
The ASSET Architecture:
Integrating Media Applications and Broadcasting Products

in a Unified Model and Framework
Mathurin Body, Bernard Cousin, INRIA, France

Paula Viana, Mario Cordeiro, Vitor Rodrigues, INESC Porto, Portugal
Damien Bommart, Compaq-HP, France

Giulia Ferrari, Massimo Strambini, SHS, Italy
Ingo Hoentsch, Tobias Marx, IRT, Gernamy

Walter Bernet, Edgar Müller, Dalet A.N.N., Germany
Serge Daulard, THOMSON, France

Bernard Algayres, Marc Laurentin, FPDI, France

Abstract
To design and develop an Architectural Solution for

Services Enhancing digital Television is the goal of the
ASSET project. This European funded project gathers eight
partners (Compaq-HP Group, THOMSON, Dalet a.n.n,
INESC Porto, INRIA, Institut fuer Rundfunktechnik, Front
Porch Digital International, SHS Multimedia) to create a
universal and unified system architecture that shall greatly
improve interoperability in broadcasting environments. The
implementation of this solution will indeed make integration
of different proprietary systems and media applications much
easier. This paper outlines the ASSET architecture, describes
some key-concepts of the ASSET framework and presents
the prototype currently under development.

I. INTRODUCTION
Digital systems for TV content creation offer facilities that

cover the complete operational workflow, including
acquisition, creation, editing, control, storage, broadcasting
publishing and archiving of media assets.

Technical solutions available on the market are limited due
to the lack of interoperability between equipment and
applications. They are vertically integrated or proprietary and
rely typically on a single manufacturer or system integrator.
Hence they are not compliant with the broadcaster
requirements. Application providers should be able to
implement platform independent and device independent
programs for increased portability.

The objective of the ASSET project [1] (IST-2001-37379
Architectural Solutions for Services Enhancing digital
Television) is to identify solutions and define a software
architecture that will overcome these limitations. The project
identifies technologies, APIs, and software tools that enable
both users and vendors to use/create media applications
integrated in systems independent of device manufacturer,
programming language and the underlying middleware
platform.

The project approach takes advantage of open standards and
emerging technologies (like MXF [2], standard data models
for describing essences, XML [3] and distributed system

technologies) for defining the ASSET architecture. The
structural design of the ASSET solution wraps the standard
software layered architecture into a middleware approach that
provides:
� the abstraction of broadcast software and hardware

devices as logical resources,
� generic, openly defined and extensible interfaces to

control devices, data distribution and data flows,
� added value for system logic: optimized decisions to

configure devices, convert/move data and handle
workflows.

II. ASSET SYSTEM ARCHITECTURE

A. Architecture overview
The ASSET architecture is based upon a software

framework – the ASSET framework – composed by a set of
three standard interfaces and protocols for applications and
products working together in an integrated environment.
Applications communicate with the framework using the
ASSET Public API, which allows them:
� to communicate with any other application,
� to access the public services provided by the

framework,
� to use additional functionalities implemented by third

party integrators as aggregated services.
Products from different manufacturers are integrated in the

ASSET framework either natively (using an ASSET agent)
or via an ASSET proxy. They are controlled and managed
through the Media ASSET Bus API, based on XML service
schema definitions. This API ensures an easy and seamless
integration of devices and products in the framework.

An ASSET Private API is defined to access core services of
the framework (common services) that enable the workability
of this integrated environment. This API is only used
internally in order to guarantee the overall system integrity.

Figure 1 illustrates the different components of the ASSET
architecture.

ASSET Public API

Media ASSET Bus API

ASSET Services Library

ASSET
Aggregated

Service

ASSET
Aggregated

Service

Application & Business Logic Layer

ASSET Framework

ASSET
Public

Service

ASSET
Public

Service

ASSET
Public

Service

Common Services
• Service Repository
• Security
• Notification
• Debug/logging
• Management
• Session
• Transaction
• License

ASSET
Function
Service

ASSET
Function
Service

ASSET
Function
Service

ASSET Agent

ASSET Compliant
Product

ASSET Compliant
Application

A
SSE

T
 Private A

PI

ASSET Agent

ASSET Compliant
Product

ASSET Proxy

Legacy
Protocol

Legacy Product
Product Layer

Fig. 1 – ASSET Architecture

Adding new applications or products to the framework
simply requires the writing of a small software adapter to
conform either to the ASSET Public API or to the Media
ASSET Bus API.

B. ASSET Architecture components
The ASSET Architecture defines a number of concepts,

components and functions that enable the implementation of
an ASSET Compliant Framework:

The core of the ASSET Framework consists of three main
components:
� The ASSET Public Services expose the mandatory

services of the ASSET framework to the applications and
the aggregated services through the ASSET Public API.
These services provide a minimum set of multimedia
functionality, sufficiently rich and extensible to not limit
the system efficiency. They ensure the consistency and
integrity of the system by handling the internal logic
(e.g. access right, resource allocation, etc.) required for
each operation.

� The ASSET Common Services provide implementation of
key infrastructure requirements such as security, logging,
notification, resource management, etc. This allows a
uniform and single implementation of these services
throughout the solution. They expose a private API that
can be only used by ASSET Public Services.

� The ASSET Function Services provide an abstraction of
functionalities (encoder, recorder, player, etc.) to the
ASSET public services. They hide the specificities of the

different interconnected products (e.g. for a public
service, a VTR output and a Video Server output are
considered as two system-wide logical output ports).

At the Application and Business Logic layer, three
components are introduced:
� The ASSET Compliant Applications are the top level

ASSET software components. They use the ASSET
Public API to access services provided by the ASSET
Framework and optionally, by ASSET aggregated
services.

� The ASSET Services Library is a software component
included in (or linked with) an application, which makes
it compliant to the ASSET framework and gives it access
to the ASSET public services.

� The ASSET Aggregated Services implement additional
business logic on top of public services (or even other
aggregated services). They register in the framework as
new services available for ASSET compliant
applications (e.g. complex workflows may be specified
as aggregated services and then, be available for other
connected applications or aggregated services).

At the product layer, we call product a manageable
hardware or software component that implements one or
several common functions (e.g. most of the Video Server
products implement a Recorder function, a Player function
and a Storage function) and logical components (logical
ports, repositories, etc.). Two ways exist to make a product
compatible with the ASSET framework:
� An ASSET Compliant Product is a product that is

managed by the framework through a built-in ASSET
Agent.

� A Legacy Product is a product that has not (or cannot
have) a built-in ASSET agent. The ASSET framework
can nonetheless managed such a product through an
external software module called an ASSET Proxy (e.g. a
VTR cannot include a built-in ASSET agent and has to
be connected through an ASSET Proxy).

Products communicate with the framework using the API
provided by the Media ASSET Bus, which is introduced in
the next subsection.

C. Media ASSET Bus
Most of the ASSET framework is built above a software

bus called the Media ASSET Bus or MAB.
The goal of the MAB is to provide support for the

integration of the widest range of products within the ASSET
framework, independently of the underlying operating system
environments and protocols.

The MAB defines a set of standard interfaces and
synchronization process, which ensure a seamless
interoperability between ASSET components and products.
These interfaces allow any third party media application or
product to integrate into the Media ASSET Bus by
developing a simple software adapter in an agent or a proxy.
A MAB Software Development Kit (SDK) is provided in
order to facilitate this task. It gives a uniform way of

connecting devices, registering services and exchanging
messages within the ASSET framework.

The integrated environment that the MAB offers is based
on a Transport Abstraction Layer (TAL), which takes care of
message exchanges. Messages have XML format that ensure
flexibility and adaptability of the ASSET solution.

The concept of the Media ASSET Bus is illustrated in
Figure 2. Different ASSET components and products are
interconnected via software adapters on top of the MAB
SDK.

MAB Transport Abstraction Layer

Recorder
Public

Service

Metadata
Public

Service

Player
Public

Service

Recorder
Function
Service

Player
Function
Service

VTR

MAB SDK
Archive Server

Agent
ASSET Compliant

Video Server

MAB SDK
Video Server

Agent
VTR Proxy

MAB SDK

MAB SDK MAB SDK MAB SDK MAB SDK MAB SDK

XML based ASSET messages
Legacy protocol

ASSET Compliant
Archive Server

Fig. 2 – Media ASSET Bus

III. ASSET DATA AND METADATA MODELS
Within the ASSET framework, three data models were

defined:
� The Structural and Control data model, which embraces

all data dedicated to the system description (services,
functions, security and access rights, etc.).

� A Descriptive metadata model, which provides the
description of essences available within the framework.

� A Content Management metadata model, which
describes the location of the media assets and their
possible relationships.

A. Structural and Control data model
The information stored in the Structural and Control data

model is distributed among several common services. The
private API provided by the common services allows the
creation and update of the data describing the past, present
and eventually future state of the framework. For example,
the session common service manages the information
regarding the past and still active sessions, created by
applications to access the framework. The Structural and
Control data model is strictly designed to the ASSET
framework and embraces the global description of the system
and resources.

B. Descriptive metadata model
Almost every broadcaster or production company may have

its own workflow and its own proprietary set of metadata
describing essences, workflows and processes. Hence, it
would not be possible to introduce a descriptive data model
coping with these different requirements. As a result, we
distinguished technical metadata (e.g. compression type,
image size, etc.) from the other descriptive metadata.

Some technical metadata, which are required for the
ASSET framework, are handled by the technical metadata
common service. The other descriptive metadata are handle
by descriptive metadata public and function services, based
on a default model, which is not compulsory but may guide
developer implementation. DMS-1 [4][5] is proposed as the
default descriptive metadata model.

C. Content Management metadata model
The goal of the Content Management metadata model is to

address the need of describing the location and the
relationships between files and Media assets. For example, a
media asset may have several representations (e.g. same clip
with different compression types) each having different
structures (e.g. a Media asset may be composed of one
physical file or structured as a collection of audio, video and
metadata files).

IV. CONTENT EXCHANGE

A. Content Exchange Overview
Associations of public broadcasters like the EBU-SMPTE

Task Force [6] have highlighted the requirements to
exchange media content in digital television environments,
using non-proprietary formats. Different aspects for
interoperability were identified. Some of them are:
� multiple users accessing simultaneously and

independently the same content;
� various and adaptable speed transfer across scalable

network areas;
� common container for data and metadata organized in

data models;
� simple, direct and eventually partial access to the

content through standardized network protocols and
interfaces;

� unified formats for manipulating, managing, storing,
sharing and distributing essences and metadata.

Emerging content exchange technologies shall satisfy these
requirements.

Recently, the Pro-MPEG Forum [7] and the Advanced
Authoring Format (AAF) Association [8] have developed an
open standard that ensures the interoperability among the
different vendor systems involved in production
environments.

B. MXF – Material eXchange Format
The Material eXchange Format [2][9] is an Open Standard

file format for the interchange of audio-visual materials and
associated metadata. This format is compression scheme
independent and therefore facilitates the integration of
systems using MPEG, DV or other compression strategies,
even yet unspecified. This format has actually been designed
to address the interoperability requirements and has naturally
been applied in the ASSET project.

MXF is used for file interchanges within the ASSET
framework as well as for the export/import of both essences
and metadata, to/from products or applications external to an
ASSET framework.

V. DEMONSTRATION PLATFORM
A simple demonstration platform is currently under

development for IBC 2003. Its goal is to assess and validate
the quality of the services and concepts introduced by the
ASSET solution. This demonstrator will be a deployment
example of the ASSET solution in a common example of TV
production, where devices and applications are integrated in a
unified system. The planned demonstrator does not focus on
a particular workflow, but on how functionalities provided by
the framework are supported and how interoperability and
connectivity is achieved.

Figure 3 illustrates the demonstration platform currently
specified for IBC 2003.

ASSET Public API

Media ASSET Bus API

ASSET Services Library

ASSET Framework

ASSET Agent

Archive
Product

Media Control
Application

ASSET Agent

Repository
Product

ASSET Proxy

Legacy protocols

Ingest and Playout
Product

MXF Content Exchange

Video Server OnLine Storage NearLine Storage

A/V feed

Fig. 3 – ASSET demonstration scenario

The demonstrator uses a client and several products of
different manufacturers to emulate simple workflows of a
news platform. The client is a media control application used
to control ingest, archive, delete or play media content
between connected devices. The products are a video server,
which allows ingest and playout of clips, an online storage
system (repository) and an archive server (nearline storage).

Technical descriptive metadata and content management
metadata are stored internally using ASSET common
services.

In the demonstration platform, contents can be ingested into
the framework via the A/V feed of a video server. Media
asset may then be exchanged (e.g. for archiving) using the
MXF file format. Descriptive metadata are extracted during
the ingest phase and can be retrieved by the system through
the ASSET agent of the online storage system. They are
actually not permanently stored in a Media Asset
Management system (as they should), in order to simplify the
demonstration platform.

Using the framework within the above scenario provides a
straightforward integration and collaboration of various
proprietary applications and devices. The exchange of asset
media and metadata becomes transparent through the aid of
MXF.

The ASSET demonstrator may also serve as a reference
system where application providers, administrators, and
integrators are able to test and verify the implemented
functionality against the specifications and the requirements.

VI. CONCLUSION
This paper gives an overview of the project approach and

describes the work under development in the IST ASSET
project. The software architecture is outlined and its
components presented. APIs will be made available to
manufacturers and applications providers, so that
interconnection between equipment and media applications is
greatly improved in digital TV environments. The partners
have already defined the software architecture, concepts and
demonstration scenario and are now working towards the
development of the prototype that shall demonstrate the
effectiveness of the ASSET solution.

VII. REFERENCES
[1] ASSET web site – http://www.ist-asset.com
[2] Pro-MPEG Forum, "Material eXchange Format (MXF)",

http://www.pro-mpeg.org/mxf.htm, October 16, 2002.
[3] Extensible Markup Language (XML) 1.0 (Second

Edition). W3C Recommendation. World Wide
Consortium, http://www.w3c.org/TR/REC-xml, October
6, 2000.

[4] Pro-MPEG Forum, "A guide to MXF Descriptive
Metadata Schemes and their application", August 2002.

[5] Pro-MPEG Forum, "Material eXchange Format (MXF) –
Descriptive Metadata Scheme (DMS-1)", October 2002

[6] H. Hoffman, "Networks and Transfer Protocols", EBU
Technical Review, Autumn 1998.

[7] Pro-MPEG Forum – http://www.pro-mpeg.org
[8] AAF Association – http://www.aafassociation.org
[9] Bruce Devlin, "MXF – The Material eXchange Format",

EBU Technical Review, July 2002.

