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Abstract. This paper introduces the Assistive Kitchen as a comprehensive demonstration and challenge sce-

nario for technical cognitive systems. We describe its hardware and software infrastructure. Within the Assistive

Kitchen application, we select particular domain activities as research subjects and identify the cognitive capabil-

ities needed for perceiving, interpreting, analyzing, and executing these activities as research foci. We conclude

by outlining open research issues that need to be solved to realize the scenarios successfully.

I. Introduction

Cognitive technical systems are systems that are equipped

with artificial sensors and actuators, integrated into physical

systems, and act in a physical world. They differ from other

technical systems in that they have cognitive capabilities in-

cluding perception, reasoning, learning, and planning that turn

them into systems that “know what they are doing” [4]. The

cognitive capabilities will result in systems of higher reliabil-

ity, flexibility, adaptivity, and better performance and systems

that are easier to interact and cooperate with.

The cluster of excellence COTESYS (Cognition for Tech-

nical Systems)1 considers the assistance of elder people to

be a key application where technical cognitive systems could

profoundly impact the well-being of our society. Therefore,

COTESYS investigates the realization of an assistive kitchen

(Figure 1), a ubiquitous computing, sensing, and actuation

environment with a robotic assistant as one of its primary

demonstration scenarios. The Assistive Kitchen aims at

• supporting and assisting people in their household chores

through physical action;

• enhancing the cognitive capabilities of people doing

household work by reminding them; and

• monitoring health and safety of the people.

To achieve these objectives, the Assistive Kitchen is to

• perceive, interpret, learn, and analyze models of house-

hold chore and activities of daily life (ADLs); and

• represent the acquired models such that the Assistive

Kitchen can use them for activity and safety monitoring,

health assessment, and for adapting itself to the needs

and preferences of the people.

The Assistive Kitchen includes an autonomous robotic

agent that is to learn and perform complex household chores.

The robot must perform housework together with people or at

least assist them in their activities. This requires safe opera-

tion in the presence of humans and behaving according to the

preferences of the people they serve.

Clearly, assistive kitchens of this sort are important for sev-

0(1) The research reported in this paper is partly funded by the German

cluster of excellence COTESYS (Cognition for Technical Systems). (2) More

information including videos and publications about the Assistive Kitchen can

be found at ias.cs.tum.edu/assistivekitchen. (3) Due to space limitations this

paper does not contain an outline of our research agenda towards realizing the

scenarios and nor does it give a comprehensive discussion of related work.
1The research agenda of the COTESYS cluster of excellence is decribed

in a companion paper [5] contained in this collection.

eral reasons. First, they are of societal importance because

they can enable persons with minor disabilities including sen-

sory, cognitive, and motor ones to live independently and to

perform their household work. This will increase the quality

of life as well as reduce the cost of home care.

Assistive kitchens and living environments also raise chal-

lenging research problems. One of these problems is that

performing household chores is a form of everyday activity

that requires extensive commonsense knowledge and reason-

ing [1]. Another challenge is the low frequency of daily activ-

ities, which requires embedded systems and robotic agents to

learn from very scarce experience. Besides, household chores

include a large variety of manipulation actions and composed

activities that pose hard research questions for current robot

manipulation research. The management of daily activities

also requires activity management that is very different from

that commonly assumed by AI planning systems.

II. Assistive Kitchen Infrastructure

We start with the hardware and software infrastructure of

the kitchen — the implementational basis that defines the pos-

sibilities and restrictions of the demonstration scenarios.

A. The Hardware Infrastructure

The hardware infrastructure consists of a mobile robot and

networked sensing and actuation devices that are physically

embedded into the environment.

A. 1. The Autonomous Mobile Robot

Currently, an autonomous mobile robot with two arms with

grippers acts as a robotic assistant in the Assistive Kitchen

(see Figure 1). The robot is a RWI B21 robot equipped with a

stereo CCD system and laser rangefinders as its primary sen-

sors. One laser range sensor is integrated into the robot base

to allow for estimating the robot’s position within the environ-

ment. Small laser range sensors are mounted onto the robot’s

grippers to provide sensory feedback for reaching and grasp-

ing actions. The grippers are also equipped with RFID tag

readers that support object detection and identification. Cam-

eras are used for longer range object recognition and to allow

for vision-based interaction with people.

The robot can manipulate objects and its environment using

its two industrial strength Amtec Powercube arms with simple

grippers. While the arms and grippers are not very dexterous

they permit the execution of simple manipulation actions such
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Fig.1: The Assistive Kitchen containing a robot and a variety of sensors.

as getting plates and glasses out of the cupboard and putting

them onto the table.2

A. 2. Room Infrastructure

The sensor-equipped kitchen environment (see Figure 1)

disposes of global environment sensors, sensor-equipped fur-

niture, web-enabled appliances, “smart” objects, and instru-

mentations for people acting in the environment [6]. In this

section we will look at these components in more detail.

Global Sensors of the Kitchen. We have mounted a set

of static off-the-shelf cameras positioned to cover the kitchen

area with high resolution in critical working areas. With these

cameras, actions of the people and robots can be tracked from

different locations to allow for more accurate positioning and

pose estimation. In addition, laser range sensors are mounted

at the walls for covering large parts of the kitchen. They pro-

vide accurate and valuable position data for the people present

in the environment and their movements within the kitchen.

Sensor-equipped Furniture. The pieces of furniture in the

Assistive Kitchen are also equipped with various kinds of sen-

sors. For example, we have cupboards with long-range RFID

tag readers that enable the cupboards to “know” the identi-

ties of the RFID tagged objects that are currently in the cup-

board. Additionally, the cupboards are equipped with magnet-

ical contact sensors that sense whether the cupboard doors are

open or closed. Another example is a table which contains

several integrated capacitive sensors as well as short-range

RFID readers. The capacitive sensors report the capacitance

of different areas on the table, when an object is placed there,

while the RFID readers provide exact information on what ob-

ject was placed there.

Web-enabled Kitchen Appliances such as the refridgerator,

the oven, the microwave, and the faucet, allow for remote and

wireless monitoring and control.

”Smart” Objects In addition, kitchen utensils, tools and

small appliances are equipped with integrated sensors. For

example, we use a knife (see Figure 2) instrumented with a

2Robot platforms contributed by other members of the COTESYS clus-

ter include Justin (dexterous manipulation, www.robotic.dlr.de) and John-

nie/Lola (full body motion, www.amm.mw.tu-muenchen.de).

6DOF force/torque sensor that allows us to record the force

trajectories over extended periods of time. Because the shapes

of the force trajectories are characteristic for the physical

properties of the objects, we can learn object specific force

profiles and use them to classify the objects being cut.

Fig.2: Knife with embedded force sensors networked within

the wireless sensor network.

Another smart object is a sensor-instrumented coffee ma-

chine, its capabilites being extended from that of a normal

kitchen appliance. The integrated sensors provide information

whether the filter unit is open or closed and wether a coffee fil-

ter is installed, whether the machine is switched on or off, the

amount of water in the water container, etc.

Instrumentation of People Small ubiquitous devices offer

the possibility to instrument people acting in the environment

with additional sensors. In our case, we have built a glove

equipped with an RFID tag reader (see Figure 3) that enables

us to identify the objects that are manipulated by the person

wearing it. In addition, the person is equipped with tiny iner-

tial measurement units that provide us with detailed informa-

tion about the person’s limb motions.

Another body worn sensory device to be used in the Assis-

tive Kitchen demonstration scenario is the gaze-aligned head

mounted camera which allows the estimation of the attentional

state of people while performing their kitchen work.3

3The gaze-aligned head mounted camera is currently developed by Neu-

rologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München,

which participates in the COTESYS excellence cluster (www.forbias.de/).



B. Cognitive Sensor Networks

The sensors in the Assistive Kitchen are connected into dis-

tributed sensor networks (see Figure 3), which are enhanced

with cognitive capabilities. To this end the sensors are wire-

lessly connected to small ubiquitous computing devices (like

Gumstix) and to personal computers that perform state esti-

mation and data-mining tasks. This way, activity data can be

collected and abstracted into models in a distributed manner.

Cognitive capabilities of the network include the estimation

of meaningful states from sensor data, the continual acquisi-

tion, update, and use of activity models, and the estimation of

context conditions that allow for the simplification of recogni-

tion tasks. Because of these capabilities cognitive sensor net-

works always have up-to-date models of objects, situations,

and activities, which enable the networks to provide a contin-

ual service for answering queries about the environment and

the activities that take place in it.

Fig.3: Sensor networks in the Assistive Kitchen.

Cognitive sensor networks can estimate states and recog-

nize events that are meaningful in the application domain but

must be obtained by combining, interpreting, and abstracting

the sensor data of different sensors over time. For example,

mounting RFID tags and acceleration sensors to kitchen uten-

sils allows the environment to recognize force-dynamic states

such as an object being picked up, carried, or put down. The

recognition of force-dynamic states is essential for segment-

ing activities into meaningful subactions. The networks can

also learn about places that play particular roles in the activi-

ties that are monitored. The system can learn where the people

prepare food or where food is stored, etc.

C. Middleware Software Infrastructure

A critical factor for the successful implementation of the as-

sistive kitchen is the middleware software infrastructure that

has to provide a simple, reliable, uniform, and flexible inter-

face for communicating with and controlling different physi-

cally distributed sensors and actuators.

We use and extend the open-source Player/Stage/Gazebo

(P/S/G) software library to satisfy these requirements for the

sensor-equipped environment as well as the robotic agent.

Player provides a simple and flexible interface for robot con-

trol by making available powerful classes of interface abstrac-

tions for interacting with robot hardware, in particular sen-

sors and effectors. These abstractions enable the programmer

to use devices with similar functionality with identical soft-

ware interfaces, thus increasing the code transferability. An

enhanced client/server model featuring auto-discovery mech-

anisms as well as permitting servers and clients to communi-

cate between them in a heterogeneous network, enables pro-

grammers to code their clients in different programming lan-

guages. Programmers can also implement sophisticated algo-

rithms and provide them as Player drivers. By incorporating

well-understood algorithms into our infrastructure, we elimi-

nate the need for users to individually re-implement them.

Using the P/S/G infrastructure a robot can enter a sensor-

equipped environment, autodiscover the sensors and the ser-

vices they provide and use these sensors in the same way as it

uses its own sensors.

D. Simulation and Visualization

We have developed a simulation of the kitchen and robot

acting as robotic assistant using the Gazebo toolbox for 3D,

physic-based robot simulation. The simulator is realistic

along many dimensions. In particular, the simulator will use

sensing and actuation models that are learned from the real

robots. The simulator is coupled to the cognitive sensor net-

work. Thereby the simulator can be automatically initialized

and updated according to the sensing data of the network.

Fig.4: The Assistive Kitchen and its simulation.

The use of these simulation tools promotes the research in

assistive kitchen technology in various ways. First, the simu-

lator supports generalization: we can model all kinds of robots

in our simulation framework. We will also have different

kitchen setups, which requires us to develop control programs

that can specialize themselves for different robots and envi-

ronments. The simulator allows us to run experiments fast

and with little efforts and under controllable context settings.

This supports the performance of extensive empirical studies.

III. Demonstration Scenarios

The demonstration scenarios are organized along two di-

mensions (see Figure 5). The first dimension is the domain

tasks and activities under investigation. The second one are

the cognitive aspects of perception, interpretation, learning,

planning, and execution of these activities.

A. Activities/Scenario Tasks

We start by looking at three scenario tasks in the context of

household chores: setting the table, cooking, and performing

household chores for an extended period. These tasks chal-

lenge cognitive systems along different dimensions, which we

will discuss in the remainder of this Section.
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Fig.5: Dimensions of demonstration scenarios.

Table setting refers to the arrangement of tableware, cut-

lery, and glasses on the table for eating. Table setting is a

complex transportation task that can be performed as a single

thread of activity.

There are various aspects of table setting that make it to a

suitable challenge for cognitive systems: • the commonsense

knowledge and reasoning needed are to perform the task com-

petently; • the task itself is typically specified incompletely

and in a fuzzy manner; and • the task can be carried out and

optimized in many ways.

To account for incomplete task specifications, agents must

use their experience or inquire in order to find out who sits

where and whether people prefer particular plates, cups, etc.

Other missing information can be found in the world wide

web such as which kinds of plates and cutlery are needed and

where they should be placed.

Aspects to be considered for the optimization of the activ-

ity include the the position where the robot should stand to

place the objects on the table, the decision if objects should be

stacked or carried individually, etc. Also, the task requires the

execution of macro actions such as approaching the cupboard

in order to open it and get out the plates. Agents also have to

consider subtle issues in action selection, such as whether or

not to interrupt the carrying action in order to close the door

immediately or later. Finally, actions require substantial dex-

terity. Putting objects on table where people are sit requires

the robot to perform socially acceptable reaching actions.

Cooking is the activity of preparing food to eat. Unlike

setting the table, cooking requires the selection, measurement

and combination of ingredients in an ordered procedure. The

performance of a cooking activity is measured in terms of the

quality and taste of the meal and its timely provision.

Cooking involves the transformation of food, the control of

physical and chemical processes, the concurrent execution of

different activities, the use of tools and ingredients, and mon-

itoring actions. Concurrent activities have to be timed such

that all parts of the meal are done at the desired time. Cooking

comprises many different methods, tools and combinations of

ingredients — making it a difficult skill to acquire.

Prolonged House Keeping and Household Chores are spe-

cific activities related to or used in the running of a household.

The activities include cooking, setting the table, washing the

dishes, cleaning, and many other tasks.

Performing household chores illustrates well the flexibility

and reliability of human everyday activity. An important rea-

son is the flexible management of multiple, diverse jobs. Hu-

mans as well as intelligent agents usually have several tasks

and activities to perform simultaneously. They clean the liv-

ing room while the food sits on the oven. At any time, inter-

rupts such as telephone calls, new errands and revisions of old

ones might come up. In addition, they have regular daily and

weekly errands, like cleaning the windows.

Since doing the household chores is a daily activity and

done over and over again, agents are confronted with the same

kinds of situations many times, they learn and use reliable

and efficient routines for carrying out their daily jobs. Per-

forming their daily activities usually does not require a lot of

thought because routines are general. This generality is neces-

sary since jobs come in many variations and require agents to

cope with whatever situations they encounter. The regularity

of everyday activity also requires agents to handle interrup-

tions that occur while carrying out their routines. Routines,

like cleaning the kitchen, are often interrupted if a more ur-

gent task is to be performed, and continued later on. There-

fore, agents have to remember where they put things in order

to find them again later.

A main factor that contributes to the efficiency of everyday

activity is the flexibility with which different routines can be

interleaved. Agents often work on more than one job at a time.

Or, they do jobs together — operating the washing machine in,

and getting stored food from, the basement.

People can accomplish their household chores well — even

in situations they have not encountered yet — for two rea-

sons: they have general routines that work well in standard

situations and they are, at the same time, able to recognize

non-standard situations and adapt their routines to the specific

situations they encounter. Making the appropriate adaptations

often requires people to predict how their routines would work

in non-standard situations and why they might fail.

B. Scenarios

For these activities the following scenarios are investigated.

B. 1. Understanding Human Household Chore: Acquisition

and Use of Activity Models

In the first demonstration scenario the task is to observe the

activity in the kitchen in order to acquire abstract models of

the activity. The models are then to be used to

• answer queries about the activity,

• monitor activity and assess its execution,

• generate visual summaries of a cooking activity includ-

ing symbolic descriptions, and

• detect exceptional situations and the need for help.

In order to do so, the system is required to answer questions

including the following ones: What are meaningful subactiv-

ities of “setting the table” and why? Which eating utensils

and plates have to be used for spaghetti and how should they

be arranged? Does John prefer a particular cup? Where do

people prepare meals? How do adults set the table as opposed

to kids? and why? Why does one put down the plates before

bringing them to the table? (To close the door of the cup-

board.) What happens after the table is set? Where are the

forks kept? What is the fork used for?

The models needed for answering these questions are to be

acquired (semi-)automatically from the world wide web, from

observing people, and by asking for advice.



Fig.6: Sensing, reaching, and grasping activities using tiny

inertial measurement units (left). Estimating the pose of peo-

ple by accurately matching digital human models into image

sequences (right).

B. 2. Self-modelling and -adapting Assistive Kitchens

Maps or environment models are resources that the As-

sistive Kitchen uses in order to accomplish its tasks more

reliably and efficiently. Acquiring a model of an assistive

kitchen is very different from environment mapping done by

autonomous robots. For mapping the Assistive Kitchen the

robot can make use of the sensors of the environment. There is

also various semantic information associated with RFID tags

in the environment and the sensors are services providing in-

formation about themselves and their use.

Here, we consider mapping to be the following task: Given

(1) a sensor-equipped kitchen where appliances and other

pieces of furniture might or might not be tagged with RFID

tags that have information associated with them (such as their

size) and (2) a stream of observations of activities in this

kitchen acquired by the various sensors acquire a semantic,

3D object map of the kitchen.

In contrast to many other robot mapping tasks where the

purpose of mapping is the support of navigation tasks, the

kitchen map is to be a resource for understanding and car-

rying out household chores. To this end, the map needs to

have a richer structure, explicitly reference task relevant ob-

jects such as appliances, know about the concept of containers

and doors, such as cabinets and drawers.

The maps also have to contain sensors of the environment

and their locations in order to semantically interpret the sensor

data. For example, the mapper has to estimate the position and

orientation of a laser range sensor using its own motions and

their effects on the sensor data, in order to infer that the sensor

can be used for determining its own position and how. Or, the

robot has to locate an RFID tag reader, for example using the

estimated position of its gripper and observing which of the

sensors reports the RFID identifier of its gripper. Knowing

that its gripper is inside a cabinet it can infer that the respective

sensor can be used to sense what is inside this cabinet.

By observing the activity in the kitchen the system can also

infer the function of objects. For example, that a particular

cabinet is used to store the plates and glasses and that the cut-

lery is kept in a particular drawer. Finally, the geometry of the

environment and recognized activities are used to finetune the

sensors for particular activity recognition tasks.

B. 3. Action and Motion Primitives

People doing their household activities perform very com-

plex movements smoothly and effortlessly, and improve such

movements with repetition and experience. Such activities

like putting the dishes in the cupboard, or setting the table,

are simple for people but present challenges for robots.

Consider picking up a cup from the table and placing it in

the cupboard. Any person will turn and walk towards the cup,

while simultaneously stretching the arm and opening the hand.

Then the hand will grasp the cup firmly, and lift it. It will ap-

ply just the right amount of force, because through experience,

the person has learned how much a cup should weigh. If the

cup were heavier as expected, this would be detected and cor-

rected immediately. Then, taking the cup close the body for a

better stability, the person will walk to the cupboard, open the

door with the other hand, and place the cup inside.

Several noteworthy things take place. First, the motions

used to get the cup are similar to the ones used for reach-

ing and picking up other objects. Such movements can be

formed by combining one or more basic movements, called

motion primitives. These primitives can be learned by obser-

vation and experimentation. Each one of this primitives can

be parametrized to generate different movements. Second, it

is known that noise and lag are present in the nervous system,

which affect both sensing and motor control. But people man-

age despite this limitations to have elegant and precise con-

trol of our limbs. A robot with a traditional controller would

have great difficulties carrying out simple movements in such

conditions. Humans deal with this problem by building for-

ward and reverse models for motor control [7]. Third, during

a movement, any abnormal situation is quickly detected and a

corrective action is taken.

In this demonstration scenario, we would like a robot to

exhibit a similar capabilities. The robot will observe the ac-

tivities of people, obtain motion primitives from them, and

improve them through own experimentation. Models of ac-

tivity are also learned for reaching and grasping movements,

and include information regarding the effects of the control

commands. This allows the robot make predictions and de-

tect abnormal situations when the sensory data differs from

the expected values.

B. 4. Planning and Learning Macro Actions

The next higher level of activities in the kitchen are macro

actions. We consider macro actions to be the synchronized

execution of a set of action primitives that taken together per-

form a frequent macro activity in the task domain. These ac-

tivities are so frequent that the agents learn high-performance

skills from experience for their reliable and flexible execution.

Examples for such macro activities are opening a tetrapak and

filling a cup with milk, opening a cabinet to take a glass, or

buttering a bagel.

Here the challenge is to compose macro actions from co-

ordinated action primitives such that the resulting behavior is

skillful, flexible, reliable, and fluent without noticeable tran-

siting between the subactions [8]. Another challenge is that

such macro actions must be learned from very little experi-

ence — compared with other robot learning tasks [3].

The learning of macro actions is an application of action

aware control where the agents learn performance and pre-

dictive models of actions and use these models for planning,

learning, and executing macro actions. The construction of

such macro actions requires the application of transforma-



tional learning and planning methods and the combination of

symbolic and motion planning with learned dynamic models.

B. 5. Self-adapting High-level Controller

Robotic agents can not be fully programmed for every ap-

plication. Thus, in this demonstration scenario we realize

robot control programs that specialize to their respective robot

platform, work space, and tasks (see Figure 7).

set the table

. . .

pick-up-obj

go2pose

grip-obj

. . .

. . .

Fig.7: Self-adaptation of different robots in different kitchens.

Specifically we realize a high-level control program for set-

ting the table. The program learns from experience where to

stand when taking a glass out of the cupboard, how to best

grasp particular kitchen utensils, where to look for particular

cutlery, etc. This requires the control system to know the pa-

rameters of control routines and to have models of how the

parameters change the behavior [2]. Also, the robots are re-

quired to perform their tasks over extended periods of time,

which asks for very robust control.

B. 6. Learning to Carry out Abstract Instructions

The final scenario discussed in this paper is the acquistion

of new high-level skills. Let us consider the setting of a table

as an illustrative example (see Figure 8). Upon receiving “set

the table” the robot retrieves instructions from webpages such

as ehow.com. These instructions are typically sequences of

steps to be executed in order to carry out the activities success-

fully. The challenges of this execution scenario are: (1) trans-

late the abstract instructions into an executable robot control

program, (2) supplement missing information through obser-

vations of kitchen activities, (3) transform the action sequence

into an activity structure that can be carried out more reliably,

efficiently, and flexibly. Instructions typically abstract away

from these aspects of activity specification.

task

set the table

knowledge base

ehow.com

Cyc

abstract general plan

optimized adapted plan

• parametrization

– preferred dinnerware

– preferred seating

location

• transformation

– stack plates

– use tray

activity recognition
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executable plan

in
sim

u
latio
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Fig.8: Learning to set the table.

Let us now look at some of the hard challenges in this

scenario. First, translating abstract instructions into a work-

ing robot control program requires answers to the following

research questions. (1) How can the plan libraries of au-

tonomous household robots be specified so generally, reliably,

transparently, and modularily that a robot can compose (al-

most) working plans from abstract instructions? In order for

newly composed sequences of plan steps to work it helps if

the indivual plan steps are specified as “universal plans”, that

is they achieve – if necessary – all preconditions needed for

producing the desired effects. (2) Debugging newly created

plans from instructions requires the robot to predict what will

happen if it executes the new plan, to identify the flaws of the

plan with respect to its desired behavior, and to revise the plan

in order to avoid the predicted flaws. (3) Optimizing tasks

like table setting also requires the technical cognitive system

to observe people setting the table, to infer the structure of the

activity and reason about why people do not follow the ab-

stract instructions like a robot but perform the task the way

they do. This way the robot would learn that people stack

plates when carrying them in order to minimize the distance

they have to walk. The robot would then transform its plan

analogously and test whether this change of activity structure

would result in improved performance.

IV. Concluding Remarks

This paper has presented assistive kitchens as demonstra-

tion pletforms for cognitive technical systems that include var-

ious research challenges for cognitive systems. In particular,

we expect the investigation of cognitive capabilities in the

context of human everyday activity, which has received sur-

prisingly little attention in previous research efforts, to sub-

stantially promote the state-of-the-art of cognition for tech-

nical systems. We refer to a longer version of this paper —

currently in preparation — for more detailed discussion of the

research issues and the related research in this area.
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