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RESEARCH ARTICLE
10.1002/2013JC009433

The assimilation of satellite-derived data into a

one-dimensional lower trophic level marine ecosystem model

Yongjin Xiao1 and Marjorie A. M. Friedrichs1

1Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia, USA

Abstract Lower trophic level marine ecosystem models are highly dependent on the parameter values

given to key rate processes, however many of these are either unknown or difficult to measure. One solu-

tion to this problem is to apply data assimilation techniques that optimize key parameter values, however

in many cases in situ ecosystem data are unavailable on the temporal and spatial scales of interest.

Although multiple types of satellite-derived data are now available with high temporal and spatial resolu-

tion, the relative advantages of assimilating different satellite data types are not well known. Here these

issues are examined by implementing a lower trophic level model in a one-dimensional data assimilative

(variational adjoint) model testbed. A combination of experiments assimilating synthetic and actual

satellite-derived data, including total chlorophyll, size-fractionated chlorophyll and particulate organic car-

bon (POC), reveal that this is an effective tool for improving simulated surface and subsurface distributions

both for assimilated and unassimilated variables. Model-data misfits were lowest when parameters were

optimized individually at specific sites; however, this resulted in unrealistic overtuned parameter values that

deteriorated model skill at times and depths when data were not available for assimilation, highlighting the

importance of assimilating data from multiple sites simultaneously. Finally, when chlorophyll data were

assimilated without POC, POC simulations still improved, however the reverse was not true. For this two-

phytoplankton size class model, optimal results were obtained when satellite-derived size-differentiated

chlorophyll and POC were both assimilated simultaneously.

1. Introduction

Throughout the last two decades, Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) models have

evolved to include more details than those processes in the classic NPZD-type model [Fasham et al., 1990,

1993]. Examples include more sophisticated nutrient limitations [e.g., Aumont et al., 2003; Cullen et al., 2003;

Chai et al., 2007; Dugdale et al., 2011; Mauriac et al., 2011], more complex zooplankton grazing [e.g., Arm-

strong, 1999; Lima et al., 2002], nutrient remineralization [e.g., Moore et al., 2002; Stemmann et al., 2004;

Hood et al., 2006], and processes associated with dissolved organic nutrients [e.g., Hood et al., 2001; Druon

et al., 2010; Luo et al., 2012]. Another common approach for increasing model complexity involves the incor-

poration of additional phytoplankton and zooplankton compartments [e.g., Aumont et al., 2003; Le Quere

et al., 2005; Fujii et al., 2007; Kishi et al., 2007; Xiao and Friedrichs, 2014] in order to better represent the reality

of the marine ecosystem, which typically includes a myriad of plankton species.

With the increasing number of processes and state variables included in these NPZD-type models, the issue

of finding the most appropriate parameter values required by these additional formulations is becoming

increasingly critical. Although historically simple NPZD-type models have often been manually calibrated

using a trial-and-error method in which parameter values are manually manipulated to attain an improved

fit to available data [Oreskes et al., 1994; Fitzpatrick, 2009], it is difficult to ascertain whether the resulting cali-

brated values are truly optimal [e.g., Rose et al., 1991; Eckhardt and Arnold, 2001; Vrugt et al., 2003; Rose et al.,

2007].

The use of automated methods for identifying optimal parameter values in marine ecosystem models is

thus becoming increasingly common. A variety of assimilation methods have achieved a great deal of suc-

cess in parameter optimization, however one that is very widely used is the variational adjoint method [e.g.,

Lawson et al., 1995, 1996; McGillicuddy et al., 1998; Spitz et al., 1998; Fennel et al., 2001; Friedrichs, 2001; Ler-

edde et al., 2005; Xu et al., 2008, Luo et al., 2010]. Although there have been a few recent exceptions [e.g., Tji-

putra et al., 2007; Fan and Lv, 2009, Mattern et al., 2012; Prieß et al., 2013], the high computational cost of
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implementing these parameter optimization techniques in three-dimensional (3-D) coupled biological-

physical ocean models continues to pose a formidable hurdle for many researchers. As a result, modelers

often look to first implement such optimization methods with more efficient zero-dimensional or one-

dimensional models, before applying the resulting optimal parameters in 3-D. This technique has found

considerable success; for example, McDonald et al. [2012] demonstrated that parameters optimized in a

one-dimensional test bed resulted in significant improvement in the 3-D model framework.

These relatively recent advancements in the field of data assimilative biogeochemical and marine ecosys-

tem modeling have largely been stimulated by the availability of large biological and biogeochemical data

sets, particularly satellite products which provide comprehensive synoptic coverage over large regions of

the ocean [Hovis et al., 1980; Yoder et al., 1988; Hofmann and Friedrichs, 2001; McClain, 2009]. Although chlo-

rophyll concentrations are probably the most commonly used satellite-derived product [e.g., O’Reilly et al.,

1998; Carder et al., 1999; Yoder et al., 2002], multiple other satellite-derived products now exist, including:

primary production [e.g., Mouw and Yoder, 2005; Marra et al., 2007], colored dissolved organic matter [e.g.,

Hoge and Lyon, 2002; Morel and Gentili, 2009; Xing et al., 2012] and particulate organic carbon (e.g., Mishnov

et al., 2003; Stramska and Stramski, 2005; Stramski et al., 2008], to name a few. Recent studies have also

shown promising progress with regards to deriving phytoplankton size-classes and functional types from

satellite ocean color data using ‘‘abundance-based approaches’’ [Vidussi et al., 2001; Uitz et al., 2006; Nair

et al., 2008; Brewin et al., 2010; Hirata et al., 2011] and ‘‘spectral-characteristic approaches’’ [e.g., Gege, 1998;

Alvain et al., 2005; Pan et al., 2011]. By definition, these satellite-derived data sets only provide information

in the first optical depth, however, this limitation of satellite products is often offset by the large volume of

data available both temporally (O(days)) and spatially (O(km)).

As a result of the increasing availability of multiple satellite-derived data sets, there have been a number of

studies demonstrating the potential success of assimilating satellite-derived fields for the purposes of both

parameter optimization as well as state estimation. State estimation differs from parameter optimization in

that the former seeks the best model estimates through reconstructing the system states or more specifi-

cally, using statistical procedures to drive the model estimates toward the data [Gregg et al., 2009]. Two

alternative methods that use satellite data to improve state estimation include the Kalman filter [e.g., Fon-

tana et al., 2009; Hu et al., 2012; Mattern et al., 2010; Natvik and Evensen, 2003] and the particle filter [e.g.,

Mattern et al., 2013].

Parameter optimization methods, on the contrary, determine the optimal parameter values that provide a

best fit of the model to the data, and as such, result in an improved a posteriori model. Simulations result-

ing from these methods are required to fit the model equations precisely. These methods, including the

variational adjoint technique, have been widely used to parameterize biogeochemical models using satel-

lite data. For example, Friedrichs [2002] first demonstrated a 1-D adjoint assimilative framework that mini-

mized model/data misfits using ocean color data from SeaWiFS and illustrated how the assimilative

process could help guide model reformulation. Hemmings et al. [2004] presented another successful

example of assimilating satellite-derived chlorophyll in a depth integrated model, and found the number

and geographic scope of particular parameter sets that generated the best fit to validation data. With the

significant advances in computational power over the past decade, there have also been a handful of

studies assimilating satellite-derived chlorophyll data into 3-D models (e.g., Garcia-Gorriz et al., 2003; Tji-

putra et al., 2007; Fan and Lv, 2009]. In all of these examples, however, only total chlorophyll was assimi-

lated; other types of satellite-derived data such as POC and size differentiated chlorophyll were not

assimilated.

In contrast to these previous satellite data assimilation efforts, in this study satellite-derived POC and size-

differentiated chlorophyll are assimilated in addition to total chlorophyll. To better understand whether the

assimilation of these multiple types of satellite data can constrain a one-dimensional (vertical) lower tropic

level model, an existing data assimilative framework was implemented in this study at four sites in the Mid-

Atlantic Bight (Figure 1). Experiments assimilating synthetic data (i.e., numerical twin experiments) as well

as experiments assimilating actual satellite-derived fields (total chlorophyll, size-differentiated chlorophyll,

and POC) were conducted in order to assess the ability of the assimilation framework to optimize key bio-

geochemical parameters, and to assess which types of satellite-derived data may best constrain the model.

The following section describes in detail our lower trophic level model, the assimilative framework, the

satellite-derived data to be assimilated, and the assimilation experiments. Section 3 presents the results
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from the assimilation experi-

ments while section 4 discusses

the implications of these results.

Lastly, a summary is provided in

section 5.

2. Methods

2.1. One-Dimensional Model

2.1.1. Lower Trophic Level

Model

The lower trophic level model

used here (Figure 2, Appendix A)

is a nitrogen-based Fasham-type

[Fasham et al., 1990, 1993] model

with nine state variables: large

and small phytoplankton, large

and small chlorophyll, large and

small detritus, zooplankton,

ammonium, and nitrate. The

chlorophyll to carbon ratios of

the phytoplankton are variable,

and nonlinear due to the effects of photoacclimation [Geider et al., 1997]. The model is similar to that

described by Fennel et al. [2006], which was originally developed for the Mid-Atlantic Bight (MAB), but which

has subsequently been successfully applied to a number of other shelf systems [e.g., Fennel et al., 2011; Gan

et al., 2010; Hofmann et al., 2008, 2011; Xue et al., 2013] The modifications made to the original Fennel et al.

[2006] version of this model are described below.

The single phytoplankton and chlorophyll compartments in the original model were broken down into

two size classes, representing picophytoplankton plus nanophytoplankton and microphytoplankton. This

was motivated by the fact that this region is characterized by two distinct phytoplankton size classes,

with the larger microphytoplankton contribution to total chlorophyll being large on the inner MAB shelf

(> 30%) and small in off-shelf waters [Mouw and Yoder, 2005]. The inclusion of a second phytoplankton

size class in the model requires two additional equations (for size-specific phytoplankton and chlorophyll;

see Appendix A) and the specification of six new parameters for the second phytoplankton size class

(Table 1). Remaining biological

parameters, processes and for-

mulations, including sediment

denitrification, were identical to

those listed in Fennel et al.

[2008]. (Note that the parame-

ters in Fennel et al. [2008]

include some variants on the

original values provided in Fen-

nel et al. [2006]. Here the modi-

fied parameters listed in Fennel

et al. [2008] have been adopted.)

Model estimates of POC were

computed as the sum of the

small and large phytoplankton,

small and large detritus, and

zooplankton, and then con-

verted from nitrogen to carbon

units using the Redfield ratio of

C:N5 6.625 moleC/moleN.

Figure 1. Locations of the four study sites.

Figure 2. Schematic diagram showing linkages between the various state variables in

the 2P1Z ecosystem model.
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Following Friedrichs et al. [2007], the differential equations in the biological model were solved using a

second-order Runge-Kutta scheme.

2.1.2. Physical Model

The lower trophic level model described above was embedded into the 1-D (vertical) physical model used

by Friedrichs et al. [2006, 2007]. The model was forced by time series of solar radiation, temperature, vertical

diffusivity, vertical velocity, and mixed-layer depth. Photosynthetically active radiation was calculated as a

fraction (0.43) [Pinker et al., 2010] of the shortwave radiation flux obtained from the North American

Regional Reanalysis generated by the National Center for Environmental Prediction. The remaining fields

were acquired from a 3-D coupled biogeochemical-circulation model simulation generated by the Regional

Ocean Modeling System (ROMS) [Shchepetkin and McWilliams, 2005] and configured for the Northeast North

American shelf using the original single phytoplankton Fennel et al. [2006] model configuration (NENA) [Hof-

mann et al., 2008, 2011].

Vertical advection and particle sinking processes were computed using a third-order direct space-time

upwind-biased scheme [Hundsdorfer and Trompert, 1994] with the Sweby flux limiter [Sweby, 1984]. Follow-

ing Friedrichs et al. [2006, 2007], vertical diffusion was solved by applying a Crank-Nicholson vertically vari-

able diffusion operation and all state variables were redistributed homogeneously within the mixed layer at

the end of each time step.

2.1.3. Forward Model Implementation

Initial and bottom boundary conditions for the model state variables were provided by the 3-D NENA

model. Initial conditions were directly obtained from the first 3 day averaged NENA output in year 2004

except for the size-fractionated phytoplankton and associated chlorophyll. The model is not sensitive to the

initial size-fractionated ratio and thus the two size-classes of phytoplankton and chlorophyll were each ini-

tialized as one half the NENA concentrations. Boundary conditions were likewise obtained from the 3 day

averaged NENA output. For sites shallower than 200 m, the bottommost layer was used; for sites deeper

than 200 m, the bottommost layer in the 1-D model was set to 200 m and the boundary condition was

obtained from the corresponding depth.

The model was run from 1 January 2004 through 31 December 2004 with a time step of 1 h at four sites

within the MAB (Figure 1). Two sites (N1 and S1) were located on the shelf (depth �50 m and �100 m)

and two sites (N2 and S2) were located near the shelf break (depth �800 m and �600 m). Vertical resolu-

tion varied according to bottom depth, but was higher nearer the surface (�0.3 to 2 m) and larger at

depth (�3 to 8 m).

2.2. Variational Adjoint Method

The variational adjoint method [e.g., Lawson et al., 1995] was used to objectively minimize model-data mis-

fits by optimizing the biological parameters. The cost function, J, represents the misfit between each model

estimate (a) and the corresponding observation (â) and is computed as a weighted sum of squared differen-

ces between the model and the data:

J5
1

M

X

K

k51

X

M

m51

1

Nkm � r2km

X

Nkm

j51

ajkm2â jkm

� �2
(1)

where K is the number of sites, M is the number of data types, Nkm is the number of observations for each

data type and site, and rkm is the standard deviation of these data (see Table 2). In this way, the cost

Table 1. New Ecosystem Model Parameters That Are Required for the 2P1Z Model Used in This Studya

Parameter Unit Small Phytoplankton Large Phytoplankton

Maximum chlorophyll to carbon ratio mgChl mgC21 0.03 0.06

Phytoplankton growth rate at 0�C d21 1.8 1.0

Sinking rate of phytoplankton m d21 0.1 0.4

Half-saturation concentration for uptake of NH4 mmol N m23 0.5 1.0

Half-saturation concentration for uptake of NO3 mmol N m23 1.0 1.5

Maximum grazing rate (mmol N m23)21 d21 0.8 1.2

aAll remaining ecosystem parameters are identical to those used by Fennel et al. [2008] for their 1P1Z model.
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function provides an estimate of the ratio between the model-data differences and the differences between

the data and the mean of the data, i.e., r2km. Thus, the cost function equals one at each site when the sum of

the squared model-data differences equals the variance of the data [Friedrichs et al., 2007]. Furthermore,

two cost functions are considered to be insignificantly different if their difference is less than one for a sin-

gle site, or less than the number of sites when multiple sites are included in the calculation.

The variational adjoint method requires: (i) adjoint code used to compute the gradient of the cost function

with respect to the control parameters, defined as the subset of model parameters to be optimized, and (ii)

an optimization procedure used to search for the optimal values of these control parameters that generate

the smallest possible cost function. In this study, the adjoint code was obtained from the Tangent linear

and Adjoint Model Compiler (TAMC) [Giering and Kaminski, 1998]. Parameter optimization is performed by a

limited memory quasi-Newton optimization procedure [Gilbert and Lemar�echal, 1989].

After the cost function is computed from an a priori forward model run, the adjoint code computes the gra-

dients of the cost function and passes the information to the optimization procedure, which determines

how much each control variable should be modified in order to reduce the magnitude of the cost function.

The new values of the control parameters are then used in the forward model, the new cost function is

computed, and the optimization procedure is repeated. These iterations continue until the specified conver-

gence criterion is satisfied.

Control variables were selected based on two considerations: (1) the sensitivity of the cost function to the

parameter values and (2) the correlations between parameters. The sensitivity of the cost function to each

model parameter was estimated by computing (Jsens2 Jref)/Jref, where Jref is the cost function using the ref-

erence parameters and Jsens assumes a 125% or 225% change in each individual model parameter [Frie-

drichs and Hofmann, 2001; Friedrichs, 2001]. The results of this sensitivity analysis (Table 3) indicated that the

model is most sensitive to parameters in the phytoplankton equations, with only one exception, i.e., the

zooplankton basal metabolism rate.

Previous studies have demonstrated that strongly correlated parameters cannot be simultaneously opti-

mized, since in this case the model would be able to generate multiple optimal values for the control varia-

bles [e.g., Matear, 1995]. Following the sensitivity analysis, assimilation experiments were conducted to

investigate the correlations of all parameters with sensitivities greater than 5% (Table 3) using the inverse of

the Hessian matrix [Thacker, 1989; Matear, 1995; Friedrichs, 2002]. The five parameters ultimately selected as

control variables based on their relatively low correlations were the maximum Chl:C ratios for the large and

small phytoplankton, the maximum growth rates for the large and small phytoplankton, and the zooplank-

ton basal metabolism rate.

Table 2. Number of Observations (N), Mean and Standard Deviation (rkm) of the Satellite-Derived Chlorophyll Concentrations (mgChl

m23) and POC Data (mgC m23) at Each Site

Small-Size Chl Large-Size Chl POC

N Mean rkm N Mean rkm N Mean rkm

N1 108 0.41 0.30 108 0.22 0.22 119 134 48

N2 90 0.31 0.36 90 0.16 0.31 94 112 78

S1 122 0.44 0.33 122 0.24 0.25 124 140 54

S2 121 0.33 0.26 121 0.16 0.17 124 109 48

Table 3. Parameter Sensitivities Computed as a Percent Change in the Cost Function Resulting from 125% and 225% Changes in

Parameter Valuesa

Parameter 125% Sensitivity 225% Sensitivity Absolute Mean Sensitivity

Maximum chlorophyll to carbon ratio 26% 216% 21%

Half-saturation concentration for uptake of NO3 7% 24% 6%

Half-saturation concentration of

phytoplankton ingestion

9% 28% 9%

Phytoplankton growth rate at 0�C 9% 27% 8%

Zooplankton basal metabolism rate 8% 24% 6%

aResults are shown for all parameters with absolute mean sensitivities greater than 5%.
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2.3. Satellite-Derived Data

Three types of data were derived from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and assimilated

into the lower trophic level model: total chlorophyll a (Tot_Chl), size-fractionated chlorophyll a divided into

large chlorophyll (ChlL) and small chlorophyll (ChlS), and POC. Although depth-integrated productivity esti-

mates are also routinely computed from satellite-derived fields using ocean color productivity models, the

uncertainties associated with the resulting fields can be as large or larger than estimates derived from bio-

geochemical ocean circulation models [Friedrichs et al., 2009] and one-dimensional ecosystem models [Saba

et al., 2011]. As a result, these productivity fields were not selected for assimilation.

Size-fractionated chlorophyll was determined through a three-step process. First, phytoplankton pigment

concentrations were computed using an algorithm specifically proposed for the MAB continental shelf [Pan

et al., 2010]. The phytoplankton pigments were then analyzed by CHEMTAX (a chemotaxonomic analysis) to

quantify 11 taxonomic groups based on pigment distributions [Pan et al., 2011]. Lastly the resulting 11 taxo-

nomic groups were categorized into three size-classes based on Vidussi et al. [2011]: picophytoplankton,

nanophytoplankton, and microphytoplankton. Since the model in this study only includes two size classes,

the nanophytoplankton was combined with the picophytoplankton data to represent the small size class.

This decision was based on the distinction between microphytoplankton and smaller phytoplankton in

terms of sinking rates, surface-to-volume ratios, and recycling rates [Lomas and Moran, 2011]. Tot_Chl con-

centrations were computed by summing the two size-classes of chlorophyll described above. The resulting

chlorophyll concentrations agreed well with chlorophyll obtained from the standard OC4v4 algorithm

[O’Reilly et al., 2000], with the average absolute difference being less than 0.3 mg Chl m23. Surface POC was

computed using an empirical algorithm based on the ratio of bandwidths at 490 and 555 nm [Stramska and

Stramski, 2005]. Although these satellite data were all derived using empirical or semianalytical algorithms,

they have demonstrated considerable success in their agreement with in situ data. The uncertainty associ-

ated with these size-differentiated chlorophyll and POC concentrations have been estimated to be 35%

[Pan et al., 2010; Stramska and Stramski, 2005].

2.4. Assimilation Experiments

2.4.1. Identical Twin Assimilation Experiments

The assimilation of model-generated synthetic data in numerical twin experiments provides a useful tool

for demonstrating the feasibility of an assimilation method [e.g., Lawson et al., 1996; Crispi et al., 2006; Hem-

mings and Challenor, 2012; Pelc et al., 2012], investigating the adequacy of available observations [e.g., Spitz

et al., 1998; Friedrichs, 2001], as well as determining sensitivities and correlations of the optimized parameter

sets [e.g., Schartau et al., 2001; Fennel et al., 2001; Kuroda and Kishi, 2004; Kidston et al., 2011].

In this study, as an initial test of the variational adjoint assimilation framework twin experiments were con-

ducted in which synthetic chlorophyll and POC data generated by the model were assimilated. The twin

experiment methodology includes two simulations. The first is the ‘‘true simulation’’ generated using the a

priori, or ‘‘true parameter’’ values. The synthetic data are obtained by subsampling the ‘‘true simulation’’ at

the times when actual satellite data are available. These synthetic data are then assimilated into a second

model run, the ‘‘initial simulation,’’ which uses randomly generated initial estimates of the control parame-

ters (in this case using a range of625% of the original values). Ideally, the assimilation procedure should be

able to recover the ‘‘true’’ values of the control parameters used to generate the synthetic data, and there-

fore also reproduce the ‘‘true simulation’’ perfectly.

Two different types of twin experiments were conducted. In the ‘‘Individual Assimilation’’ experiments, syn-

thetic data were assimilated at each of the four sites (Figure 1) individually, resulting in four sets of optimal

parameters (one set for each site). The costs were then summed in order to obtain a single cost value for

the Individual Assimilation experiment. In the second ‘‘Simultaneous Assimilation’’ experiment, the synthetic

data were simultaneously assimilated from all four sites, resulting in one best fit set of optimal parameters

for all four sites. For each type of experiment, five different cases were examined, in which different data

types were assimilated: (1) ChlL1ChlS1POC, (2) Tot_Chl1POC, (3) ChlL1ChlS, (4) Tot_Chl, and (5) POC.

In reality, ocean data are never perfect, and instead are inevitably associated with measurement errors or

uncertainties, which will reduce the ability of an optimization procedure to recover actual ecological rate

parameters for a given system. Thus, in addition to assimilating the ‘‘perfect’’ synthetic data set as described

in the identical twin experiments above, additional numerical twin experiments were conducted for Case 1
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(assimilating ChlL1ChlS1POC) in which the assimilated synthetic data included five different levels of nor-

mally distributed random noise (2.5%, 5%, 10%, 20%, and 40%).

2.4.2. Satellite Assimilation Experiments

In a final series of experiments, actual satellite-derived data fields were assimilated in both Individual and

Simultaneous Assimilation experiments. As described above, each of these two types of experiments again

involved five cases to assess the effects of assimilating different data types: (1) ChlL1ChlS1POC, (2)

Tot_Chl1POC, (3) ChlL1ChlS, (4) Tot_Chl, and (5) POC. In these experiments, two different costs are com-

puted. First, the ‘‘Assimilation Cost’’ is reported as the final a posteriori cost for the specific data that were

assimilated. Secondly, the ‘‘Total Cost’’ is computed using equation (1) for ChlL1ChlS1POC for each case,

independent of which of these data types were assimilated. The latter Total Cost is used as a common met-

ric to compare the relative performance of the five cases. According to these definitions, the Assimilation

Cost and the Total Cost are identical in Case 1.

3. Results

3.1. A Priori Model-Data Comparison

The a priori simulation produced surface estimates of chlorophyll and POC that were generally within the

same range as the satellite-derived data (0–3 mgChl m23 and 0–200 mgC m23, respectively, Figure 3). In

general, the data indicated similar concentrations for the ChlL and ChlS, whereas the model generally

showed higher ChlS concentrations. The timing of the blooms was generally not particularly well repre-

sented in the model estimates, except for the spring bloom of ChlS at the N2 site, which was accurately cap-

tured in the model. As was the case for chlorophyll, the model underestimated POC at the northern sites,

although the temporal trends of the data (spring and fall peaks) were moderately well resolved. At the

southern sites, the POC model estimates were again comparable to the data in terms of magnitude, but out

of phase in time. Specifically, the simulated POC and chlorophyll were in phase, whereas the satellite-

derived POC and satellite-derived chlorophyll were not.

Simulated vertical distributions of chlorophyll and POC demonstrated pronounced subsurface maxima only

at the southern onshore site (Figure 4) resulting from strong nutrient upwelling, which contributed to signif-

icant ChlL concentrations [Ryan et al., 1999]. Somewhat weaker subsurface maxima were also present at the

offshore northern site, but were absent at the other two sites (N1 and S2) where the water column was
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derived data (red closed circles) and the a priori simulation (blue lines) at the four study sites.
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typically well mixed down to at least 40 m. Overall, lower chlorophyll concentrations were found at the

northern sites where phytoplankton were more consistently nutrient limited. Despite the fact that detritus

accounted for a substantial portion of particulates, simulated POC covaried closely with chlorophyll within

the euphotic zone.

The total cost for the a priori simulation summed over the four sites was 15 (Figure 5). The model-data misfit

for small phytoplankton was the largest component of the total a priori cost, which was primarily caused by

the overestimates of ChlS at the two southern sites (Figure 3). In contrast, the large phytoplankton compo-

nent was consistently underestimated by the model, resulting in relatively low ChlL costs (Figure 5). The

cost resulting from POC model-data misfits was slightly smaller than the ChlS contribution, but was similarly

dominated by misfits at the southern sites.

3.2. Twin Experiments

Assimilation of synthetic data with the same sampling frequency as the satellite data enabled an exact

recovery of the initial ‘‘true’’ values of all five control parameters in both the Individual and the Simultaneous

Assimilation experiments, with costs reaching 10210 after only 15–25 iterations (Table 4, Figure 6). This was

true not only for Case 1 (assimilating ChlL1ChlS1POC; Figure 6) but also for the other four cases assimilat-

ing different combinations of satellite-derived data (not shown). Four additional Simultaneous Assimilation

experiments were conducted in which only a portion of the synthetic data points for the ChlL1ChlS1POC

case was assimilated (one half, one quarter, one eighth, and one sixteenth), and all four experiments again

resulted in perfect parameter recoveries.

When random noise was added to the synthetic data prior to assimilation, the initial ‘‘true’’ values of the five

control parameters were no longer recovered perfectly. As the level of noise increased in the data, the opti-

mized parameter values increasingly deviated from the initial ‘‘true’’ parameters. This deviation was signifi-

cantly greater when the noisy synthetic data were assimilated individually at each site (Figure 6a), as

compared to the values optimized by assimilating data simultaneously at all four sites (Figure 6b). For the

Individual Assimilation experiment, the maximum parameter deviation was more than 1000% for the run

with 40% noise, whereas the Simultaneous Assimilation experiment resulted in maximum parameter devia-

tions of less than 10% (Figure 6).

Because the addition of noise to the synthetic data prevented the true parameter values from being recov-

ered exactly, the a posteriori cost functions were significantly larger in the presence of noise (Table 4). In

contrast to the very different results seen for the values of the optimized parameter values in the two

Figure 4. Depth-time plots of size-differentiated chlorophyll (top row: ChlS; middle row: ChlL) and (bottom row) POC from a priori simula-

tion at the four study sites.
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experiments (Figure 6) the a pos-

teriori cost values were quite sim-

ilar for both the Individual and

Simultaneous Assimilation

experiments (Table 4): for both

experiments costs ranged from

�1023 (2.5% noise) to 0.3 (40%

noise). In both experiments, the a

posteriori costs were lower than

the costs computed for the misfit

between the true simulation and

the assimilated noisy data (‘‘true

cost’’; Table 4), indicating that the

parameter values generated by

the optimization process ulti-

mately fit the noisy synthetic

data better than did the original

‘‘true’’ parameters that were used

to generate the noisy data.

3.3. Assimilation of Satellite-

Derived Data: Individual Assim-

ilation Experiments

When the actual satellite-derived

size-differentiated chlorophyll

and POC concentrations were

assimilated (Case 1) at individual

sites, the Total Cost was reduced by nearly half (Table 5). Although slight cost reductions occurred for all

three cost components (Figure 5a), the cost component corresponding to ChlS was responsible for more

than 80% of the overall reduction in the cost function. Improvements in the model-data misfit were also evi-

dent from the time series of ChlL, ChlS, and POC: the a posteriori time series of all three components (ChlS,

ChlL, and POC; Figure 7a) fit the satellite data better than the a priori time series (Figure 3). In addition, the

assimilation procedure also affected the subsurface distributions, particularly at sites N2, S1, and S2 (Figure

8a). Throughout the water column, the ChlS fields generally decreased after assimilation (except at the N2

site during the spring bloom), whereas ChlL generally increased (except at the S1 site during the fall bloom).

The POC anomalies showed more pronounced variability, both temporally (e.g., at the N2 site, where

increases were only found in the summer) and spatially (e.g., at the S1 and S2 sites, where increases were

primarily found at depth; Figure 8a).

In order to identify the relative importance of assimilating different types of satellite-derived data, four

other assimilations cases, i.e., assimilating Tot_Chl1POC, ChlL1ChlS, Tot_Chl, and POC, were also per-

formed. Significant reductions in the Individual Assimilation Costs were generated with all assimilation cases

(Table 5). However, a more robust test of the assimilation procedure involves examining whether improve-

ments in model skill are also generated for data that are not assimilated [Gregg et al., 2009]. To assess the

degree of improvement for the

nonassimilated variables as well

as to more equitably compare

the relative performance of the

five assimilation cases, the cost

functions corresponding to ChlL,

ChlS, and POC, i.e., the Total

Costs, were computed for all five

cases (Figure 5a, Table 5). As

expected, the smallest Total Cost

was generated by Case 1, which
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Figure 5. Total cost functions (ChlS1ChlL1POC) resulting from (a) the Individual Assimi-

lation and (b) the Simultaneous Assimilation experiments in which five different types of

data (Cases 1–5) were assimilated.

Table 4. Case 1 Cost Functions for Twin Experiments Assimilating Noisy Synthetic

Data

Max. Noise (%) A Priori Cost Individual Cost Simultaneous Cost ‘‘True’’ Costa

0 0.367 <10210
<10210

<10210

2.5 0.376 0.001 0.001 0.001

5 0.366 0.003 0.004 0.004

10 0.367 0.015 0.016 0.017

20 0.364 0.052 0.056 0.060

40 0.711 0.275 0.297 0.308

a‘‘True’’ cost represents the cost corresponding to the true simulation and the noisy

synthetic data.
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specifically assimilated these

three variables. However, when

total chlorophyll was assimilated

but the size-fractionated informa-

tion was not (i.e., Cases 2 and 4),

significant improvements in the

relative abundance of ChlS were

still produced (Figure 5a). When

POC data were not assimilated

(Cases 3 and 4), the model-data

fit for POC deteriorated only very

slightly; in contrast, when chloro-

phyll data were not assimilated

(Case 5), the cost functions asso-

ciated with the unassimilated

size-fractionated chlorophyll

(ChlL) increased by a factor of 12

(Figure 5a).

Although these Individual Assimi-

lation experiments reduced the

Assimilation costs for all five

cases (Table 5), an examination

of the optimized parameter val-

ues (Figure 9a) revealed that in each case this was accomplished by means of optimized parameter values

that were adjusted by multiple orders of magnitude. As will be discussed more extensively in section 4, this

is indicative of an overtuned model simulation: the model is capable of fitting the assimilated data relatively

well in every case, but in each instance it does so through the use of highly unrealistic parameter estimates.

3.4. Assimilation of Satellite-Derived Data: Simultaneous Assimilation Experiments

The assimilation of ChlL1ChlS1POC data from all four sites simultaneously (Case 1) resulted in only a

slightly larger cost (8.8) than that obtained by optimizing the model for all four sites individually (7.6; Table

5). When decomposing the Total Cost into the three components (ChlL1ChlS1POC), the Simultaneous

Assimilation experiments again resembled the Individual Assimilation experiments (Figure 5b) in that ChlS

accounted for the majority of the reduction in the cost function (>90%). This assimilation also again led to

substantial changes in the vertical distributions of the assimilated state variables. In fact, the largest anoma-

lies (a posteriori simulation minus a priori simulation) in the three variables were often found in subsurface

layers, e.g., deep POC increased dramatically at the S1 site after assimilation (Figure 8b). Overall, these

results illustrate that assimilating surface data alone can generate far-reaching effects in the subsurface

distributions.

As expected, for all five cases simultaneously assimilating various combinations of satellite-derived data, the

reduction in the Assimilated Costs was smaller than those derived from the Individual Assimilation experi-

ments (Table 5). However, the five cases resembled the Individual Assimilation experiments in relative per-

formance, i.e., the cases without the assimilation of POC (Cases 3 and 4) resulted in the lowest Assimilated

Costs.

N
o

rm
a

liz
e

d
 p

a
ra

m
e

te
rs

0 10 20 30 40
0.8

0.9

1

1.1

1.2

Maximum percent of noise

b) Simultaneous Assimilation

0 10 20 30 40

0.01

1

100

a) Individual Assimilation

Figure 6. Optimized parameter values normalized to the true values from the twin
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Table 5. Assimilation Costs and Total Costs for Experiments Assimilating Actual Satellite Data in the Individual and Simultaneous Experiments

Case Assimilated Variables A Priori Assim. Cost Individ. Assim. Cost Individ. Total Cost Simul. Assim Cost Simul. Total Cost

1 ChlS1ChlL1POC 15.1 7.6 7.6 8.8 8.8

2 Tot_Chl1POC 9.3 6.0 9.4 7.5 10.0

3 ChlS1ChlL 9.9 2.5 10.3 3.7 9.5

4 Tot_Chl 4.1 1.3 10.7 1.8 9.9

5 POC 5.2 3.7 181 4.5 66
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In terms of Total Costs, the results of the Simultaneous Assimilation experiments were again consistent with

those obtained from the Individual Assimilation experiments (Figure 5). Specifically, Total Cost increased

when POC was assimilated without chlorophyll (Case 5), whereas Case 1 produced the lowest Total Cost.

Results from Cases 2 and 4 were very similar to each other suggesting that when total chlorophyll data

were assimilated, the additional assimilation of POC data did not result in significant further improvement.

While the assimilation of POC alone (Case 5) resulted in high ChlL model-data misfits for the Individual

experiments, this resulted in high ChlS model-data misfits for the Simultaneous experiments. Overall, these

results indicated that the model was able to constrain the POC field even when chlorophyll data were

assimilated without POC data; however, the model was not able to constrain the chlorophyll field when

assimilating POC data without chlorophyll data (see section 4.3).
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Figure 7. Time series of size-differentiated surface chlorophyll and surface POC for the satellite data (red closed circles) and the simulations

(blue lines) at all four study sites after (a) the Individual Assimilation and (b) the Simultaneous Assimilation.
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Although the Simultaneous Assimilation experiments always produced higher Assimilation Costs than the

Individual Assimilation experiments (Table 5), they generated lower Total costs in Cases 3, 4, and 5 (Table 5,

Figure 5b). In these particular cases for which only a single type of data (size-differentiated chlorophyll, total

chlorophyll, or POC) was assimilated, the Individual Assimilation experiments did not provide enough infor-

mation to successfully constrain the model. As a result, the model overtuned the parameters to adequately

fit the assimilated variable, but at significant cost to the model-data misfit for the other unassimilated

Figure 8. Anomalies (a posteriori simulation—a priori simulation at the four study sites for (a) the Individual Assimilation and (b) the Simultaneous Assimilation, in each experiment for

(top rows) ChlS, (middle rows) ChlL, and (bottom rows) POC.
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variables. In contrast, when a sin-

gle type of data was assimilated

at all four sites simultaneously,

the model was better con-

strained and as a result the costs

for the unassimilated variables

were lower than they were when

the data were assimilated at each

site individually (Figure 5).

The greatest difference between

the Simultaneous and Individual

experiment results were the opti-

mal parameter values obtained

from the assimilation procedure

(Figure 9b). The five Simultane-

ous Assimilation cases produced

optimized parameter values that

were all within a reasonable

range (1022
2102 times original

values), whereas the Individual

Assimilation cases produced mul-

tiple parameter values that were many orders of magnitude different from the original values.

4. Discussion

4.1. Simultaneous Assimilation of Noisy Synthetic Data: Quantification of Success

The success of an optimization experiment is a function not only of how well a model represents the key

biological and physical processes inherently characterizing the assimilated data, but also the specific param-

eters chosen for optimization and the quality/quantity of the data assimilated. Numerical twin experiments

are a useful technique for assessing potential problems that may arise from either of the latter two issues.

By examining both the true versus optimized parameter values and the true versus optimized simulated dis-

tributions, it is possible to assess the potential success of an assimilation framework. Here the success of

optimizing a 1-D model by assimilating 1 year of satellite data (including size-differentiated chlorophyll,

total chlorophyll, and/or POC) has been tested under conditions of varying levels of random noise.

The presence of 40% noise in the assimilated synthetic satellite data resulted in the optimized parameters devi-

ating from the true parameter values by less than 10%, indicating that relatively successful parameter recoveries

are possible even in the presence of significant noise in the assimilated satellite data. These results are consistent

with those found in previous studies. For example, Lawson et al. [1995] and Kidston et al. [2011] both demon-

strated that in the presence of 20% noise, the optimized parameters were only slightly different from the true

parameters when surface data were assimilated every few days. Friedrichs [2001] also showed that model skill

was significantly improved even when assimilating synthetic data associated with 40% noise, especially when

long time series of data were available for assimilation, as is typically the case for satellite data.

Although the success of twin experiments are generally quantified by how well the true control parameters

are recovered [Lawson et al., 1995; Kidston et al., 2011; Friedrichs, 2001; Spitz et al., 1998; Pelc et al., 2012],

another important test of the success of the assimilation process involves determining how well the opti-

mized simulation reproduces the true simulation. This is a considerably more robust test of the assimilation

process as it involves examining whether the assimilation improves unassimilated distributions [Gregg et al.,

2009]. Here the optimized and true simulations were compared for the experiment assimilating Case 1 syn-

thetic data with 40% noise by means of root-mean squared differences (RMSD) [Stow et al., 2009]. The

RMSD computed between the simultaneously optimized simulation and the true simulation (Table 6) was

77%–85% smaller than that computed between the initial simulation and the true simulation, not only for

the assimilated data types (i.e., chlorophyll and POC), but also for unassimilated variables (i.e., nitrate and

primary productivity).
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Another method for assessing

the success of assimilation

experiments involves examin-

ing whether model-data fit

improves at depths where data

were not assimilated. In this

case, assimilating data only

from the surface layer has cas-

cading effects throughout the

water column. As discussed

above, when the perfect syn-

thetic data were assimilated,

the true parameter values were

recovered precisely and thus

the subsurface fields were per-

fectly recovered as well. The

more interesting results occurred when data with significant random noise were assimilated. Despite the

presence of 40% noise in the synthetic data, the assimilation not only reduced the surface differences

between the initial and true simulations of chlorophyll, POC, nitrate, and productivity, the assimilation also

improved subsurface (depth-integrated) simulations of these variables by an equal or greater percentage

(Table 6).

Together, these various methods for assessing the success of the twin experiments all demonstrate that the

presence of significant random noise in the assimilated satellite data does not necessarily preclude the opti-

mization from successfully identifying a reasonable approximation of the true simulation.

4.2. The Critical Importance of Assimilating Data at Multiple Sites

When data were assimilated individually at each of the sites, the resulting Assimilation Costs were low, both

for the twin experiments (Table 4) and for the experiments assimilating actual satellite-derived data (Table

5). The fact that these individually optimized simulations fit the assimilated data better than the initial simu-

lations and better than the simultaneously optimized simulations would appear to suggest that assimilating

data individually at multiple sites produces more optimal results than assimilating data simultaneously at

multiple sites. However, this is not the case. In fact, the individually optimized simulations fit the data better

than the simulation used to derive the synthetic data (Individual Cost< True Cost in Table 4), indicating

that the optimization procedure was ultimately fitting the noise in the data. As a result, many of the normal-

ized optimal parameter values from the individual experiments were highly unrealistic (Figures 6a and 9a).

This overtuning of the optimized parameters did not occur, or at least was much less pronounced, when

more data from multiple sites were available for assimilation. Thus, even though lower cost functions were

obtained when assimilating data individually at each of the sites, more robust results were obtained when

the model was required to fit data at multiple sites simultaneously.

Because the Individual twin experiments produced lower costs than the Simultaneous twin experiments

(Table 4), one might expect that the RMSDs computed between the true simulation and the optimized sim-

ulations to be lower for the Individual experiments than for the Simultaneous experiments; again this was

not the case. In fact, although the overtuning issue described above resulted in the optimized simulation

matching the assimilated noisy data better when the model was tuned individually to each site, the over-

tuned parameters resulted in optimized simulations that did not successfully reproduce the true simulation

at times and depths when data were not available: the RMSDs computed for the Individual Assimilation

experiments were consistently higher than those computed for the Simultaneous Assimilation experiments

(Table 6). In summary, assimilating synthetic data simultaneously from all four sites not only resulted in

more realistic parameter values (Figure 6), but also generated an optimized solution that provided an

improved fit, even at times and depths for which data were not assimilated, and even for variables that

were not assimilated (Table 6).

Similar results were also obtained when assimilating actual satellite-derived data fields, however in these

experiments the ‘‘true’’ simulation is not known and thus RMSDs cannot be computed in the same way as in

Table 6. Root-Mean Squared Differences (RMSD) for the Twin Experiments, Before and

After Optimizationa

Data Type

Initial Model

RMSD

Individ. Optimization

RMSD

Simul. Optimization

RMSD

Surface layer Chl 0.5 0.2 0.1

POC 48.3 15.1 7.4

NO3 0.7 0.3 0.1

PrPr 52.0 23.0 11.4

Sum of upper

15 layers

Chl 6.2 2.3 1.3

POC 629 207 99

NO3 9.7 3.7 1.7

PrPr 416 188 83

aAll RMSD were computed between the true simulation and (1) the model before

assimilation (representing the initial model error), (2) the 40% noisy data (representing

the data error), and (3) the optimized model (representing the assimilation error) for dis-

tributions of Chlorophyll (Chl; mgChl m23), POC (mgC m23), nitrate (NO3; mmol N m23),

and primary production (PrPr; mgC m23 day21).
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the twin experiments. In this case, the

validity of the individually optimized sim-

ulations was assessed by means of rigor-

ous cross validation experiments

conducted by applying the parameter

values individually optimized for one site

to the other three sites (Table 7). Only

one out of the four resulting total costs in

these Case 1 cross validation experiments

was lower than the a priori cost. For example, when applying the optimal parameter set derived from indi-

vidually assimilating the N2 Case 1 data to the other three sites, the resulting total cost from the four sites

increased by more than 15 times compared to the original a priori cost and was nearly 25 times larger than

the cost resulting from the Simultaneous experiment (Tables 5 and 7). For the only case in which the total a

posteriori cost was lower than the a priori cost (i.e., assimilation of S1 data, cost5 10.3, Table 7), the cost

was still higher than that generated in the Simultaneous assimilation experiment (cost5 8.8, Table 5).

These cross validation experiments suggest that although assimilating data from one site alone can signifi-

cantly improve model performance at that particular site, the improved fit is largely due to overtuning and

fitting data noise, and thus results in a deterioration of model performance when the parameter values are

applied at other times and/or locations. As in the twin experiments assimilating synthetic data, the issue

with overtuned parameters vanishes when data are simultaneously assimilated from multiple sites: when

data from all four sites were simultaneously assimilated, the resulting optimal parameter set was well con-

strained (Figure 6b) and the cost function was still not substantially higher than that obtained from the Indi-

vidual Assimilation experiments (Table 5).

These results regarding the problems associated with the application of overtuned parameters due to an

underconstrained system are consistent with results from previous studies. For example, Ward et al. [2010]

assimilated data from two sites individually and simultaneously, and demonstrated high uncertainty in the

optimal parameters when data were assimilated from only one site. In another study, Friedrichs et al. [2006]

conducted two sets of assimilation experiments with multiple models of varying complexity: in the first

experiment all model parameters were optimized (10–19) and in the second only a subset of uncorrelated

parameters (2–6) was estimated, using the same data set in both cases. The results of their cross validations

indicated that the assimilated data did not provide enough information to successfully constrain all model

parameters, and as a result the overtuned parameters resulted in very low costs for the assimilated data,

but very high costs when the model was applied to unassimilated data fields. In contrast, when only a sub-

set of parameters was optimized, the model produced slightly higher costs for the assimilated data, but

much lower costs for the unassimilated data fields. These results are analogous to the results shown here

for the experiments assimilating data from individual sites (which produced low costs for the assimilated

data and very high costs/RMSD for unassimilated data) and the experiments assimilating data simultane-

ously from multiple sites (which produced slightly higher costs for the assimilated data, but much lower

costs/RMSD for the unassimilated data).

Although the Individual Assimilation experiments conducted here resulted in unrealistic overtuned parame-

ter values, this is likely at least partially due to the fact that only remotely sensed data (chlorophyll and

POC) were assimilated. For example, Bagniewski et al. [2011] have shown that many parameters can be con-

strained when more complete observational data sets, including subsurface nutrients and oxygen, are also

assimilated. However, they did note that their lack of zooplankton observations still leads to large uncertain-

ties in model parameters for grazing.

Ultimately, the success we found in simultaneously assimilating remotely sensed data from multiple sites

and the failure of assimilating such data from individual sites illustrates a problem inherent to the assimila-

tion of moored data from individual locations, and highlights the advantage of assimilating information

from satellites, which routinely includes synoptic data from multiple locations.

4.3. The Relative Importance of Assimilating Different Types of Satellite-Derived Data

In order to determine the relative benefit of assimilating different types of satellite-derived data, various

assimilation cases were run which assimilated combinations of size-fractionated chlorophyll, total

Table 7. Case 1 Cross Validation Costs Generated by Applying the Parame-

ter Values Individually Optimized for One Site to All Four Sites

Individual Optimization

Site

A Priori Cost

for All 4 Sites

A Posteriori Cost

for All 4 Sites

N1 15.1 17.3

N2 15.1 231.3

S1 15.1 10.3

S2 15.1 > 103
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chlorophyll, and/or POC. When satellite-derived POC data were assimilated without the concomitant assimi-

lation of chlorophyll data, the model-data misfit for chlorophyll dramatically increased at the southern sites.

The model was only able to successfully reproduce the POC observations by producing unrealistic chloro-

phyll concentrations. On the contrary, the assimilation of chlorophyll (or size-fractionated chlorophyll) with-

out the concomitant assimilation of POC data only generated a small increase in the POC model-data misfit.

This is likely because chlorophyll provides a better constraint on the model, as there are multiple ways by

which the model can produce a given POC concentration (using different proportions of small/large phyto-

plankton, zooplankton, and detritus) but a smaller number of ways in which the model can produce a given

chlorophyll concentration (using different proportions of large and small phytoplankton). For example, an

increase in the maximum zooplankton-grazing rate could cause an increase in zooplankton and a decrease

in phytoplankton, resulting in a significant change in chlorophyll but no net change in POC. For these rea-

sons, the assimilation of satellite-derived chlorophyll provides a better constraint on the model than does

the assimilation of POC.

The relatively minor improvements in the modeled POC fields, as compared to those of the modeled chlo-

rophyll fields are also due to the fact that the POC distributions are more sensitive to physical processes

that were included but not optimized in the model, such as vertical advection and sinking. In particular, the

surface POC cost increased by more than 90% when detrital sinking was turned off, whereas the surface

chlorophyll cost changed by less than 1%. Because the POC distributions are controlled more by physics

and less by biological processes as compared to the chlorophyll distributions, the adjustments of the bio-

logical parameters tend to improve the chlorophyll distributions more than the POC concentrations.

In terms of the relative benefits of assimilating size-fractionated chlorophyll and total chlorophyll, the results

are less clear; however, the assimilation of size-fractionated chlorophyll resulted in a greater percent reduc-

tion in the a priori cost function and also produced a lower model-data misfit for both size-fractionated

chlorophyll as well as total chlorophyll. Thus, it appears that when implementing assimilative models with

more than one phytoplankton size class, the assimilation of size-fractionated chlorophyll does provide an

advantage over the assimilation of total chlorophyll.

In general, the lowest model-data misfits were obtained when size-fractionated chlorophyll was assimilated

together with POC. Although size-fractionated chlorophyll was simulated best when POC was not assimi-

lated, this did result in an increase in misfit for POC. These results suggest that when possible size-

fractionated satellite chlorophyll and POC should both be simultaneously assimilated in order to provide

the best possible fit to a given satellite data set.

5. Summary and Conclusions

Experiments were conducted to examine the effects of assimilating three types of satellite-derived products

(chlorophyll, size-fractionated chlorophyll, and particulate organic carbon) into a one-dimensional lower

trophic level marine ecosystem model of the Mid-Atlantic Bight. Although these results were obtained for a

continental shelf region, we feel that similar results would be obtained if the study were repeated at sites in

the open ocean. Twin experiments illustrated that the assimilative framework can reasonably successfully

recover a set of carefully selected, uncorrelated ecosystem parameters, even when the synthetic data are

associated with substantial levels of random noise. In addition, these twin assimilation experiments

improved both surface and subsurface distributions of not only assimilated variables, but also of unassimi-

lated variables such as nutrient concentrations and productivity.

Both the twin experiments and experiments assimilating actual satellite-derived data demonstrated that the

optimization procedure only generated robust parameter values when data were simultaneously assimilated

from multiple sites. Assimilating satellite-derived surface data at individual sites produced low-cost functions,

but did not adequately constrain the model. In this case, the optimization procedure overtuned the model

simulation, and as a result generated unrealistic parameter values that produced large model-data misfits at

times and locations when data were not assimilated. In contrast, when data were assimilated from multiple

sites simultaneously, the model was successfully constrained and robust parameter values were generated.

When POC data were assimilated without chlorophyll, model-data misfit for chlorophyll was substantially

increased. In contrast, when chlorophyll (either total or size-differentiated) data were assimilated without
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POC, the model-data misfit for POC was only slightly degraded. These results suggest that satellite-derived

chlorophyll distributions act as a significantly greater constraint to the model than do satellite-derived POC

distributions. Although the results are less clear regarding the relative advantages of assimilating size-

differentiated chlorophyll rather than total chlorophyll, optimal results were obtained when both size-

differentiated chlorophyll and POC were both assimilated.

This data assimilative modeling study provides an example of how multiple satellite-derived products

can be simultaneously used to optimize marine ecosystem models. The effects of assimilating the satel-

lite data were apparent at depths well below the surface layer, however vertical profile data are required

to further evaluate these changes. We expect that satellite-derived size-fractionated chlorophyll concen-

trations may play an increasingly important role in the future, as assimilative methods are applied to

more complex ecosystem models that incorporate multiple phytoplankton and zooplankton

compartments.

Appendix A: Model Equations

The model equations are included below for reference. State variables are defined as: DS, small detritus; DL,

large detritus; NO3, nitrate; NH4, ammonium; PS, small phytoplankton; PL, large phytoplankton; Z, zooplank-

ton; ChlS, small chlorophyll; ChlL, large chlorophyll. Model parameterizations are described more fully in

Fennel et al. [2006] and parameter values, except for those specifically noted in Table 1, are identical to

those used in Fennel et al. [2008].

A1. State Variable Equations

Change in Small P5 Small P growth2 Z grazing of Small P2mortality of Small P2aggregation of Small

P2 sinking of Small P

@PS

@t
5lPSPS2gPS ZZ2mPPS2sðDS1PS1PLÞPS2wPS

@PS

dz

Change in Large P5 Large P growth2 Z grazing of Large P2mortality of Large P2aggregation of Large

P2 sinking of Large P

@PL

@t
5lPLPL2gPL ZZ2mPPL2sðDS1PS1PLÞPL2wPS

@PL

dz

Change in Z5 assimilation of grazed P2 Z excretion to ammonium (linear term and assimilation-

dependent term)2mortality of Z

@Z

@t
5ðgPS Z1gPL ZÞbZ2ðlBM Z1lE

ðPS1PLÞ2

kP1ðPS1PLÞ2
bÞZ2mZZ

2

Change in Small Detritus5 unassimilated Z grazing of Small and Large P1mortality of Z1mortality of Small

P and Large P2 aggregation of Small Detritus2 remineralization of Small Detritus2 sinking of Small Detritus

@DS

@t
5ðgPS Z1gPL ZÞð12bÞZ1mZZ

2
1mPðPS1PLÞ2sðDS1PS1PLÞSD2rDSDS2wDS

@DS

@z

Change in Large Detritus5 aggregation of Small Detritus, Small P and Large P2 remineralization of Large

Detritus2 sinking of Large Detritus

@DL

@t
5sðDS1PS1LPÞ22rDLDL2wDL

@DL

@z

Change in Nitrate52Small P uptake of nitrate2 Large P uptake of nitrate1 nitrification
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@NO3

@t
52lPS NO3PS2lLP NO3PL1nNH4

Change in Ammonium52Small P uptake of ammonium2 Large P uptake of ammonium2 nitrification1Z

excretion (linear term and assimilation-dependent term)1 remineralization of Small Detritus1 remineraliza-

tion of Large Detritus

@NH4

@t
52lPS NH4PS2lPL NH4PL2nNH41ðlBM Z1lE

ðPS1PLÞ2

kP1ðPS1PLÞ2
bÞZ1rDSDS1rDLDL

Change in Small Chlorophyll5 Small P growth2Z grazing of Small P2mortality of Small P2 aggregation

of Small P2 sinking of Small P2 sinking of Small P

@ChlS

@t
5qChlSlPSChlS2gPS ZZ

ChlS

PS
2mPChlS2sðDS1PS1PLÞChlS2wPS

@ChlS

dz

Change in Large Chlorophyll5 Large P growth2Z grazing of Large P2mortality of Large P2 aggregation

of Large P2 sinking of Large P

@ChlL

@t
5qChlLlPLChlL2gPL ZZ

ChlL

PL
2mPChlL2sðDS1PS1PLÞChlL2wPL

@ChlL

dz

A2. Definitions of Functional Formulations Used in Above Equations

gPS Z5gmaxPS Z

PS2

kP1PS2

qChlS5
hmax PSlPS � PS

aI � ChlS

fPSðIÞ5
aI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2max PS1a2I2
p

LNO3 PS5
NO3

kNO3 PS1NO3

� �

11
NH4

kNH4

� �

21

LNH45
NH4

kNH41NH4

lPS5lmax PSfPSðIÞðLNO3 SP1LNH4Þ

lPS NO35lmax PSfPSðIÞLNO3 PS

lPS NH45lmax PSfPSðIÞLNH4

gPL Z5gmax PL Z

PL2

kP1PL2

qChlL5
hmax PLlPL � PL

aI � ChlL

fPLðIÞ5
aI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2max PL1a2I2
p

LNO3 PL5
NO3

kNO3 PL1NO3

� �

11
NH4

kNH4

� �

21

lPL5lmax PLfPLðIÞðLNO3 PL1LNH4Þ

lPL NO35lmax PLfPLðIÞLNO3 PL

lPL NH45lmax PLfPLðIÞLNH4
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