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Abstract

Background: The COVID-19 has caused a sizeable global outbreak and has been declared as a public health

emergency of international concern. Sufficient evidence shows that temperature has an essential link with

respiratory infectious diseases. The objectives of this study were to describe the exposure-response relationship

between ambient temperature, including extreme temperatures, and mortality of COVID-19.

Methods: The Poisson distributed lag non-linear model (DLNM) was constructed to evaluate the non-linear delayed

effects of ambient temperature on death, by using the daily new death of COVID-19 and ambient temperature data

from January 10 to March 31, 2020, in Wuhan, China.

Results: During the period mentioned above, the average daily number of COVID-19 deaths was approximately

45.2. Poisson distributed lag non-linear model showed that there was a non-linear relationship (U-shape) between

the effect of ambient temperature and mortality. With confounding factors controlled, the daily cumulative relative

death risk decreased by 12.3% (95% CI [3.4, 20.4%]) for every 1.0 °C increase in temperature. Moreover, the delayed

effects of the low temperature are acute and short-term, with the most considerable risk occurring in 5–7 days of

exposure. The delayed effects of the high temperature appeared quickly, then decrease rapidly, and increased

sharply 15 days of exposure, mainly manifested as acute and long-term effects. Sensitivity analysis results

demonstrated that the results were robust.

Conclusions: The relationship between ambient temperature and COVID-19 mortality was non-linear. There was a

negative correlation between the cumulative relative risk of death and temperature. Additionally, exposure to high

and low temperatures had divergent impacts on mortality.

Keywords: COVID-19, Ambient temperature, Mortality, Distributed lag non-linear model, Negative correlation

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: shifuyan@126.com; wangsz@wfmc.edu.cn
1Department of Health Statistics, School of Public Health, Weifang Medical

University, No. 7166 Baotong West Street, Weifang 261053, People’s Republic

of China

Full list of author information is available at the end of the article

Zhu et al. BMC Public Health          (2021) 21:117 

https://doi.org/10.1186/s12889-020-10131-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12889-020-10131-7&domain=pdf
https://orcid.org/0000-0002-2085-9336
https://orcid.org/0000-0002-9236-2812
https://orcid.org/0000-0001-8710-4854
https://orcid.org/0000-0003-2076-529X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:shifuyan@126.com
mailto:wangsz@wfmc.edu.cn


Background

Infectious disease is an old and heavy term. From small-

pox, plague, cholera, malaria, etc. in the early days of

human civilization, to the Ebola hemorrhagic fever

(EHF) and the Acquired Immune Deficiency Syndrome

(AIDS) in the 1970s and 1980s, all of them have caused

a large number of deaths, disabilities and economic

losses [1, 2]. It can be said that the history of human

development is a history of humans fighting infectious

diseases [3]. Since the twenty-first century, viral respira-

tory infections, especially that coronavirus-associated

pneumonia, have become a severe public health crisis

[4]. The Severe Acute Respiratory Syndrome in 2002 [5, 6]

and Middle East Respiratory Syndrome in 2012 are typical

of these diseases [7, 8]. More recently, the COVID-19

proved that the occurrence of a new and dangerous infec-

tious disease could monopolize governmental activities,

cause fear and hysteria, and get a significant impact on the

free life of people throughout the world [9].

COVID-19 has attracted attention due to the report of

unexplained pneumonia in Wuhan, China [10, 11]. It

was caused by SRAS-COV-2 infection [12], and subse-

quently spread to many other parts of the world through

global travel. At present, COVID-19 outbreaks have

occurred in South Korea, Italy, the United States of

America, and other countries, and has been defined as a

global pandemic [13]. According to incomplete statistics,

as of April 30, approximately 3.2 million cases have been

confirmed worldwide, with approximately 224,000 deaths.

The number of global confirmed cases and deaths contin-

ued to increase. The intermittent emergence and outbreaks

of coronaviruses remind us that they pose a severe threat to

global health [14].

This epidemic reminds us of the public health crisis

that was also caused by coronavirus seventeen years ago.

At present, there was clear evidence that the characteris-

tics of this outbreak are similar to those of the 2002

SRAS epidemic [15]. According to the previous research

reports, the age, underlying health conditions, and envir-

onment were the significant factors determining the

spread speed and fatality rate of SARS [5, 16]. Therefore,

we can guess that the above factors may be closely re-

lated to COVID-19. It is gratifying that recently some

prospective studies [17–19] provide an association be-

tween factors (age, basic health situation, and virus

transmission speed) and mortality of COVID-19. How-

ever, to our best knowledge, some relationship between

environmental factors, including meteorological factors

and the death risk of COVID-19 patients remain un-

known, might need further investigation. Recently, a

new study described the relationship between meteoro-

logical factors and the death toll of COVID-19. Still, the

study hypothesized that there was a non-linear relation-

ship between ambient temperature and the death toll of

COVID-19, and analyzed the relationship between linear

lag of temperature and the death toll of COVID-19 [20].

However, this linear delayed effect hypothesis seems to

contradict some of the previous general research results.

Because a lot of previous studies have confirmed that

there was a non-linear delayed effect between

temperature and death [21–26]. Furthermore, there was

also methodological evidence that it is dangerous and

unwise to use the generalized additive model (GAM),

with the delayed structure of linear effects, to analyze

the relationship while ignoring the non-linear delayed

effects. Because this method ignores the non-linear delay

effect, thus concealing the real relationship between

environmental factors and death [27]. In other words, if

the linear correlation assumption is not met, the linear

model may be not reliable to estimate the genuine

relationship between temperature and death.

In fact, relevant studies have adopted a more appropri-

ate model — distributed lag non-linear model (DLNM)

to deal with this situation [28]. Therefore, this model

was worth recommended to analyze the non-linear

delayed effects between COVID-19 mortality and

temperature. Besides, there has been robust evidence

that the impact of extreme temperatures needs to be

taken into account when focusing on the relationship

between average temperature and death, as they may

cause unexpected influence on death [29, 30]. Therefore,

analyzing the temperature specific effects between

extreme temperatures and COVID-19 mortality was

undoubtedly a reasonable choice.

Therefore, a time-series study based on the distributed

lag non-linear model was conducted to examine the in-

fluence of ambient temperature on mortality outcomes

in COVID-19 patients, which can capture the delayed

effects of temperature and identify extremely temperature-

mortality risks. Additionally, the overall cumulative

exposure-response between ambient temperature and

COVID-19 death with delayed effects were also analyzed.

Methods

Study area

Figure 1 shows the geographic position of Wuhan city in

the east of Hubei Province, which is located where the

Yangtze River joins its largest tributary, the Han River.

Wuhan covers an area of about 8569.15 km2, and the

registered population was 11.212 million in 2019.

Wuhan is located between latitude 29°58′–31°22′N and

longitude 113°41′–115°05′E, which has a subtropical

monsoon humid climate with an annual average

temperature of 15.8–17.5 °C and the average yearly rain-

fall of 1150–1450mm. The city has four distinct seasons,

with cold, wet winter and hot, humid summer. Also,

Wuhan is an important science and education base and

transportation hub (http://www.wh.gov.cn/zjwh/).
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Data collection

We collected the data on the number of daily new

COVID-19 deaths, ambient temperature, humidity, air

quality index (AQI), migration scale index (MSI) and

urban travel index (UTI) from January 10 to March 31,

2020, in Wuhan.

The urban MSI can show the status of population mo-

bility and reflect the scale of the population migration

from a city in a unit time [31]. UTI is an another travelling

index, which can be used to measure the population

density of inner-city travel. The data of MSI and UTI were

obtained from the Baidu map migration platform in the

people’s Republic of China (https://qianxi.baidu.com/).

The daily COVID-19 death toll was obtained from the

websites of the National Health Commission of the

People’s Republic of China. The daily average temperature

and humidity data were obtained from the Meteorological

science data sharing service of the People’s Republic of

China (http://data.cma.cn/site/index.html) and AQI data

from air quality monitoring analysis online platform of the

People’s Republic of China (https://www.aqistudy.cn/

historydata/).

Statistical analysis

The semi-parametric generalized additive model was

used to assess the relationship between environmental

epidemiology exposure and death [32–34]. The influence

of the latency period of COVID-19 and time of admis-

sion were also considered and put into the model. The

average incubation period is 5.2 days (range: 2–7 days)

[10, 35], and the median time of admission was about

10 days [36]. Since the coincidence of the delayed effect

of latency period and time of admission in the relationship

between temperature and death [37], the temperature

delayed period of this study was set to 15 days.

Relative to the total population, daily COVID-19

deaths were defined as a small probability event, which

follows the Poisson distribution [38]. The influence of

air temperature on health usually has a delayed effect,

and the relationship is not linear [26, 39, 40]. In this

study, the Poisson function was used as the connection,

and the generalized additive model (GAM) was used as

the core model. The distributed lag non-linear model

(DLNM) was used to analyze the time-series data to

estimate the influence of temperature on the death of

COVID-19 and the delayed effect. The temperature was

included in the form of a cross-basis to estimate its

impact on COVID-19 in both variable levels and time

lag dimensions. Meanwhile, in order to balance the

influence of other factors, relative humidity and AQI

were incorporated into the model with the natural cubic

spline function, and the model was finally established as

follows:

Log E yt
� �� �

¼ αþ βTemperaturet;l
þNS Humidityt; df

� �

þNS AQIt; dfð Þ
þNS time; dfð Þ þNS MSIt; dfð Þ
þNS UTIt; dfð Þ

yt is the number of death cases of COVID-19 on day t,

which follows the Poisson distribution of E (yt). α is the

constant term of the model, Temperaturet,l is the cross

Fig. 1 Location of Wuhan in Hubei Province, China. The green area indicates the location of Wuhan City, which situated in the east of Hubei

Province, People’s Republic of China. The map depicted in Fig. 1 was built in the map software packages in R 3.5.3, which was open access.

Additionally, maptools, and mapproj software packages in R 3.5.3 were also used to draw Fig. 1
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basis of temperature and delay time, β is its coefficient.

NS is the natural spline function. Adjust variables such

as relative humidity and AQI. Humilityt is day t relative

humidity. AQIt is day t air quality index. MSIt is day t

migration scale index and UTIt is day t urban travel

index. l and df are the delay days and degrees of free-

dom, respectively, and time is the date of day t.

Sensitivity analyzes were performed to assess the

robustness of the model. First, we assessed cumulative

exposure using the mean temperatures of successive 0–

14, 0–15, and 0–16 days, respectively. Secondly, we apply

different degrees of freedom (6–8) to time to adjust the

unmeasured time-varying confounding. Finally, the

robustness of the results was evaluated by removing the

daily average AQI or daily average relative humidity,

respectively.

The tests were two-sided, and values of p < 0.05 were

considered statistically significant. All statistical analysis

and graphic plotting were conducted with the free soft-

ware environment—R (version 3.5.3, R Development

Core Team, March 2020). Specifically, we used the soft-

ware packages ‘mgcv’ and ‘dlnm’ to examine the effects

of non-linear delayed effects. Besides, the ‘dlnm’ package

was also used to construct a cross-basic matrix for mor-

tality and temperature. All the software packages used

above are publicly available on the R Comprehensive

Archive Network (CRAN) (https://cran.r-project.org/).

Results

Descriptive analysis

By March 31, 2020, a total of 50,007 cases and 2553

deaths were reported in Wuhan, accounting for 73.75%

of the cumulative COVID-19 deaths in China. The case

fatality rate was 5.10%. Table 1 summarized the charac-

teristics of the number of deaths, AQI, and relative

humidity of COVID-19 in Wuhan from January 10 to

March 31, 2020. The maximum number of deaths on

COVID-19 was 216, and the minimum was 0. The daily

average temperature was 9.0 °C, and the maximum

temperature was 20.6 °C. Figure 2 shows the daily distribu-

tion of the number of deaths and the mean temperature

on COVID-19. The results showed that the temperature

was gradually increasing, and the death number of

COVID-19 gradually increased and then decreased in

Wuhan.

Association of temperature lag and COVID-19 mortality

Using the Poisson generalized additive model for time

series analysis, the correlation between the daily log of

COVID-19 mortality and temperature and 15 lag days

was visualized (Fig. 3a). From the figure, the correlation

is U-shaped, and the delayed effect is non-linear.

Besides, compared with the average temperature, when

the temperature is lower, COVID-19 mortality is higher.

As the ambient temperature increases, the Log (mortal-

ity) of COVID-19 patients due to temperature initially

decreases rapidly and then slowly increases.

Figure 3b displays the overall correlation between

cumulative relative risk of COVID-19 death and

temperature, which is L-shaped. A significant negative

association was shown between the temperature and the

daily risk of COVID-19 death, in other words, a 1.0 °C

increase in temperature was associated with a 12.3%

(95% CI [3.4, 20.4%]) reduction in daily cumulative rela-

tive risk of COVID-19 death. When the temperature was

lower than 20.0 °C, the relative risk of death is

approaching 0 while it was close to 20.0 °C. Overall, the

cumulative relative death risk of COVID-19 decreased

with increasing temperature.

Figure 4 shows the general pattern of the relative risk

death as a function of temperature and lag, by showing a

three-dimensional plots of relative death risk along with

temperature and lag 15 days. Overall, the effect of

temperature on the daily mortality risk of COVID-19

was non-linear, with higher temperatures leading to

lower relative risk. Figure 5 shows the relative mortality

for the lag-specific effects (0, 5, 10, 15 days) and

temperatures-specific effects (− 5.0, 2.0, 10.0, 20.0 °C).

The death risk of COVID-19 at low temperature pre-

sented acute and short-term effects, and it showed a

trend of first strong and then weak, with the greatest risk

occurring in 5–7 days of exposure. The delayed effects of

the high temperature appeared quickly, then decrease

rapidly, and increased sharply 15 days of exposure, the

Table 1 Statistics of daily death cases and mean temperature in Wuhan

Variable N0 (day) Mean SD Min P (25) Median P (75) Max

COVID-19 Mortality Counts 82 32.4 38.8 0 5.0 19.0 49.7 216.0

Temperature (°C) 82 9.0 5.1 1.2 4.8 8.4 12.3 20.6

Relative humility (%) 82 81.2 7.9 59.0 76.7 82.0 87.0 97.0

AQI 82 63.6 26.9 20.0 41.5 60.0 77.2 142.0

MSI 82 1.1 1.4 0.3 0.3 0.4 1.25 4.8

UTI 82 1.4 1.4 0.6 5.2 0.7 0.6 1.3

Note: N0 the number of days, SD standard deviation, Min the minimum value, Max the maximum value, AQI air quality index, MSI migration scale index, UTI urban

travel index, P (25) upper quartile, P (75) lower quartile
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mortality risk of COVID-19 presented as acute and

longer-term effects. Also, low temperatures had a

shorter impact on the mortality risk of COVID-19 than

high temperatures.

Poisson generalized additive model

Temperature, humidity, AQI, MSI and UTI were incor-

porated into the final model. Especially for temperature,

the distributed lag nonlinear structure was considered,

the then the nonlinear lag period was set as 15 days,

along with the degree of freedom of the long-term trend

of time that was set as 7. After adjusting for humidity,

AQI, MSI, and UTI, the relative risk of COVID-19 death

decreased by 5.4% (95%CI [3.4, 6.9%]) for every 1 °C rise

in average temperature (Table 2). Humidity, AQI, and

MSI had no significant effect on COVID-19 deaths. In

addition, for per 1-unit increase in UTI, the relative risk

of COVID-19 death nearly doubled: 1.959 (95%CI

[1.009, 3.804]).

Sensitivity analyses

Changing the time degree of freedom (6–8) could con-

trol long-term trends and seasonality. Some influencing

factors were eliminated to obtain the adjustment model.

In this study, relative humidity and AQI were eliminated,

respectively. Table 3 shows that under the conditions of

temperature lag0–14 days, lag0–15 days, and lag0–16 days,

the average cumulative death effects (RR [95% CI]) of

Fig. 2 The daily distribution of daily death count and mean temperature in Wuhan from 1 January 2020 to 31 March 2020

Fig. 3 Temperature-mortality relationships (a) and death cumulative RR for daily mean temperature at lag0–15 days (b)
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COVID-19 did not change significantly. Under the condi-

tions of temperature lag14 days, lag15 days, and lag16

days, the COVID-19 death effects (RR [95% CI]) also did

not change significantly. In conclusion, the model applied

in this study were robust.

Discussion

There is no doubt that the outbreak of COVID-19 has

caused enormous economic loss and health burden

around the world. Under such circumstances, independ-

ent and robust scientific evidence will undoubtedly

provide a powerful weapon to deal with this crisis. We

believe that it is significant to clarify the relationship

between ambient temperature and mortality of the

COVID-19, not only in Wuhan but also in other epi-

demic areas in the world. In this study, we used a rigor-

ous and scientific mathematical model to reveal the

unique relationship between temperature and death

caused by COVID-19, even if the association between

death and temperature in non-communicable diseases

has been established [40]. We hope that the research

results can provide some methodological guidance for

the response to this crisis.

DLNM model was verified to be a useful tool in this

study to assess the non-linear relationship between

ambient temperature and COVID-19 mortality on a

daily basis, including properly evaluating the non-linear

associations and cumulative death relative risks related

to temperatures for lag days. The model figures out the

non-linear and negative correlation between ambient

temperature and COVID-19 mortality [26, 40, 41]. The

increase in temperature could reduce the death risk of

patients, and the relationship between temperature and

death effect was U-shaped.

Our study found that the relationship between death

risk of COVID-19 and low temperature was different

from the high temperature. The low temperature effect

on the death risk of COVID-19 is first enhanced and

then weakened. With increasing of outdoor temperature,

the death risk of COVID-19 is decreasing. The increase

in temperature may reduce the lethal intensity of

COVID-19, which is related to the increase of virus in-

activation caused by high temperature [36, 42]. When

the ambient temperature rose to around 10.0 °C and

continued to rise, the temperature and the death risk of

COVID-19 gradually decreased and then increased,

which is consistent with the findings in non-

communicable diseases [39]. When the temperature is

getting higher and higher beyond the inflection, the

death risk of combined diseases such as AIDS, diabetes

and hypertension may also increase [23], which potentially

increases the death risk of patients with COVID-19.

Besides, the low temperature effects are acute and short-

term [43], with the most considerable risk occurring in 5–

7 days of exposure. High temperature mainly reflects the

acute effect, and the maximum effect occurs on the

Fig. 4 Relative risks of mortality by daily mean temperature along 15 lag days
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day of temperature exposure, which is similar to some

studies [44, 45].

The results of the study show that low temperature

has a more significant impact on the death risk of

COVID-19 than high temperature is consistent with a

meta-analysis [46]. At low temperatures, deaths from re-

spiratory illnesses are greatly affected. Exposure to

low temperature in humans can cause cardiovascular

stress, which is affected by factors such as peripheral

blood vessel constriction, plasma cholesterol, plasma

fibrinogen, red blood cell count, blood viscosity, and

inflammatory response [47, 48]. These factors

Fig. 5 The relative risk of mortality by daily mean temperature at a specific lag day (0, 5, 10, 15 days) and temperatures (− 5.0, 2.0, 10.0, 25.0 °C)

Table 2 The effect of a one-unit increase in average

temperature, relative humility, AQI, MSI and UTI on daily death

cases of COVID-19

Factors Relative Risk 95% CI p value

Temperature (°C) 0.948 [0.931,0.966] < 0.001

Relative humility (%) 0.994 [0.987,1.000] 0.054

AQI 0.999 [0.996,1.002] 0.534

MSI 0.642 [0.362,1.137] 0.120

UTI 1.959 [1.009,3.804] 0.042

Note: AQI air quality index, MSI migration scale index, UTI urban travel
index, CI confidence interval
The temperature delayed period of the final model was set to 15 days
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together lead to respiratory distress, thus contribute

to the deterioration of COVID-19 patients. At high

temperatures, the number of patients dying from

chronic non-communicable diseases increased, which

forms a potential competitive relationship, leading to

a gentle change in the number of COVID-19 deaths

directly attributable to temperature [40, 49].

Overall, the temperature was negatively correlated

with the cumulative effect of COVID-19 deaths [24]. At

low temperatures, the cumulative death risk of COVID-

19 was higher. With the increase of daily average

temperature, the delayed effects of temperature exposure

in patients with COVID-19 decrease rapidly and show

protective effects. This data indicates that the risk of

death of COVID-19 patients gradually decreases due to

the increase in ambient temperature. With the advent of

summer, the COVID-19 patient population may benefit

from the high temperature effect.

Sensitivity analysis showed that the results of this

study were robust. Firstly, the distributed lag non-linear

method can flexibly dig out the possible relationship

between temperature changes and daily mortality and

cumulative delayed effects. Although the model is

involved with many parameters, our sensitivity analysis

shows that the results are robust [49]. Secondly, during

the analysis, we adjusted a group of potential confound-

ing factors, including daily average temperature, relative

humidity and AQI, and compared the model results after

excluding relative humidity or AQI. Generally, our

results were relatively robust.

Some limitations should be considered in interpreting

our findings: Firstly, this is an ecologically designed

study, and the use of environmental monitoring data

may not accurately reflect actual personal exposure.

Secondly, COVID-19 patients basically receive isolation

treatment in the designated hospital, and the patients

live in the closed space, so the relationship between the

ambient temperature and death may be different from

that of indoor temperature. Third, this study did not

adjust the social and demographic factors such as age

and economy, which may affect the population structure

and mortality [9]. Fourth, individual basic disease

information such as diabetes, hypertension and AIDS

are not available on the websites of the National Health

Commission of the People’s Republic of China, which

will cause bias to our research results. Finally, in the

process of treating and curing COVID-19 patients, clin-

ical diagnosis and treatment guideline is continuously

updated, and the impact from this inconstancy was not

included in this study.

Conclusion

Despite these limitations, this study found out the non-

linear Negative correlation between ambient temperature

and death in COVID-19 patients. Besides, it was made

clear that low temperature can potentially increase the risk

of death, while high temperature manifests reversely.

However, high temperatures may increase the risk of

death from other complications, which are worthy of fur-

ther study. Altogether, this study may provide a beneficial

reference for the setting of COVID-19 clinical isolation

and treatment environment.
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temperature lag 14 days
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