin and CD45 (leukocyte common antigen).

MCF-7 cell culture. MCF-7 cells were routinely cultured
in RPMI-1640 medium supplemented with 1% glutamine
200 mM, 1.6% antibiotics (5000 units penicillin, 5 mg/ml
streptomycin) and 10% FBS in an atmosphere of 95% air,
5% CO2 at 37˚C.

Effects of SA on DMBA-DNA adduct formation. Confluent
cultures of cells in 75-cm2 T-flasks were exposed to 0.1 μg/ml
purified [G-3H]7,12-Dimethylbenz[a]anthracene ([3H]DMBA,
23 Ci/mmol; Amersham Pharmacia Biotech, Cologno Monzese,
Italia) in the presence of 2.0, 2.5, 3.0 or 5.0 mM SA (Sigma-
Aldrich) for 24 h. The range of SA concentrations was chosen
on account of data reported in literature and in view of the
amounts of the drug in plasma during treatment of chronic
inflammatory diseases. Before use, [3H]DMBA was cleaned
by evaporating the toluene solvent using a nitrogen stream,
redissolving the residue in 3 ml of hexane, and extracting
the hexane phase 10 times using 2 ml of 0.25 M NaOH in
40% ethanol (53). Cells were washed twice with cold 0.1 M
phosphate-buffered saline solution (PBS), pH 7.4, trypsinized
and pelleted. Nuclei were isolated by incubating the cells
for 10 min on ice in 10 mM Tris-HCl (pH 7.5), with 320 mM
sucrose, 5.0 mM magnesium chloride and 1% Triton X-100.
The nuclei were pelleted by centrifugation at 800 x g for 10 min
at 4˚C, and this digestion was repeated once (44). Nuclei
were then lysed with 10 mM Tris-HCl, 400 mM NaCl and
2.0 mM Na2EDTA, pH 8.2, followed by treatment overnight at
37˚C with 0.2 ml of 10% sodium dodecyl sulphate (SDS) and
0.5 ml of proteinase K solution (1 mg proteinase K in 1% SDS
and 2 mM Na2EDTA). After digestion was complete, 1 ml of
saturated NaCl (approximately 6 M) was added to each sample
and shaken vigorously for 15 sec, followed by centrifugation
at 1500 x g for 15 min at 4˚C. Genomic DNA was then
isolated from supernatant by repeated ethanol precipitation as
described by Miller et al (54). Isolated DNA exhibited a
260/280 ratio of >1.9. The amount of DNA was measured by
spectrophotometry and radioactivity bound to DNA was
quantified by liquid scintillation counting in a Packard counter.
Results were expressed as fmoles [3H]DMBA/mg DNA.

Evaluation of SA effects on CYP1A, COX-1 and COX-2
expression and induction by Western blot analysis
Sample preparation. CYP1A: to induce CYP1A expression,
cells were incubated for 24 h in the presence of medium
containing 0.1% dimethyl sulfoxide (DMSO) as vehicle or in
the presence of 10 μM ß-naphthoflavone (ß-NF) or 10 μM
DMBA, dissolved in DMSO, alone or in association with SA
2.5, 3.0 and 5.0 mM. Afterwards, microsomes were isolated as
follows: detached cells were washed with PBS and homo-
genized by sonication at 4˚C in 20 mM Tris-HCl, 1.15% KCl,
1.0 mM EDTA, 1.0 mM phenylmethylsulfonylfluoride
(PMSF), 2.0 μg/ml aprotinin, and 2.0 μg/ml leupeptin. The
homogenates were centrifuged for 30 min at 10,000 x g at
4˚C and supernatants were subjected to further centrifugation
at 100,000 x g for 60 min at 4˚C. The resulting microsomal
pellets were resuspended in 10 mM Tris-acetate, 1.0 mM
EDTA, and 20% glycerol and sonicated in order to obtain a
homogenous membrane suspension. Protein concentration
was determined for each sample using the Lowry assay (55).

COX-1: cells were exposed for 24 h to 0.1% DMSO as
vehicle, and 1 μM DMBA dissolved in DMSO, alone or in
association with SA 2.0, 2.5, 3.0 or 5.0 mM. After trypsiniz-
ation and washing in cold PBS, whole-cell lysates were
prepared by incubating cells with lysis buffer [50 mM
HEPES, 250 mM NaCl, 10% glycerol, 1.0% Triton X-100,
1.5 mM MgCl2, 1.0 mM PMSF, 1.0 mM EGTA, 2.0 mM
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Na3VO4, 10 μg/μl aprotinin and 10 μg/μl leupeptin] on ice for
1 h as described by Pham et al (56). Protein estimation was
performed using the Bradford method (57).

COX-2: cells were exposed to 0.1% DMSO, and 1 μM
DMBA dissolved in DMSO, alone or in the presence of SA
2.5 or 5.0 mM for 24 h and lysed on ice for 30 min in 70 μl/
10,000,000 cells of immunoprecipitation lysis buffer (20 mM
HEPES pH 7.9, 0.35 M NaCl, 1.0 mM MgCl2, 0.5 mM
EDTA, 0.1 mM EGTA, 20% glycerol, 1% NP-40) containing
1.6 mg/ml aprotinin, 5.0 mM dithiothreitol (DTT), and 3.0 mM
PMSF. Lysates were collected and centrifuged at 12,000 x g
for 15 min at 4˚C. Supernatant protein content was estimated
by the Bradford assay (57). Aliquots of cellular lysate (100 μg
of proteins) were incubated overnight at 4˚C with a COX-2-
specific primary antibody in 50 μl of RIPA's buffer (20 mM
Tris-HCl, 150 mM NaCl, 10 μl/ml NP-40) containing 1.6 mg/
ml aprotinin, 5.0 mM DTT, 3.0 mM PMSF and 5.0 mM
EDTA. Protein A-Sepharose slurry (15 μl) (Sigma-Aldrich)
was added to the antibody-treated lysates and incubated for
2 h at 4˚C. Protein A-Sepharose beads were collected and
washed 2 times with RIPA's buffer.

Western blotting. Samples and immunoprecipitates that
contained 100 μg of proteins were mixed with Laemmli sample
buffer and boiled for 5 min before being loaded into 10%
(COX-1 and COX-2) or 12% (CYP1A1/1A2) bis-acrylamide
gels and separated by SDS polyacrylamide gel electrophoresis.
Separated proteins were electrophoretically transferred from
gels to nitrocellulose membranes. Blots were blocked for 1 h
in a PBS-0.1% Tween-20 and 5% low-fat milk. Membranes
were probed overnight at 4˚C with specific primary antibodies:
polyclonal rabbit antibody specific for COX-1 (H-62, Santa
Cruz Biotechnology, final dilution 1:500), polyclonal rabbit
antibody specific for COX-2 (Cayman Chemical, final dilution
1:200) and polyclonal goat antibody specific for CYP1A1/1A2
(Oxford Biomedical Research, final dilution 1:100). Immuno-
detection was performed using a chemiluminescence (ECL) kit
(Amersham Pharmacia Biotech), according to the manu-
facturer's instructions. Immunopositive bands were captured
by the Kodak Image Station 440CF system and their optical
density was analysed using Kodak 1D image analysis software.

Proliferation assays. Cell proliferation was assessed by
reduction of 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-
tetrazolium (MTT, Sigma-Aldrich) to formazan and [methyl-
3H]-thymidine incorporation. For the MTT assay (58), cells
were seeded at 1.5x104 cells/well in 96-well plates. After 48 h
of culture, cells were washed twice with PBS and incubated
for 24 h in 1% FBS-containing medium in the presence of
SA at concentrations of 0, 2.0, 2.5, 3.0 and 5.0 mM. Absorb-
ance was evaluated using a microplate reader (model 450,
Bio-Rad, USA). Results were expressed as percentage of the
corresponding control.

For the [3H]-thymidine (25 Ci/mmol, Amersham Pharmacia
Biotech) incorporation assay, cells were seeded at 1x104 cells/
well in 96-well plates. After 48 h, they were washed twice
and incubated for 24 h in 1% FBS-containing medium in the
presence of SA at the concentrations reported above. Cells
were then labelled overnight with 5.0 μCi/100 μl of [methyl-
3H]-thymidine/well and DNA synthesis was measured as

described by Novelli et al (59). Results were expressed as
average of cpm taken up by each group of treatment.

Measurement of cell viability. Cell viability was assessed using
the following methods: propidium iodide (PI, Sigma-Aldrich)
staining assay, lactate dehydrogenase (LDH, Sigma-Aldrich)
release, Hoechst-33342 (Sigma-Aldrich) staining assay and
DNA analysis. 

The PI staining assay is based on necrosis-related cell
membrane permeation to IP. Cells were seeded at 30,000 cells/
well on 24-well plates. After 48 h of culture, cells were washed
with PBS and incubated for 24 h in 1.0% FBS-containing
medium in the presence of SA at concentrations of 0, 2.0,
2.5, 3.0 and 5.0 mM. Next, the samples were incubated for
15 min at room temperature in the dark with 1 μg/100,000 cells
PI. After incubation, adherent cells were detached using
trypsin (0.5% trypsin/0.1% EDTA in PBS). Detached cells
were harvested by centrifugation at 80 x g for 10 min and
resuspended to 0.2x106 cells/ml in serum-free medium. Cells
were applied to glass slides (5x104 cells/slide) by cyto-
centrifugation at 20 x g for 5 min (Cytospin cytocentrifuge,
Shandon, Inc., Pittsburg, PA). After fixing with ethanol/diethyl
ether 1:1 for 10 min at room temperature, all slides were sealed
with glycerol and analyzed using a fluorescent microscope
Leica PMIRE-2 with a UV filter and a x40 oil-immersion lens
(Leica Microsystem Wetzlar GmbH, Wetzlar, Germany).

The leakage of LDH into the culture medium after exposure
of cells to the different concentrations of SA for 24 h was
measured using a colorimetric method (60). Briefly, 0.1 ml
samples were mixed with 0.1 ml of LDH substrate mixture
(5.4x10-2 M L(+) lactate, 6.6x10-4 M 2-[4-iodophenyl]-3-
[4-nitrophenyl]-5 phenyl tetrazolium chloride, 2.8x10-4 M
phenazine methosulphate, 1.3x10-3 M ß-nicotinamide adenine
dinucleotide in 0.2 M Tris-buffer at pH 8.2 in a 96-flat bottom
well microplate (Corning-Celbio-Pero, Italy). The enzymatic
reaction was kinetically assessed by microplate Vmax Kinetic
Microplate Reader supported by SOFT max (Molecular
Devices, Palo Alto, CA, USA) by reading at 490 nm, at room
temperature, with a run-time of 10 min and reading intervals
of 5 sec. The total release was determined by sonicating
untreated cells. The spontaneous release was determined in
supernatants from untreated cells. Results were expressed as
the percentage of total release.

The Hoechst-33342 staining assay was utilized in order to
evaluate changes in cell nuclear morphology after exposure to
SA. Cells were cultured, treated and applied to glass slides as
described for IP staining. After fixing with ethanol/diethyl ether
1:1 for 10 min at room temperature, the cells were washed
with PBS and incubated for 30 min at room temperature in the
dark in 0.8 μM Hoechst-33342/PBS solution. All slides were
washed three times with 0.1 M PBS and sealed with glycerol.
Nuclear morphology was examined using a fluorescent micro-
scope Leica PMIRE-2 as described for the IP test. Nuclei are
considered to have the normal phenotype when glowing bright
and homogeneously. Apoptotic nuclei can be identified by
condensed chromatin gathering at the periphery of the nuclear
membrane or a total fragmented morphology of nuclear bodies.

To evaluate SA cell toxicity, the DNA fragmentation
assay was also performed. In brief, cells, cultured and treated
as previously described were incubated in 30 μl/1x106 cell
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lysis buffer containing 10 mM EDTA, 0.5% SDS and 0.5 mg/
ml proteinase K in 50 mM Tris-HCl (pH 8.0) for 1 h at 50˚C.
The reaction was stopped in ice and each sample was incubated
with 10 μg/ml RNAase for 1h at 50˚C. The samples were
further incubated for 10 min at 70˚C to inactivate both
proteinase K and RNAase. After addition of 0.3 M ammonium
acetate, DNA was extracted using cold ethanol, pelleted and
resuspended in sterile water. The amount and the pureness of
DNA were determined by spectrophotometry. The degree of
fragmentation was analyzed using 2% agarose gel electro-
phoresis and ethidium bromide staining (61).

Statistical analyses. Data were expressed as means ± SD and
subjected to one-way ANOVA followed by the Newman-Keuls
test to determine the statistical significance of the differences
between the experimental groups. A p<0.05 was considered
significant.

Results

Effects of SA on DMBA-DNA adduct formation. The effect
of SA on DMBA-DNA adduct formation in BCCs was
examined in control cultures. Exposure to 0.1 μg/ml
[3H]DMBA for 24 h resulted in the formation of 1974±381

and 2040±365 fmoles adducts per mg DNA in MCF-7 cells
and in RMTCs, respectively. Exposure of either cell type to
[3H]DMBA in the presence of different concentrations of SA
significantly reduced DMBA-induced DNA adduct formation
at concentrations of ≥2.5 mM (Tables I and II).
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Table I. Effect of salicylate on [3H]DMBA-DNA adduct
formation in MCF-7 cells.  
–––––––––––––––––––––––––––––––––––––––––––––––––
Group fmoles Statistics

3H-DMBA/mgDNAa

(mean ± SD) 
–––––––––––––––––––––––––––––––––––––––––––––––––
Control 1974±381 -

SA 2.0 mM 1671±353 ns

SA 2.5 mM 1330±320 b

SA 3.0 mM 709±340 b

SA 5.0 mM 639±389 b

–––––––––––––––––––––––––––––––––––––––––––––––––
aThree independent experiments each with n=3; ns: not significant.
bp<0.05 vs control.
–––––––––––––––––––––––––––––––––––––––––––––––––

Table II. Effect of salicylate on [3H]DMBA-DNA adduct
formation in RMTCs.
–––––––––––––––––––––––––––––––––––––––––––––––––
Group fmoles Statistics

3H-DMBA/mgDNAa

(mean ± SD)
–––––––––––––––––––––––––––––––––––––––––––––––––
Control 2040±365 -

SA 2.0 mM 1814±212 ns

SA 2.5 mM 1391±150 b

SA 3.0 mM 551±130 b

SA 5.0 mM 533±147 b

–––––––––––––––––––––––––––––––––––––––––––––––––
aThree independent experiments each with n=2. ns, not significant.
bp<0.05 vs control.
–––––––––––––––––––––––––––––––––––––––––––––––––

Figure 1. Effects of DMBA or ß-NF alone or in association with different
concentrations of SA on CYP 1A1/1A2 expression in microsomes from
MCF-7 cells: A, vehicle; B, DMBA, 10 μM; C, ß-NF l0 μM; D, ß-NF l0 μM
+ SA 2.5 mM; E, ß-NF 10 μM + SA 3.0 mM; F, ß-NF 10 μM + SA 5.0 mM;
G, positive control (rat liver microsomes induced with ß-NF). The immunoblots
shown in the figure are from one representative experiment out of three.
CYP1A1/1A2 levels are expressed as arbitrary units obtained from densito-
metric scanning analysis of the immunoreactive bands. The same membrane
was reprobed with an anti-ß-actin antibody to verify equalization of protein
loading in the different lanes.*p<0.05 vs C (ß-NF).

Figure 2. Effects of DMBA alone or in association with different concentrations
of SA on COX-1 expression in MCF-7 cells lysate samples: A, vehicle; B,
DMBA l μM; C, DMBA l μM + SA 2.0 mM; D, DMBA l μM + SA 2.5 mM;
E, DMBA l μM + SA 3.0 mM; F, DMBA 1 μM + SA 5.0 mM. The
immunoblots shown in the figure are from one representative experiment
out of three. COX-1 levels are expressed as arbitrary units obtained from
densitometric scanning analysis of the immunoreactive bands. The same
membrane was reprobed with an anti-ß-actin antibody to verify equalization
of protein loading in the different lanes.
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SA-mediated modulation of CYP1A, COX-1 and COX-2.
CYP1A: immunoblots carried out in microsomal fractions with
the appropriate antibody to assess the constitutive expression
and induction of CYP1A in each cell type showed a very low
protein expression in untreated MCF-7 cells. Following
treatment with 10 μM DMBA, there was a slight and not
significant increase in CYP1A1/1A2 immunoreactive protein.
In contrast, protein expression was more notably enhanced
(+17%) in microsomes from 10 μM ß-NF treated cells; this
phenomenon was significantly inhibited by SA in a
concentration-dependent manner (Fig. 1). CYP1A1/1A2 was

seemingly neither constitutively expressed nor induced in
RMTCs under the same conditions (data not shown).

COX-1 and COX-2: immunoblotting results (Figs. 2 and 3)
indicated that blots for COX-1 protein from MCF-7 cells and
RMTCs were similar. COX-1 expression was little affected by
DMBA alone and the concurrent exposure to SA did not result
in appreciable changes in the enzyme expression, irrespective
of the cell source. COX-2 was undetectable in MCF-7 cells
(data not shown), but clearly detectable in RMTCs. COX-2
expression was seemingly not modified by DMBA alone,
while cells exposed to both DMBA and SA displayed a
significant decrease in protein signal (Fig. 4).

Effects of SA on breast cancer proliferation. MCF-7 cells and
RMTCs were incubated for 24 h with SA at concentrations
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Figure 3. Effects of DMBA alone or in association with different
concentrations of SA on COX-1 expression in RMTC lysate samples: A,
vehicle; B, DMBA 1 μM; C, DMBA 1 μM + SA 2.0 mM; D, DMBA 1 μM
+ SA 2.5 mM; E, DMBA 1 μM + SA 3.0 mM; F, DMBA 1 μM + SA 5.0 mM.
The immunoblots shown in the figure are from one representative experiment
out of three. COX-1 levels are expressed as arbitrary units obtained from
densitometric scanning analysis of the immunoreactive bands. The same
membrane was reprobed with an anti-ß-actin antibody to verify equalization
of protein loading in the different lanes.

Figure 4. Effects of DMBA alone or in association with SA 2.5 or 5.0 mM
on COX-2 expression in immunoprecipitates from RMTCs: A, positive
control (COX-2 Electrophoresis Standard, Cayman Chemical); B, vehicle;
C, DMBA l μM; D, DMBA 1 μM + SA 2.5 mM; E, DMBA 1 μM + SA
5.0 mM. The immunoblot shown in the figure is from one representative
experiment out of three. COX-2 levels are expressed as arbitrary units
obtained from densitometric scanning analysis of the immunoreactive bands.
*p<0.05 vs C (DMBA ).

Figure 5. Salicylate effect on MCF-7 cell proliferation determined by MTT
assay. Results are expressed as percentage of the control value (mean ± SD
from 3 independent experiments, each with n=8). *p<0.05 vs control (SA
0 mM).

Figure 6. Salicylate effect on RMTC proliferation determined by MTT assay.
Results are expressed as percentage of the control value (mean ± SD from 3
independent experiments, each with n=8). *p<0.05 vs control (SA 0 mM).
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ranging from 2.0 to 5.0 mM. As revealed by the MTT assay,
SA significantly decreased the number of both types of BCC at
concentrations of ≥2.0 mM (Figs. 5 and 6). [3H]-thymidine
incorporation studies showed that, after 24-h incubation, the
inhibition of DNA replication by SA was significant at
concentrations of ≥2.5 mM (Figs. 7 and 8).

Effects of SA on breast cancer cell viability. The evaluation
of SA cell toxicity was performed using different assays to
discriminate between necrosis and apoptosis. As assessed by
the PI assay (Fig. 9), neither of the BCCs exhibited any
morphological change after the exposure for 24 h to SA at
the lowest (2.0 mM) or highest (5.0 mM) tested concentrations.

Likewise, cell damage evaluated in terms of LDH release was
not induced by SA treatment (Fig. 10). We used Hoechst 33342
staining and DNA ladder assay to study the effects of SA on
apoptosis. No apoptotic bodies containing nuclear fragments
were found in BCCs exposed to SA 2.0 or 5.0 mM for 24 h
(Fig. 11). Gel electrophoresis of DNA from BCCs treated with
increasing concentrations of SA for 24 h revealed a ‘ladder’
pattern that indicated no DNA degradation (Figs. 12 and 13).

Discussion

The present study shows that treatment of mammary cancer
cells for 24 h with different concentrations of SA inhibits
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Figure 7. [3H]-thymidine incorporation in MCF-7 cells treated with
increasing doses of salicylate for 24 h. Results are expressed as average of
cpm taken up by each group of treatment (mean ± SD from 3 independent
experiments, each with n=2). *p<0.05 vs control (C).

Figure 8. [3H]-thymidine incorporation in RMTCs treated with increasing
doses of salicylate for 24 h. Results are expressed as average of cpm taken
up by each group of treatment (mean ± SD from 3 independent experiments,
each with n=2). *p<0.05 vs control (C).

Figure 9. Morphological features of PI-stained BCCs either untreated (a and d) or exposed for 24 h to SA 2 mM (b and e) or 5 mM (c and f). The PI assay is
based on necrosis-related cell membrane permeation to PI. Fluorescent microphotographs of PI-stained BCCs demonstrate that SA treatment did not modify
cytoplasmic membrane integrity.
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DMBA-DNA adduct formation, a phenomenon which is
generally accepted as a critical step in the mechanism by which
polycyclic aromatic hydrocarbons (PAHs) cause mutations
leading to the induction of cancer in the target organs (62).
The exposure of cells to 2.5 mM SA results in a significant
inhibition of DMBA-DNA adduct formation that reaches a
maximum value at 3.0 mM, a concentration compatible with
drug plasma levels measurable during treatment of chronic
inflammatory diseases (63,64). This effect may contribute to
the aspirin breast cancer chemopreventive action observed in
clinical trials and epidemiological and experimental studies;
it also indicates that this drug can act in the first stage of
carcinogenesis. As mentioned above, DMBA, in common
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Figure 11. Morphological features of Hoechst 33342-stained BCCs either untreated (a and d) or exposed for 24 h to SA 2 mM (b and e) or 5 mM (c and f).
Hoechst 33342-staining was used to visualize chromatin condensation or fragmentation, a typical phenomenon of cells undergoing apoptosis. Fluorescent
microphotographs of Hoechst 33342-stained BCCs indicate no apoptotic nuclei (condensed or fragmented) after exposure to SA.

Figure 10. Effect of different concentrations of SA on lactate dehydrogenase
(LDH) release of MCF-7 cells and RMTCs. Results are expressed as
percentage of total release.

Figure 12. Analysis of DNA fragmentation by agarose gel electrophoresis
after treatment of MCF-7 cells with different concentrations of SA: A, no
treatment; B, SA 2.0 mM; C, SA 2.5 mM; D, SA 3.0 mM; E, SA 5.0 mM; F
1 kb DNA marker. The result presented is typical of 3 separate experiments.

Figure 13. Analysis of DNA fragmentation by agarose gel electrophoresis
after treatment of RMTC cells with different concentrations of SA: A, no
treatment; B, SA 2.0 mM; C, SA 2.5 mM; D, SA 3.0 mM; E, SA 5.0 mM; F
1 kb DNA marker. The result presented is typical of 3 separate experiments. 
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with other PAHs, requires metabolic activation by CYP-
dependent monooxygenases, mainly CYP1A isoforms, or
other oxidases before it can induce malignant transformation.
As reported in the literature, prior exposure of MCF-7 cells
to CYP inducers, such as PAHs or ß-NF, enhances CYP1A1
expression (47-49). In our experiments, CYP1A was markedly
induced by ß-NF and less by DMBA. Since both chemicals
share a common induction mechanism, we evaluated the effects
of SA on CYP1A1/1A2 expression in cells exposed to ß-NF.
As detected by Western blotting, microsomes from ß-NF-
treated MCF-7 cells showed a significant decrease in this
protein after SA exposure. In contrast, we did not observe
constitutive or inducible CYP1A1/1A2 protein in RMTCs.
Both the expression and induction of this enzyme have been
well documented in rat mammary glands (65) but, to the best
of our knowledge, there is no study on CYP1A1 expression
in DMBA-induced mammary tumours. Indeed, there are
extensive studies on CYP expression in chemically-induced
rat/mouse liver tumours revealing a decrease of the expression
of this enzyme in hepatic tumours compared with adjacent
non-neoplastic tissue (66-68). As reported by Williams and
Phillips (33), COX may play an important role in carcinogen
bioactivation in extrahepatic tissue, expecially where CYP-
mediated enzyme activity is low. Western blot analysis
revealed the presence of COX-1 in both cell types. In line
with the results of Din et al (69), COX-2 was not detectable
in MCF-7 cells, but was present in RMTCs in agreement
with Ghezzo et al (50), who reported COX-2 expression in
DMBA-induced rat mammary tumours. Prior exposure of
cells to DMBA did not affect COX expression. There have
been no studies reporting a direct induction of COX expression
after exposure of cells or animal tissue to DMBA. Jang et al
(12) investigated the expression of COX-1 and COX-2 in
normal rat mammary glandular epithelium and in the various
stages of DMBA-induced rat mammary carcinogenesis.
They observed negligible COX-1 expression and no COX-2
expression in normal mammary glands; DMBA treatment, in
itself, did not modify COX expression. On the contrary,
DMBA-induced mammary gland neoplastic transformation
enhanced COX-1 expression and induced COX-2 expression
in a high percentage of tumours. Data from the present study
indicate that SA addition did not affect COX-1 expression in
BCCs but inhibited COX-2 expression in RMTCs. Until
recently, there were no studies examining the effect of aspirin
on COX-1 gene expression in human breast cancer or rodent
mammary tumours, although Robertson et al (70) reported
that ibuprofen was able to inhibit COX-1 and COX-2 gene
expression in DMBA-induced rat mammary tumours. Even
so, we can assume that SA inhibits COX-1 activity in BCCs
by a well-known mechanism, i.e. rapid reversible binding
followed by covalent modification (acetylation) of Ser 530 of
COX-1 (71). Although the exact mechanism by which SA
inhibits DMBA-DNA adduct formation in BCCs remains to
be established, according to our results this effect may be due
to SA's ability to decrease the expression of the enzymes
involved in carcinogen bioactivation. 

Since several reports suggest inhibiton of tumour cell
growth and induction of apoptosis as two possible explan-
ations for the anti-tumour effects of NSAIDs (72), we have
also investigated the effects of SA on BCC proliferation and

viability in vitro. In line with the results of previous investi-
gations (21,28,73), SA proved effective in the inhibition of
BCC growth but failed to cause cell death by necrosis or
apoptosis. The latter finding is in contrast with previous
reports on NSAID-induced apoptosis in breast cancer cells
but agrees with the results of Din et al (69), who showed that
aspirin had no effect on viability and apoptosis in breast
cancer cell lines. These differences may be explained by
considering that induction of apoptosis was observed in
studies using NSAIDs other than aspirin (20,23,74,75),
while SA-induced apoptosis was observed only after long
exposures (48-96 h) to high concentrations of drug beyond
the therapeutic range (73).

In conclusion, the present study demonstrates that SA
significantly inhibits cell proliferation and DMBA-DNA adduct
formation in the two tested types of BCC at concentrations
which do not affect cell viability. The latter effect is possibly
mediated via modulation of the expression of the enzymes
involved in carcinogen bioactivation (CYP1A1/1A2 and COX),
even if it is not possible to exclude other mechanisms, such
as the induction of phase II detoxifying enzymes. Inhibition
of adduct formation by SA represents a further mechanism
responsible for aspirin chemopreventive efficacy that can be
added to the several antitumour actions previously documented
for NSAIDs. In our opinion, the antitumour effect exerted by
SA and related agents is probably due to different actions of
the drugs, strictly correlated in many cases, that collectively
contribute to the final effect.
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