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ABSTRACT 

A technique is presented which finds a fast suboptimal solution to 

the assignment problem. This same technique is then applied to two large 

dynamic programming problems for which the optimal solution is not known. 

These examples illustrate how easily this technique can be applied and 

that it is better than most optimizing techniques because it is fast, 

cheap and only minor hand calculations are needed. 

The effect of different initial solutions and their value are 

compared and it is found that the initial solution is not as significant 

in a suboptimal technique as in an optimizing technique. The initial 

solution is significant enough, however, to warrant some care in choosing 

it. 
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I. INTRODUCTION 

The investigation of this thesis is just a special case of the 

transportation problem, which is a special case of the general linear 

programming problem. 

1 

The general linear programming problem, as stated mathematically, is 

to find X;, i = 1 ,2, ... ,n which minimizes Z ,Zc;x; =<c,x)> subject to 
i 

the constraints 

and 

+ alnxn~ bl 

+ a2nxn~ b2 

x1 ~ 0, x2 ~ 0, . , xn~ 0 

or more concisely, the constraints can be written as AX~ B and xi~ 0, 

i = 1,2, ... ,n where A is them x n coefficient matrix and B is an m 

element long column vector. Z is called the objective function and the 

xi's are called decision variables. A, B, and Care usually given 

constants for any particular problem. The Simplex Method is the most 

popular technique for solving this problem. 



The transportation problem, as stated previously, is a special 

case of the general linear programming problem. The transportation 

problem, in mathematical terms, is to find x .. , i=l,2,. .• ,m and 
1J 

j=l ,2, ... ,n which minimizes Z =l,L,c . . x .. = <c,x) subject to the 
. . 1J 1J 

1 J 
constraints 

Ix .. = a. for all i ' i = 1,2, ... ,m 
:J 1 J 1 

I.x·. = bj for all j,j = 1,2, ... ,n 
1 1J 

and 

X; j ~ 0 for all i and j. 

This problem has a feasible solution only if)); =L)·=LLX· .. 
1 j J i j 1J 

That is to say, the system is in balance. The Simplex ~·1ethod could 

obviously be used to solve this problem. However, like many other 

problems which are a special case of a more general problem, there are 

better techniques for solving the transportation problem than the 

Simplex Method. 

The subject of this investigation is a special case of the 

transportation problem commonly referred to as the assignment problem. 

If m = n, L:x .. 
i 1J 

= 1 for all j and~ .. = 1 for all i in the transportation 
j 1J 

problem, then it is reduced to the assignment problem. Which, more 

concisely, is to find xij' i=1,2, ... ,n and j=l,2, ... ,n which minimizes 

Z = l,,l:c .. x .. = (C,X) subject to the constraints 
. . 1J 1J 

1 J 

and 

L..x .. = 1 for all j 
i 1J 

LJ< .. = 1 for all i 
j 1J 

X •• 
1J 

if jth element in ith row is assigned 

otherwise. 

2 



This means that in the solution one and only one element in any 

row or column of the X matrix will have a value of one. All other 

elements in that row or column will have a value of zero. That is to 

say, the solution will be a row or column permutation of an nth order 

Identity matrix. 

As before, this problem is solvable by the Simplex Method, but the 

nature of the problem lends itself to other techniques. These other 

techniques are the major subject of this thesis. 

A typical problem which could be solved by developing it as an 

assignment problem might be the assignment of jobs to persons in a job 

shop. Knowing that each person could do certain jobs at a certain cost 

and would require a certain amount of time, the problem would probably 

be to assign all the jobs to all the persons in the shop to minimize 

the cost or time or perhaps a combination of both. 

A technique which will minimize a function then certainly could be 

modified to maximize a similar function. 

Another typical problem might be the assignment of machines to 

certain functions to maximize production. 

3 

Perhaps these problems are a little understated. Probably the most 

difficult problem to solve of any that will be stated here is the problem 

of obtaining the cost coefficients as realistic values. This, however, is 

not the problem which is under consideration. 



Therefore, I submit that there are many problems which arise in 

this area that need solutions. I feel that many of the current 

techniques being used to solve the problems are too involved to be 

practical. Many problems are being solved irresponsibly by persons who 

can only guess at the solutions. If a problem requires an urgent 

solution, it is often solved with very little regard to any planned 

technique but based upon intuitive guessing. Often this is the only 

tool available. However, I do believe there is a technique which is 

more logical than intuitive guessing and yet simple enough to be 

used to solve large problems with a minimum of effort. 

A Review of Literature follows this section as Section II. 

The technique I have devised and its effectiveness is discussed in 

Section III, titled A Fast Solution Technique. 

Some Examples and Practical Problems will constitute Section IV. 

Section V will state the Conclusions drawn from this study. 

4 



II. REVIEW OF LITERATURE 

There exist several methods for solving the assignment problem. 

The problem itself is known by many different names. Dantzig3 calls 

it the Marriage Problem and it is described as a problem of deciding 

who marries who when mail order brides are brought into a mining town. 

When each prospective bride chooses a different prospective groom, the 

problem is easy to solve. It only becomes difficult after more than 

one girl chooses a particular boy. And, of course, bigamous, and 

generally, polygamous marriages are ruled out. Dantzig applies dynamic 

programming to solve the problem. Niederjohn15 felt that removing 

some of the steps of Dantzig•s Method would make it more usable. 

Dynamic Programming lends itself to the solution of the assignment 

problem very nicely except that it requires considerable core storage 

when implemented on a digital computer and, therefore, the size of 

problem solvable is somewhat restricted by the equipment available. 

A second, and perhaps more popular technique, is the Hungarian 

Method first described by Kuhn7 and considerably refined by Munkres13 . 

Perhaps the reason this technique is more popular is the fact that the 

person using the technique develops more of a feel for the problem and 

the computation required is just simple addition and subtraction. 

Although this is a popular hand calculation method, its 

implementation on a digital computer would be somewhat restricted by 

computations required not in solving a problem, but in determining when 

a solution is optimal. It is popular because it is a hand calculation 

method, but the necessary re-writing of the cost matrix makes it 

5 



somewhat restrictive as to size of problem solvable. In most problems 

small enough to solve by hand, the optimum solution can be determined 

by inspection as the last step of the algorithm. Yaspan19 refined the 

last step of this algorithm to make it usable for larger problems 

although he felt that it was still too cumbersome for a digital 

computer. Murty14 felt that more than one solution might be needed 

and, in fact, a ranking of solutions could be useful. 

6 

The Simplex Method has always been popular as a technique for 

solving the assignment problem and a number of papers have been written 

by very knowledgeable people who feel that the background of information 

available about the Simplex Method make it more usable because the proof 

of an optimum solution in a finite number of steps has already been 

found. Szwarc18 attempted to improve it by finding a better initial 

solution and allowing mixed-integer linear solutions. Although he was 

more concerned with the transportation problem, his modifications could 

surely be applied to the assignment problem. This leads, however, to 

the same problem of efficiency. Methods, in general, tailor-made for 

the transportation problem could hardly be expected to perform as well 

for a particular sub-problem such as the assignment problem. 

The fourth method is relatively new by comparison to other methods 

already discussed. This method is branch and bound, or backtracking, 

and is discussed in its entirety by Little, et a1. 9 as applied to a 

traveling salesman problem. Dantzig, of course, formulated the 

assignment problem and the traveling salesman or shortest route problem 

into a common form and used dynamic programming to solve both types of 

problems. This formulation is restrictive and allows only a dynamic 



programming solution. It does not appear to be a good method for 

converting when dynamic programming is not being used. Glover6 presents 

a combination of backtracking and dual-simplex. Most of his ideas come 

2 
from Balas who used the dual-simplex and considered the speed at which 

a solution was found to be of prime importance. These papers are more 

concerned with the general problem and not with problems of a particular 

nature. Gavett and Plyter5 and Efroymson and Ray 4 ~ on the other hand~ 

consider branch and bound a good technique for optimal assignment of 

facilities to locations which is more closely related to the classical 

assignment problem. Lawler and Wood8 are responsible for a very good 

survey in which they compare branch and bound very favorably to dynamic 

programming for solving integer linear programming and traveling 

salesman problems. They feel~ however~ that dynamic programming offers 

the best direct approach. 

There are several other partial enumeration methods to be found in 

the literature. In fact~ Reiter and Sherman16 considered four such 

partial enumerations schemes with just a slightly new twist. They 

incorporated random search in addition to whatever intelligently 

directed search could be employed. The random search was intended to 

prevent the directed search from stopping at a local optimum which was 

not the optimum solution. Their first two algorithms are similar to the 

one presented in this paper, but are significantly different only in the 

action taken after an initial solution is found. 

There are~ then~ generally four uniquely different techniques for 

solving the assignment problem. Dynamic programming, while it will solve 

the problem, is restricted as to the size of problem that can be 

7 
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solved. Hungarian methods are difficult for large problems, but are 

nice to give the user a feel for the problem. With this method, it is 

difficult to know when the problem is solved. The Simplex Method is 

usually thought of first because it is the most popular method for 

solving linear programming problems. However, the constraints of an 

assignment problem are generally too numerous to be solved because of the 

matrix inversion employed by the Simplex Method. The partial enumeration 

schemes of Reiter and Gordon may be the best approach with branch and 

bound adding support to the theory behind it. Branch and bound was 

originally developed for the traveling salesman problem and the direct 

application to the assignment problem is less than ideal. 

All of the above techniques are concerned with an exact solution. 

Manne11 believes that in a job-shop scheduling problem, Monte Carlo 

methods would require much less computer time. Balas1 seems to think 

that aggregation or solving some subsets of the larger problem before 

solving the larger problem might be a still better approach. Saaty17 

applies partitions to acquire an approximate solution to the general 

linear programming problem. Machol 10 solves a practical problem with 

a suboptimal technique and feels that his is the best solution that could 

be found under the circumstances. And so, there are perhaps many 

applications where the expense of obtaining an optimal solution is not 

considered worthwhile. 



III. A FAST SOLUTION TECHNIQUE 

The fast solution technique basically consists of 4 steps, as 

follows, assuming the problem is to minimize the function: 

1. Find the smallest element in a row. 

2. Temporarily assign this element and remove all other 

elements in that element column from consideration. 

3. Proceed to another row and follow the procedure of 

steps 1 and 2 above being careful not to temporarily 

assign more than one element in any one row or column. 

For most small problems, n~4 the solution is apparent 

when all the rows and columns have been temporarily 

assigned. 

4. Having temporarily assigned n elements of the n x n 

coefficient matrix C, the assignments will be tested 

to determine if an improvement can be made. The idea 

is to compare the sum of two assignments with the sum 

of their alternative elements. If the alternative 

element sum is smaller than the assignment pair sum, 

then the assignment should be modified to include the 

alternative pair in the assignment, which means, of 

course, to omit the pair previously assigned. For 

example, 

9 



c = 

. . . . . . . 

assume cij and cmk are temporarily assigned. Step 4 

means if cij + cmk is larger than cik + cmj then cik 

and cmj should be assigned instead of cij and cmk" Or~ 

in more precise mathematical terms, xij = xmk = 0 and 

xik = xmj = 1 as the new assignment. Any procedure which 

provides for the comparison of every assigned element 

pair with their alternative pair is entirely satisfactory. 

If an assignment is modified, then the procedure should 

begin again in order to insure that all comparisons are 

made. 

A flow chart of this technique appears in Appendix A. 

One such procedure for making all required comparisons might be to 

compare each row's assigned element and all the subsequent assignments 

with their alternative element sums. That is to say, the first row's 

element would be compared to the second row's element and then to the 

third row's element and eventually to the nth row's element. Then the 

second row's element is compared to the 3rd row's element and then with 

the 4th row's element and finally with the nth row's element. This 

10 
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procedure should be followed until the (n-l)th row's element is compared 

to the nth row's element. If no reassignments were made, the solution 

is found. If a reassignment has been made, this procedure should be 

repeated. 

Another suitable procedure might be to compare the largest 

assigned element and the next largest. And then compare largest with 

3rd largest on down to comparing the largest and smallest with their 

alternative element sums. Then go back and compare the 2nd largest 

with the 3rd largest until all the assigned elements have been compared 

pair-wise to all other assigned elements. If a reassignment is made, 

then the procedure should be repeated. 

Note the form of the decision matrix X. It is a row or column 

permutation of an nth order Identity matrix. 

The C matrix or cost matrix, as it is often called, is a matrix 

of coefficients of the minimizing function. Throughout the solution of 

the problem, C's elements remain constant. 

One final point must be made about this technique. This technique 

does not find the optimum solution. If the procedure were extended 

to comparing inner products of row or column permutations of nth order 

Identity matrices times the cost coefficient matrix, then the optimum 

solution could be found by enumeration. This is obviously impractical 

for a problem of any magnitude. In fact n! inner products, where n is 

the order of the coefficient matrix, would have to be calculated to solve 

by enumeration. As an example, consider a lOOth order coefficient matrix. 
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To solve this problem by enumeration would require 9.3326 x 10157 inner 

products. This problem is not unsolvable by any means, however, to attempt 

a solution by hand is not even thinkable. 

For most practical problems, an optimum solution is not required 

because of the time required to obtain an optimum solution or because 

of the expense of obtaining the optimum solution. In many cases, the 

cost of getting the correct answer to a problem will outweigh the profit 

of using it as opposed to an easily obtained near correct answer. The 

only trouble with using a near correct answer is that in most cases, the 

cost of obtaining the correct answer is not known and, of course, the 

amount of improvement or profit gain is not known. 

For these reasons, a discussion of these differences is included in 

Section IV under Some Examples and Practical Problems. 
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IV. SOME EXAMPLES AND PRACTICAL PROBLEMS 

The reader should understand the differences between optimal and 

suboptimal solutions and when one is required or more desirable than the 

other. If the problem is a continuing one, such as the traveling 

salesman traveling the same route time and time again, the error is 

magnified every time a suboptimal solution is used. If the problem is 

not continuous, as in a job-shop where persons are assigned to do 

different jobs on a job to job basis, a suboptimal solution is perhaps 

more desirable because it can be obtained much more cheaply and quickly. 

At this point, it should be noted that anyone can obtain a suboptimal 

solution. However, some suboptimal solutions may be worse than no 

solution at all because the suboptimal or feasible solution set contains 

the maximum as well as the minimum of the objective function. The 

traveling salesman problem is a problem which requires an optimal 

solution, especially if the route is to be used several times. In 

general, if the solution is to be applied only once, a suboptimal 

solution will be adequate and a very close to optimal solution may be 

even more desirable than the optimal solution. 

The following are a series of examples where a suboptimal solution 

might well be applicable. 

The next two examples are classic dynamic programming problems 

which will be solved by a non-dynamic method. 
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Example 1: 

Consider the problem of assigning more than one person to a job to 

improve the overall performance of that job. Table I gives the 

effectiveness (reciprocal of time) of doing each of eight jobs, assuming 

twenty persons are used to work on the jobs and if a job does not get done 

at all there is no penalty. The objective is clearly to maximize the 

effectiveness. 

Clearly, all twenty persons could be assigned to either job 1 or 

job 5 and the effectiveness is 76. Just as clearly, nineteen persons 

could be assigned to job 5 and one to job 4 and the effectiveness is 

boosted to 96, which is a pretty good start. This last also suggests 

a fast solution technique which is in all likelihood suboptimal, but the 

ease with which such a large increase was found also adds to the intrigue. 

Doing this personnel swapping just as far as it will go yields an 

effectiveness total of 141 with 1, 1, 7, 1, 10, 0, 0 and 0 persons 

assigned to jobs one to eight respectively. This may be the optimal 

solution, but enumeration or dynamic programming would have to be used 

to tell for sure. Both of these are out of the question because dynamic 

programming would require too much core and enumeration would take too 

long. There are four alternative solutions found also and they are 

2, 0, 7, 1 , 10, 0, 0, and 0 or 1 , 0, 7, 1 , 1 0, 1 , 0, and 0 or 1 , 0, 7, 

1, 10, o, 1, and 0 or 1, 0, 7, l, 10, 0, 0, and l, all of which yield an 

effectiveness total of 141. The zeros in the table indicate that zero 

men will accomplish zero jobs and that at least four men are required to 
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TABLE I EFFECTIVENESS COEFFICIENTS 

Job Number 

Personnel 1 2 3 4 5 6 7 8 

0 0 0 0 0 0 0 0 0 

1 10 2 0 20 0 2 2 2 

2 12 3 0 20 0 2 2 4 

3 14 3 0 20 0 2 3 6 

4 16 3 6 21 25 2 4 8 

5 18 4 12 21 27 4 5 10 

6 20 6 18 22 27 6 6 12 

7 22 10 36 22 27 6 7 14 

8 24 18 37 23 42 8 10 16 

9 26 26 37 24 49 10 11 18 

10 28 40 37 24 71 12 11 20 

11 31 44 38 24 71 13 18 22 

12 33 45 38 24 71 14 23 24 

13 37 46 39 24 71 14 29 26 

14 39 47 40 25 71 15 36 28 

15 43 49 40 25 72 15 48 30 

16 47 50 50 26 73 22 59 32 

17 55 51 60 26 74 31 70 34 

18 60 51 61 26 75 41 71 36 

19 66 51 62 26 76 42 72 38 

20 76 52 63 26 76 42 73 40 



do jobs 3 and 5. The numbers in the table may not be as realistic as 

some other numbers, but the method for finding a solution would remain 

the same. 

16 

Note that if the number of personnel were reduced, the effectiveness 

values would remain the same and a new solution could be found quickly 

with just a minimum of effort. 



Example 2: 

The St. Louis Post Mortam News Agency* distributes newspapers and 

magazines to 500 different newsstands in the Missouri-Illinois area. 

17 

They handle 44 different news items. Table II gives the probability that 

each magazine up to 20 units will be purchased daily. Table III gives the 

normalized profit and weight of each magazine. The regular delivery 

truck has sufficient capacity to handle all the magazines needed by all 

the newsstands, but today it is out of service with a broken rear axle. 

The only other truck aviilable is a rental truck that is considerably 

smaller than the usual delivery truck. The problem, then, is to maximize 

expected profit while minimizing the weight on the rental truck. 

The first step to consider is to obtain a cost matrix. A function 

must be defined that will describe the cost coefficient matrix adequately, 

not only as a function of expected profit, but as a function of weight. 

If the maximum weight allowed on the vehicle is exceeded, then the vehicle 

may break down or the driver be arrested for exceeding weight limitations. 

For this problem, we will use a cost coefficient as follows: 

c .. 
lJ 

where: 

J-1 

= (1 - IPlj) 
1=0 

P./W. 
J J 

plj = probability that the lth unit of the jth magazine will be 

sold and Poj = 0. 

P. = normalized profit on each unit of the jth magazine. 
J 

* The name of this Agency is of a ficticious nature as is all the data 
involved in this and all other examples. 



TABLE II PROBABILITY DISTRIBUTIONS FOR MAGAZINE SALES 

Magazine Number 

1 2 3 4 5 6 7 8 9 10 11 

1 • 01 .02 .20 • 01 .50 .20 

2 . 01 .01 .20 . 01 .50 .20 

3 . 01 . 01 .25 .01 .99 .1 0 

4 • 01 • 01 .20 .20 .1 0 .1 0 .01 .20 . 1 0 

5 .01 .01 • 15 .25 • 10 .1 0 .02 .20 .20 

6 .02 . 01 .20 .1 0 • 10 .25 .20 .20 

7 .02 • 01 .20 .18 .1 0 .40 .20 

8 .05 .01 • 10 .18 .30 .20 .20 

9 .06 .01 .05 .18 .20 .09 

10 .30 .02 .09 .1 0 .04 

11 .30 .02 .02 

12 .06 .02 . 01 

13 .05 .02 . 01 

14 .02 .05 

15 .02 .05 

16 • 01 .11 

17 • 01 .11 

18 . 01 .11 

19 . 01 .25 

20 • 01 .15 ...... 
00 



TABLE II {Continued) 

Magazine Number 

12 13 14 15 16 17 18 19 20 21 22 

1 1. 0 

2 .25 • 15 

3 • 01 .50 .15 .1 0 

4 1.0 • 01 .25 .1 0 

5 .80 .02 .25 .25 .20 

6 .25 1.0 . 10 .02 .50 .1 0 .20 

7 .50 .1 0 .04 .1 0 • 15 

8 .25 .04 .25 .15 

9 .20 . 10 

10 .25 

11 .30 

12 .11 .25 

13 

14 

15 

16 

17 

18 

19 I 
__, 

1.0 
~ 

20 



TABLE II (Continued) 

Magazine Number 

23 24 25 26 27 28 29 30 31 32 33 

1 .20 .05 . 10 .20 .40 .20 .40 

2 .50 .20 .05 .1 0 .20 .40 .40 .20 

3 .50 .20 .05 .10 .20 .20 .40 .40 

4 .50 .25 .20 .05 .1 0 .20 

5 .25 .20 .05 .1 0 .20 

6 .50 . 15 .20 .05 .1 0 

7 .25 .20 .05 . 10 

8 .10 .20 .05 . 1 0 

9 .20 .05 . 10 

10 .20 .05 • 10 

11 .05 

12 .05 

13 .05 

14 .05 

15 .05 

16 .05 

17 .05 

18 .05 

19 .05 
N 

.05 
0 

20 



TABLE II (Continued) 

Magazine Number 

34 35 36 37 38 39 40 41 42 43 44 

1 . 01 

2 .25 .25 .50 .20 .20 .02 .03 

3 • 25 .40 .20 .1 0 .03 

4 .40 .40 .30 .20 • 04 .07 

5 .20 .1 0 . 1 0 .20 .1 0 .05 

6 .25 . 10 • 10 .1 0 .20 .06 • 11 

7 .25 .25 .30 .1 0 .20 .10 .07 

8 .25 .40 .1 0 .1 0 .20 .08 .15 

9 .30 .1 0 .09 

10 .20 .05 .14 

11 .25 .1 0 .05 

12 .09 . 14 

13 .1 0 .08 

14 .1 0 .07 .15 

15 .06 

16 .05 .11 

17 .04 

18 .03 .07 

19 .50 .02 
N 

.01 • 03 
__, 

20 



TABLE III 

Ma azine # 1 2 3 4 5 

Profit (P) .1 0 • 15 .30 .50 .50 

Weight (W) . 01 • 01 .20 .25 .25 

P/W 10.0 15.0 1.5 2.0 2.0 

Ma azine # 12 13 14 15 16 

Profit (P) .60 .60 .50 .75 .50 

Weight (W) .50 .50 • 08 .75 .20 

P/W 1.20 1.20 6.25 1.0 2.5 

Magazine # 23 24 25 26 27 

Profit (P) .50 .50 .50 .50 .50 

Weight (W) .05 .05 .05 .05 .05 

P/W 10.0 10.0 10.0 10.0 10.0 

Magazine # 34 35 36 37 38 

Profit (P) .50 .50 1.00 .75 .50 

Weight (W) .30 .30 .90 .50 .40 

P/W 1.67 1.67 1.11 1.5 1.25 

NORMALIZED PROFITS, WEIGHTS, AND RATIOS 

6 7 8 9 10 

1.00 .50 1.00 .50 .50 

.95 .40 . 98 .25 .30 

1.05 1.25 1.02 2.0 1.67 

17 18 19 20 21 

.25 1. 00 .50 .50 .75 

.15 1.00 .25 .35 . 10 

1.67 1.0 2.0 1.43 7.5 

28 29 30 31 32 

.25 .50 .75 1.00 1.00 

. 01 .02 .05 .50 .50 

25.0 25.0 15.0 2.0 2.0 

39 40 41 42 43 

.50 .50 .50 .25 .30 

.30 .30 .35 .20 . 01 

1.67 1.67 1.43 1.2 30.0 

11 

.50 

.40 

1.25 

22 

.50 

• 1 0 

5.0 

33 

1.00 

.50 

2.0 

44 

.50 

.02 

25.0 

I'\) 

I'\) 



and 

Wj = normalized weight of each unit of the jth magazine. 

And we will assume that the weight allowed is one half that which would 

fulfill all the requirements of the usual sales. The weight put on the 

usual delivery truck is 95.92 units. The weight allowed on the rental 

truck is therefore 47.96 units. Table IV contains the newly computed 

cost coefficient matrix from which the optimum content of the rental 

truck can be computed. Let us start with an initial solution of all the 

magazine units for the first twenty-four magazines plus three units of 

the twenty-fifth magazine. This combined weight is 47.92 units, which 

is within the allowed weight. The procedure will then be the same as in 

Example 6. Lower profit-weight ratios will be subtracted and higher 

profit-weight ratios will be added. The weight restriction must not 

be violated. The initial solution in terms of units of magazines is 

20 , 20 ' 5 ' 9 ' 13 ' 2 ' 1 0 ' 4' 1 0' 8 ' 6 ' 8 ' 6 ' 20' 4 ' 7 ' 1 2 ' 1 ' 6' 12 ' 7 ' 

9, 6, 7, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, and 0 

for each of the 44 magazines respectively. 

The next step should be to increase profit while maintaining the 

correct weight. Examine magazine number 8. If we reduced the number of 

units of this magazine by one, we would reduce the weight by .98 units. 

This weight could then be filled by a magazine with a larger profit­

weight ratio. Magazine number 43 is ideal for this exchange. All 20 

units of magazine number 43 should be included. This exchange did not 

increase the weight and, in fact, reduced it. This lost weight can be 

replaced by several units of other magazines. All 20 units of magazine 

number 44 can be added, as can all 20 units of magazine number 28. 
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TABLE IV COST COEFFICIENTS 

Magazine Number 

1 2 3 4 5 6 7 8 9 10 11 
1 10.0 15.0 1.50 2.0 2.0 1.05 1.25 1.02 2.0 1.67 1.25 
2 9.9 14.85 1.20 2.0 1.98 .525* 1.25 1.02 2.0 1.67 1.00 

3 9.8 14.70 .90 2.0 1.96 1.25 1.02 2.0 1.67 .75 
4 9.7 14.55 .525 2.0 l. 94 1.25 .011* 2.0 1.67 .625 

5 9.6 14.40 .225* 1.6 1.74 1.125 2.0 1.33 .500 

6 9.5 14.25 1.1 1.54 1.000 1. 96 1.00 .25* 

7 9.3 14.10 .7 1.34 .875 1.46 .67 

8 9.1 13.95 .3 . 98 .750 .66 .33* 

9 8.6 13.80 .1 * .62 .375 .26 

10 8.0 13.65 .26 .125* .08* 

11 5.0 13.35 .08 

12 2.0 13.05 .04 

13 1.4 12.75 .02* 

14 .9 12.45 

15 .7 11.70 

16 .5 10.95 

17 .4 9.30 

18 .3 7.65 

19 .2 6.00 

20 .1* 2.25* 
N 

*Indicates initial solution 
.;:. 



TABLE IV (Continued) 

Magazine Number 

12 13 14 15 16 17 18 19 20 21 22 

1 1.2 1.2 16.0 1.0 2.5 1.67 1.0* 2.0 1.43 7.5 5.0 

2 1.2 1.2 16.0 1.0 2.5 1.67 2.0 1.43 7.5 5.0 

3 1.2 1.2 16.0 1.0 2.5 1.67 2.0 1.07 6.375 5.0 

4 1.2 1.2 16.0 1.0* 2.5 1.65 1. 0 1.07 5.250 4.5 

5 1. 2 1.2 16.0 2.5 1.63 1.0 1.07 3.375 4.0 

6 1.2 1.2* 16.0 .5 1.60 1.0* .72 1.500 3.0 

7 .9 16.0 .25* 1.57 .72 .75* 2.0 

8 .3* 16.0 1.50 .72 1.25 

9 16.0 1.44 .36 .5* 

10 16.0 1.11 .36 

11 16.0 .69 .36 

12 16.0 .18* .36* 

13 16.0 

14 16.0 

15 16.0 

16 16.0 

17 16.0 

18 16.0 

19 16.0 

20 16.0* N 
0'1 

*Indicates initial solution 



TABLE IV (Continued) 

Magazine Number 

23 24 25 26 27 28 29 30 31 32 33 

1 10.0 10.0 10.0 10.0 10.0 25.0 25.0 15.0 2.0 2.0 2.0 

2 10.0 10.0 10.0 10.0 8.0 23.75 22.5 12.0 1 • 2 1.6 1.2 

3 10.0 10.0 5.0* 8.0 8.0 22.50 20.0 9.0 .4 .8 .8 

4 10.0 5.0 5.0 8.0 6.0 21.25 17.5 6.0 

5 5.0 5.0 2.5 6.0 6.0 20.00 15.0 3.0 

6 5.0* 2.5 2.5 6.0 4.0 18.75 12.5 

7 2.5* 1.0 4.0 4.0 17.50 10.0 

8 1.0 4.0 2.0 16.25 7.5 

9 2.0 2.0 15.00 5.0 

10 2.0 13.75 2.5 

11 12.50 

12 11 . 25 

13 10.00 

14 8.75 

15 7.50 

16 6.25 

17 5.00 

18 3.75 

19 2.50 

20 1.25 N 
m 

*Indicates initial solution 



TABLE IV (Continued) 

Magazine Number 

34 35 36 37 38 39 40 41 42 43 44 

1 1.67 1.67 1.11 1.5 1.25 1.67 1.67 1.43 1.2 30.0 25.0 

2 1.67 1.67 1.11 1.5 1.25 1.67 1.67 1.43 1.2 29.7 25.0 

3 1.25 1.25 .555 1.5 1.00 1.67 1.67 1 . 15 1.2 29.1 24.25 

4 .83 1.25 .555 .9 .75 1.67 1.67 1.01 1.2 28.2 24.25 

5 .83 1.25 .555 .9 .25 1.00 1.17 .72 1.2 27.0 22.50 

6 .83 1.25 .555 .9 .83 1.00 .43 1.08 25.5 22.50 

7 .42 1.25 .555 .9 .67 .83 .29 .84 23.7 19.75 

8 .83 .555 .9 . 17 .67 .72 21.6 19.75 

9 .42 .555 .3 .50 .48 19.2 16.00 

10 .42 .555 .3 .36 16.5 16.00 

11 .42 .555 .3 .12 15.0 12.50 

12 .555 .3 13.5 12.50 

13 .555 .3 10.8 9.00 

14 .555 .15 8.4 9.00 

15 .555 6.3 5.25 

16 .555 4.5 5.25 

17 .555 3.0 2.50 

18 .555 1.8 2.50 

19 .555 1.8 2.50 

20 .3 .75 N ....., 
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Only 9 units of magazine number 29 can be added to get back to the 

original weight of the initial solution. However: one additional unit 

of number 29 will be allowed as this will still be within the original 

weight constraint of 47.96. The new solution is then 20, 20, 5, 9, 13, 

2' 1 0' 3 ' 1 0' 8' 6 ' 8 ' 6' 20' 4' 7 ' 1 2 ' 1 ' 6 ' 1 2 ' 7 ' 9' 6' 7 ' 3' 0 ' 0' 

20, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, and 20. The number of 

units is increased by 70 and the expected profit changes from 72.37 to 

86.39 normalized units. 

Note how the magazine to be removed was located. The smallest 

available cost coefficient in the initial solution is .011, which 

corresponds to magazine number 8. The largest coefficient not in the 

initial solution is 30.0, which corresponds to magazine number 43. If 

the exact solution were required, only one unit of magazine number 43 

would have been chosen at a time until a larger coefficient than the next 

one in number 43 were found. But, since this is not an exact algorithm, 

this discrepancy will be ignored. This, incidentally, corresponds to 

total enumeration. 

Follow the above procedure until all of the entries chosen in the 

initial solution have been checked and possibly reduced. Then check 

those that were entered into the solution to see if they should be 

removed. 

The final solution is 13, 20, 2, 6, 7, 1, 5, 3, 7, 5, 1, 6, 6, 20, 

0, 5' 1 0' 0' 3' 5' 6' 8' 6' 7, 7' 1 0' 9' 20' 1 0' 5' 2' 2' 2' 3' 7 ' 2' 3' 

2, 4, 5, 3, 5, 19, and 19 for the 44 magazines respectively. And the 

expected profit is 119.84. The weight on the rental truck will be 47.96 

units. 
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The expected profit is computed using the normalized profits from 

Table III and the probability distributions from Table II. It is the 

sum of the expected profits from each magazine unit. Each magazine's 

expected profit is the sum of the probability that the magazines will be 

sold times profit. 

In this problem, as in most others of its general type, the most 

difficult part is obtaining meaningful coefficients. More often than 

not, there is no mathematics involved in choosing coefficients as in the 

case of personnel assignments where employees are rated as to 

effectiveness in job performance. 

The previous examples hint at a large variety of problems encounter­

ed in real life that might be solved by a better method than intuitive 

guessing. Some of these other examples follow. 
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Example 3: 

A small computer center has purchased a somewhat larger and faster 

computer. The only problem being that they do not have sufficient funds 

to purchase a new keypunch that codes the correct punch combinations for 

the new equipment. The old keypunch machine has all the required equipment 

to punch the new code except that when the plus (+) key is punched and a 

plus (+) is printed on the top of the card, the new machine interprets 

the punch combination as an ampersand (&). There are 48 punch 

combinations on the old machine and 60 punch combinations that the new 

machine can interpret. This means, of course, that 12 punch combinations 

will have to be handled on an individual basis, but 48 punches can be 

handled directly if the old machine can be converted to punch the correct 

combination for the new equipment when various keys are depressed. This 

is only a theoretical problem, but is the same problem one would encounter 

if it were necessary to convert an IBM 026 keypunch to an IBM 029 as 

would be necessary if an IBM-360 computer were purchased to replace an 

old IBM-1620. This example is similar to Machol •s10 paper tape punch 

conversion problem. 
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Example 4: 

Consider the job-shop problem. Assume the shop foreman has 200 jobs 

to be done in the next four days and he knows that his fifty men can do 

a separate job a day on the average of 7 1/2 hours per job. Then each 

man must average at lea.st one job a day for four days. How does he 

assign the jobs to get each job finished by the last day? If you were an 

experienced foreman who knew each of the fifty men well, then you would 

probably work it out so that there wasn•t any problem. If, however, your 

job as foreman hangs in the balance, it might be nice to have a scheme 

which indicates a definite plan of attack to solve the problem, and to 

know in advance that the jobs will all be done, or if, indeed, they can 

be done. 



Example 5: 

Assume for a moment you are a doctor and that you carry a black bag 

with you on your house calls. What do you carry in your bag to minimize 

the probability that you will arrive at your patient•s bedside without 

the proper medication for the patient•s ailment? If, on the other hand, 

you are the patient, you might consider the possibility of the doctor 

increasing the size of his bag and decide that a near solution just is 

not adequate in this problem. This is actually a modified version of the 

knapsack problem which was mentioned frequently throughout the literature. 

32 
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Example 6: 

Minty12 gives us an interesting variation to the shortest route 

problem which might well be an application for an approximation method. 

Suppose that an airline traveler presents himself at the ticket counter 

and requests the quickest route to another city. Then his route would 

be dependent upon when he arrived at the ticket counter, as well as 

where his origin is and where his destination might be. This problem has 

some very interesting aspects that might make it complicated enough to 

keep one busy a long time. 



Example 7: 

Suppose that the chairman of a department at a small midwestern 

college must assign his personnel to teach the courses offered by his 

department. All of the personnel can teach all of the courses, however, 

some can teach some courses better than others. How then does the 

chairman assign his people to get the best teaching effort from them? 

Are there any methods being used at the present time to solve this 

problem? Actually, this is not as difficult a problem as some because 

the chairman obviously knows the personnel well enough to make a better­

than-average guess. And, in fact, may find the optimal solution without 

any mathematical method. 

34 

These last five over-simplified examples should be sufficient to 

suggest many more problems which might be solved by suboptimal techniques. 
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V. CONCLUSION 

The initial solution used in a suboptimal algorithm is not as 

important as it would be in an optimizing procedure. If an optimum 

solution is required, choosing the proper initial solution may reduce the 

number of steps appreciably. Figure 1 compares two different initial 

solutions with an absolute minimum and an actual minimum. Table V lists 

all the values used in the figures below. 
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TABLE V DATA OBTAINED FROM COMPUTER RUNS 

Order of Matrix (n) 3 4 5 6 7 8 9 10 

Absolute .8349 .8430 .8858 .9346 .9223 • 9133 .9656 .9717 
Average Fast .9636 1.0185 1.1437 1.2528 1. 3205 1.3817 1.4962 1.5701 Solution 
Value Improved .9590 1.0159 1.1145 1.2252 1.2826 1.3281 1.4382 1.4593 

Actual .9559 .9987 1. 0740 1.1171 

Absolute .2783 . 2108 
Average Fast .3212 • 2546 Entry 
Size Improved .3197 .2539 

Actual .3186 .2497 

Fast and Absolute • 17 • 21 
Computer Improved .11 • 21 
Time In 
Seconds Actual .16 .24 

%Average Fast .81 1.99 

Error* Improved .32 1.75 

*% Average Error = this solution - Actual 
Actual 

.1772 .1558 .1318 • 1142 .1 073 .0972 

.2287 .2088 .1886 .1727 .1662 .1570 

.2229 .2042 .1832 .1660 .1598 .1459 

. 2148 .1862 

.25 .30 .38 .42 .55 .60 

.23 .29 .35 .42 .53 • 61 

1.11 15.01 

6.49 12.16 

2.84 9.68 

100 

0.9964 

4.490 

3.2475 

• 0100 

.0449 

.0325 

47.0 

91.0 

w 
0'1 
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The Absolute Minimum is computed as the 

n n 

rna x ( L m i n ( c .. ) , ~ m i n ( c •. ) ) • 
. lJ ? . lJ 

i=-1 J J=-1 1 

The Actual Solution is found by enumeration. Both Improved Start 

and Fast Solution follow the algorithm of this paper except that Fast 

Solution starts with the Identity Matrix as the initial solution and 

Improved Start uses a combination of minimum search and elimination. 

Each of these programs will be listed in Appendix B. Absolute Minimum 

and Fast Solution were run as one program. 

Figure 2 is a comparison of average entry size to order of matrix 

for all of the above routines. 
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Note that Actual Minimum is projected beyond n = 6 because there 

were no results computed. Since 15 seconds of computer time were 

required to solve only on~ 6 x 6 as compared to 1.11 seconds for a 5 x 5, 

all enumeration runs for n>6 were abandoned. Their value was somewhat 

questionable compared to the computer time for n = 6. All of the data 

points illustrated involved 100 nth order matrices whose coefficients 

were generated by a uniformly distributed random number generator except 

Actual Solution data point n = 6 where only 36 matrices were used. 

Note that the initial solution is significant even in this 

suboptimal technique. It becomes more significant as the order of the 

cost coefficient matrix increases. Examine the experimental runs for 

n = 100. This data alone indicates at lease a 27% error in the solution 

as found by Fast Solution compared only to Improved Start. 

Figure 3 compares computer time in seconds to order of matrix for 

Improved Start and total enumeration (Actual Minimum). This figure 

illustrates that computer time for total enumeration is exponential, 

however, the algorithm presented here appears to be almost a linear 

function of order of matrix. In fact, one 100 x 100 was evaluated 

requiring 91.0 seconds of computer time. This is by no means linear, but 

this time is so small compared to what would have been required for 

enumeration that the cost comparisons for finding solutions is not 

realistic. 

By the time publishers have edited many articles by very good 

writers their meaning and usefulness are almost obliterated. The value 

of the new development is either unsubstanciated by mathematical 

development or lacking in satisfactory examples or both. As the 
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situation now stands, an Operations Research Analyst has a better chance 

to develop his own algorithms than of understanding many would-be, 

incomplete algorithms in the literature. 

Branch and bound, although it is a good method for finding an exact 

solution, was not used for comparison purposes because it was not necessary 

to illustrate the desired points of the investigation. 

With respect to solving this problem by hand, some pairwise comparisons 

are not necessary because of previous comparisons or at least the additions 

are not necessary because one pair is obviously larger than the other. 

All of these things make it more usable. 

In conclusion, the initial solution is most important when an exact 

optimum solution is required or when the order of the coefficient matrix 

is large. Otherwise, the initial solution should necessarily only be 

feasible. An exact optimum solution is only important when it can be 

obtained cheaply enough to warrant its use over a suboptimal, easily 

obtained, cheap solution. The method of this investigation gives such 

a suboptimal, easily obtained, cheap solution. Illustrations of its 

use are included to assist the reader in understanding when a cheap 

solution is a good solution. Other applications of suboptimal solutions 

are too numerous to mention. Perhaps other areas of Operations Research 

could benefit by a better understanding of the expense of obtaining a 

solution as opposed to the benefit of the solution. How good is the cure 

if the patient dies waiting for its application? 



VI. APPENDICES 

Appendix A 

Flowchart of the suboptimal technique. 
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Appendix B 

Computer Program Listings 

1. Program Listing to solve by total enumeration. 

SOLVER: PROC OPTIONS(MAIN); /*SOLVES BY ENUMERATION*/ 

DCL (IX,IY) FIXED BINARY(3l), C(10,10); 

IX=2880l; 

N=_; /* ORDER OF MATRIX TO BE CONSIDERED */ 

M=100; /* NO OF MATRICES TO BE INVESTIGATED */ 

SUM=O; /* SUM OF SOLUTIONS */ 

DO K=l TO M; 

DO I = 1 TO N; 

DO J=l TO N; 

CALL RANDU(IX,IY,R); /*CALL TO FORTRAN RANDOM NUMBER GENERATOR*/ 

IX=IY; 

C(I,J)=R; 

END; END; 

/* C MATRIX IS GENERATED */ 

ANS=N; 

LOOP:DO Il=l TO N; 

DO I2=1 TO N; 

DO I3=1 TON; /*DO LOOPS REQUIRED FOR I4, IS, ... I10 */ 

IF I1~=I2 & I1,=I3 & I~= I3 THEN 

DO; 

SANS=C(1,I1)+C(2,I2)+C(3,I3); 

IF SANS ANS THEN ANS=SANS; 

END; 

END LOOP; 

PUT EDIT( 1 COST MATRIX• ,((C(I,J) DO I=1 TO N) DO J=1 TO N)) 

(SKIP(3),X(IO),A,(N)(SKIP,(N)(F(10,6)))); 

PUT EDIT( 1 THE SOLUTION BY ENUMERATION= • ,ANS) 

(SKIP,X(5),A,F(10,4)); 

SUM=SUM+ANS; 

END; 

SANS=SUM/M; 
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Appendix B (Continued) 

1. Continued 

PUT EDIT(•THE AVERAGE TRUE SOLUTION=· ,SANS, 1 WITH M= 1 ,M) 

(SKIP(3),X(l0),A,F{l0,6),X(5),A,F(5)); 

END SOLVER; 

2. Program Listing to find absolute minimum and fast solution. 

MINIMUM: PROC OPTIONS(MAIN); 

DCL C(lC,lO),IA(lO),IB(lO,lO),(IX,IY) FIXED BIN(31); IX=28801; 

I* N IS ORDER OF MATRIX. 

C IS MATRIX OF RANDOM NUMBERS UNIFORMLY DISTRIBUTED 0-1 INT. 

SRI IS SMALLEST ELEMENT IN ITH ROW OF C. 

SCI IS SMALLEST ELEMENT IN ITH COLUMN OF C. 

SROW IS SUM OF SMALLEST ROW ELEMENTS. 

SCOL IS SUM OF SMALLEST COLUMN ELEMENTS. 

SMIN IS LARGER OF SROW OR SCOL. 

SMIN IS THE ABSOLUTE MINIMUM OF POSSIBLE ASSIGNMENT. */ 

N= ; I* ORDER OF MATRIX TO BE CONSIDERED *I 

M=lOO; I* M IS NUMBER OF MATRICES TO BE INVESTIGATED *I 
SUM=O; I* SUM IS SUM OF ABSOLUTE MINIMUMS *I 

TSUM=O; I* MOVE *I 
DO K=l TO M; 

DO 1=1 TO N; 

DO J=l TO N; 
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CALL RANDU(IX,IY,R); I* CALL TO FORTRAN RANDOM NUMBER GENERATOR *I 

IX=IY; 

C(I,J)=R; 

END; END; 

I* C HAS BEEN GENERATED *I 

SROW,SCOL=O; 

DO 1=1 TON; SRI, SCI=l.O; 

DO J=l TO N; 

IF C(I,J) <SRI THEN SRI=C(I,J); 



Appendix B (Continued) 

2. Continued 

IF C(J,I) <SCI THEN SCI=C(J,I); 

END; 

SROW=SROW+SRI; 

SCOL=SCOL+SCI; 

END; 

IF SROW > SCOL THEN SMIN=SROW; 

ELSE SMIN=SCOL; 

PUT EDIT(K,'TH MATRIX ABSOLUTE MINIMUM= ',SMIN) 

(SKIP,F(lO),A,F(l0,4)); 

SUM=SUM+SMIN; 

PUT EDIT('THE COST MATRIX IS' ,((C(I,J) DO I=l TON) DO J=l TON)) 

(SKIP, X(lO),A,(N)(SKIP,(N)(F(l0,6)))); 

PUT SKIP; 

!* USE IDENTITY MATRIX AS FIRST ASSIGNMENT */ 

IB = 0; /*SOLUTION MATRIX */ 

DO J=l TO N; 

IB(J ,J)=l; 

IA(J)=J; 

END; /*TEMPORARY ASSIGNMENT COMPLETED */ 

!* TEST TEMPORARY ASSIGNMENT FOR ANY PAIRWISE IMPROVEMENT */ 

AGAIN: 

ISW=l ; !* COMPLETION SWITCH */ 

!* CHECK FOR PROPER SOLUTION */ 

AG: DO I=l TO N-1; 

DO J=I + 1 TO N; 

IF ( C (I, IA (I) )+C ( J, IA ( J))) ~ ( C ( J, IA (I) )+C (I, IA ( J))) 

THEN DO; IB(J,IA(I)),IB(I,IA(J))=l; 

IB(I,IA(I)),IB(J,IA(J))=O; 

ISW=O; 

LL=IA(I); IA(I)=IA(J); IA(J)=LL; 

END; 

END; END; 
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Appendix B (Continued) 

2. Continued 

IF ISW=O THEN GO TO AGAIN; 

XSUM=O; 

DO 1=1 TO N; DO J=l TO N; 

XSUM=XSUM+C(I,J)*IB(I,J); END; END; 

PUT EDIT('BY FAST SOLUTION MINIMUM= ',XSUM)(X(S),A,F(l0,4)); 

TSUM=TSUM+XSUM; 

PUT SKIP(3); 

END; 

ANS=SUM/M; 

PUT EDIT('THE AVERAGE ABSOLUTE MINIMUM=' ,ANS,'WITH M=' ,M) 

(SKIP(3),X(l0),A,F(l0,6),X(l),A,F(5)); 

TANS=TSUM/M; 

PUT EDIT('THE AVERAGE MINIMUM BY FAST SOLUTION =',TANS) 

(SKIP(2),X(20),A,F(l0,6)); 

END MINIMUM; 

3. Program Listing to find solution by improved start. 

IMPROVE: PROC OPTIONS(MAIN); 

DCL C(lOO,lOO), IA(lOO), IB(lOO,lOO), (IX,IY) FIXED BINARY(31); 

IX=28801; 

N= ___ ; /*ORDER OF COEFFICIENT MATRIX */ 

M=l; 

SUM=O; 

DO K=l TO M; 

DO I = 1 TO N; 

DO J = 1 TO N; 

CALL RANDU(IX,IY,R); 

IX=IY; 

C(I,J)=R; 

END; END; 

IB=O; IA=O; 

DO I=l TO N; TEST=l.l; 
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Appendix B (Continued) 

3. Continued 

DO J=l TO N; 

IF C(I,J) TEST THEN DO; DO L=l TO N; 

IF IA(L)=J THEN GO TO PASS; END; 

TEST=C(I,J); JJ=J; END; 

PASS: END; 

IA(I )=JJ; 

IB (I ,JJ )=1 ; END; 

/*TEMPORARY ASSIGNMENT IS NOT NECESSARILY THE IDENTITY MATRIX */ 

AGAIN: ISW=l; 

DO I=l TO N-1; 

DO J=I+l TO N; 

IF (C(I,IA(I))+C(J,IA(J)))> (C(~IA(I))+C(I,IA(J))) 

THEN DO; 

IB(J,IA(I)),IB(I,IA(J))=l; 

IB(I,IA(I)),IB(J,IA(J))=O; 

ISW=O; II=IA(I); IA(I)=IA(J); IA(J)=II; 

END ; END ; END; 

IF ISW=O THEN GO TO AGAIN; 

XSUM=O; 

DO I=l TO N; 

DO J=l TO N; 

XSUM=XSUM+C(I,J)*IB(I,J); 

END; END; 

PUT EDIT('BY IMPROVED START MINIMUM=' ,XSUM,'FOR MATRIX' ,K) 

(SKIP(3),X(10),A,F(l0,4),X(5),A,F(5)); 

PUT EDIT('COST MATRIX')(PAGE,X(20),A); 

PUT EDIT(C) (SKIP,lO F(l0,5)); 

PUT EDIT('SOLUTION MATRIX')(PAGE,X(20),A); 

PUT EDIT(IB)(SKIP,lO F(l0,5)); 

SUM=SUM+XSUM; END; ANS=SUM/M; 

PUT EDIT('THE AVERAGE SOLUTION BY IMPROVED START=',ANS) 

{SKIP{3),X(lO),A,F(l0,6)); END IMPROVE; 
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