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Abstract 

Background/Introduction: Diabetes and cardiovascular disease develop in concert with metabolic abnormali-
ties mirroring and causing changes in the vasculature, particularly the microcirculation. The microcirculation can be 
affected in different parts of the body of which the skin is the most easily accessible tissue.

Purpose: The association between diabetes and dermal microvascular dysfunction has been investigated in obser-
vational studies. However, the strength of the association is unknown. Therefore we conducted a systematic review 
with meta-analysis on the association between diabetes and dermal microvascular dysfunction as assessed by laser 
Doppler/laser speckle contrast imaging with local thermal hyperaemia as non-invasive indicator of microvascular 
functionality.

Methods: PubMed and Ovid were  systematically searched for eligible studies through March 2015. During the first 
selection, studies were included if they were performed in humans and were related to diabetes or glucose metabo-
lism disorders and to dermal microcirculation. During the second step we selected studies based on the measure-
ment technique, measurement location (arm or leg) and the inclusion of a healthy control group. A random effects 
model was used with the standardised mean difference as outcome measure. Calculations and imputation of data 
were done according to the Cochrane Handbook.

Results: Of the 1445 studies found in the first search, thirteen cross-sectional studies were included in the meta-anal-
ysis, comprising a total of 857 subjects. Resting blood flow was similar between healthy control subjects and diabetes 
patients. In contrast, the microvascular response to local skin heating was reduced in diabetic patients compared to 
healthy control subjects [pooled effect of −0.78 standardised mean difference (95% CI −1.06, −0.51)]. This effect is 
considered large according to Cohen’s effect size definition. The variability in effect size was high (heterogeneity 69%, 
p < 0.0001). However, subgroup analysis revealed no difference between the type and duration of diabetes and other 
health related factors, indicating that diabetes per se causes the microvascular dysfunction.

Conclusion: Our meta-analysis shows that diabetes is associated with a large reduction of dermal microvascular 
function in diabetic patients. The local thermal hyperaemia methodology may become a valuable non-invasive tool 
for diagnosis and assessing progress of diabetes-related microvascular complications, but standardisation of the tech-
nique and quality of study conduct is urgently required.
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Background
Diabetes contributes to and accelerates cardiovascular 

disease [1, 2] and macrovascular complications, such 

as atherosclerosis [3], coronary artery disease [4, 5] and 

peripheral artery disease [6]. However, the most fre-

quently diagnosed complications in diabetic patients are 

related to the microcirculation, including foot ulcers [7], 

retinopathy [8], neuropathy [9], diabetic dermopathy 

[10] and diminished wound healing [11]. �ese diabetes-

related microvascular dysfunctions can eventually lead 

to more severe complications, illustrating the necessity 

to detect microvascular dysfunction in an early stage and 

identify diabetic patients at risk.

Diabetes may affect the microcirculation in different 

parts of the body from kidney to eyes and skin, but its 

function is most easily accessible in the latter. Moreover, 

skin microvascular function may already be affected in an 

early stage of the disease as has been assessed by invasive 

methodology [12].

Microvascular dysfunction used to be determined 

in feet and toes, as complications are first seen in these 

body parts. �e microcirculation in feet and toes (simi-

lar to hands and fingers) can, however, fluctuate substan-

tially due to the presence of arteriovenous anastomoses 

[13, 14]. Tissue perfusion at these skin sites may therefore 

not be the most sensitive indicators of the severity and 

progress of the disease. �e forearm and lower leg show a 

more stable microcirculation and measurements are less 

invasive. �erefore, the functionality of dermal microcir-

culation is nowadays more often measured in the fore-

arm and lower leg.

�e most commonly used methods to measure micro-

circulation of the skin are laser Doppler flowmetry (LDF) 

[15] and laser speckle contrast imaging (LSCI) [16, 17]. 

�ese techniques measure the microvascular perfusion, 

are non-invasive, and provide a continuous measurement 

[17–20]. Surprisingly, resting dermal microvascular per-

fusion is apparently not affected in Diabetes, irrespective 

of the progress of the disease [21, 22]. �e functionality 

of the microvessels may be a more sensitive indicator of 

complications, and different stimuli are used to deter-

mine microvascular response/reactivity [23]. Frequently 

iontophoresis is used in conjunction with LDF or LSCI. 

Although iontophoresis is generally considered as being 

safe, mild local allergic reactions and skin irritations have 

been observed in some subjects [24]. Another limitation 

of iontophoresis is that the drug delivery is influenced 

by skin resistance and this varies considerably between 

subjects and across different skin areas due to low-resist-

ance pathways in the skin such as sweat ducts or hair fol-

licles [24]. In addition, pH, ion competition in the buffer 

solution and biological factors such as age, gender, skin 

hydration and temperature can affect the drug delivery 

by iontophoresis and thereby contribute to the variation 

of the measured response. Moreover the iontophore-

sis procedure is rather time consuming and needs to be 

repeated at regular intervals [25]. An alternative is local 

skin heating, which is a stimulus that can be applied to 

induce local thermal hyperaemia (LTH) due to vasodila-

tion. As LTH is non-invasive, has a good reproducibility 

and allows to asses different mechanisms causing vaso-

dilation, LTH is one of the most commonly used patient-

friendly reactivity tests [20, 23, 26]. Already in the early 

90s, changes in dermal blood flow caused by diabetes 

have been measured with LDF in response to local heat-

ing [27]. In the “Methods” section both techniques are 

described in more details.

�e association between diabetes mellitus and micro-

vascular dysfunction as measured by LDF/LSCI with 

LTH has been investigated in observational studies. 

However, the strength of the association is unknown. 

�erefore the aim of this study was to review the strength 

of the association between diabetes and dermal micro-

vascular dysfunction assessed by LDF/LSCI with LTH. 

Furthermore the difference in dermal microvascular 

function between T1DM patients and T2DM patients 

was assessed.

Methods
Selected measurement technique for dermal blood �ow

LDF and LSCI are based on the same principle: laser light 

is directed towards target tissue, usually the skin. Light 

is scattered back on red blood cells and is then collected 

and analysed by optical probes [18]. �e outcome is pre-

sented as blood flow or flux in arbitrary perfusion units, 

which are proportional to the microvascular perfusion 

but do not represent actual perfusion values. Neverthe-

less, these methods have a high sensitivity for the detec-

tion of relative changes in blood flow, are well validated, 

and are particularly used to determine change in perfu-

sion induced by a stimulus at different sites of the skin 

[16–18, 20, 28, 29]. As shortly described in the intro-

duction, LTH is caused by vasodilation due to local skin 

heating. �e rise in local skin perfusion due to the vaso-

dilation is directly proportional to the skin temperature 

and reaches its maximum when a local skin temperature 

Keywords: Skin perfusion, Microcirculation, Vasodilation, Morphology, Laser Doppler flowmetry, Laser speckle 
contrast imaging
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of 44 °C is kept for at least 20 min and up to 50 min [23, 

30]. �e LTH response shows two perfusion peaks which 

are mediated by independent mechanisms: (1) the initial 

peak during the first 10 min depends predominantly on 

local sensory nerves and is mediated by an axon reflex 

relying on calcitonin-gene-related peptide and substance 

P, (2) the plateau reached after 20–30  min of heating is 

primarily mediated by nitric oxide [20, 30–32].

Iontophoresis is a technique in which vasoactive sub-

stances are transdermally applied. �e underlying prin-

ciple is the transfer of charged vasoactive drugs using a 

low-intensity electric current. Several drugs can be used 

for iontophoresis such as bradykinin, methacholine, and 

substance P. However, most frequently used drugs are 

acetylcholine (ACh) and sodium nitroprusside (SNP), 

which generate an endothelium-dependent and -inde-

pendent vasodilatation, respectively [23].

In this review, we have focussed on the LTH-skin 

response in diabetic patients, representing a relatively 

popular technique, and offering a patient-friendly alter-

native to most other procedures to assess microvascular 

dysfunction. Iontophoresis will be discussed to put the 

result of the meta-analysis into perspective.

Search strategy

�e search strategy was developed and designed by PPD, 

DF and RD. A systematic search of the databases PubMed 

and Ovid was conducted including studies up to the 12th 

March 2015. All possible terms for skin, microcirculation, 

and glucose metabolism disorders were used as search 

terms in order to identify all possibly relevant studies. 

Search terms that were related to the exposure were: skin, 

dermal, dermis, cutaneous, nailfold, microcirc*, endothel*, 

microvasc*, microvascular function, iontophoresis, ace-

tylcholine, Ach, sodium nitroprusside, SNP, L-NMMA, 

local thermal hyper*, heat*, blood flow, perfusion, capil-

lary, vasodilation, laser Doppler, videocapillaroscopy, laser 

speckle, and Doppler. Search terms in relation to diabetes 

mellitus were: diabetes, diabetic, DM, insulin and glucose, 

insulin resistan*, pre-diabet*, HOMA, HbA1c, insulin sen-

sitiv*, hyperglyc*, OGTT, oral glucose tolerance test, glu-

cose challenge, and glucose load. Additionally, the search 

string contained the terms: human, adults, adolescents, 

subjects, participants, and volunteers. �e search was fil-

tered on human studies, articles written in English, and 

search terms mentioned in the title or abstract.

Study selection

A two-step approach was followed to identify eligible 

studies. Both observational- and experimental-studies 

were deemed eligible, whereas only baseline results were 

used from experimental studies if included. �e flowchart 

of the selection procedure is depicted in Fig. 1. First, two 

reviewers (PPD and RD) independently screened title 

and abstract of all retrieved studies (n =  1445) to iden-

tify potentially eligible studies. In a second step, full-texts 

of the studies were scrutinized by PPD and DF indepen-

dently to judge eligibility based on the following selection 

criteria: (1) Laser Doppler flowmeter or LSCI were used 

to measure microcirculation of the skin, (2) LTH was 

used as stimulus, (3) measurements were done on arm or 

leg (not hands, feet, fingers, or toes), (4) studies had both 

a diabetes group and a (healthy) matched control group, 

(5) studies were not conducted in patients with any rel-

evant concomitant disease (e.g. no heart failure, dialysis 

patients). When inconclusive, eligibility was discussed 

(PPD, RD and DF) until consensus was reached. When 

relevant results (e.g. mean values, duration of heating) 

were missing or incomplete, the authors of these stud-

ies were contacted to obtain the missing information. If 

authors did not respond, the study was excluded from the 

meta-analysis.

Data extraction and meta-analysis

Baseline characteristics and population details were 

extracted from all included studies: type of diabetes, 

methodology to determine diabetes, population size, 

gender distribution in both diabetes—and control group, 

age distribution, and BMI. Secondly, information regard-

ing methodology was extracted to identify differences 

in studies: type of study, specific type of laser Doppler 

used, duration and temperature of heat stimulus, and 

location(s) of measurement.

Results were presented in different outcome units 

by the included studies. Blood flow was presented in 

arbitrary perfusion units (PU), flux, milliliter  ×  min-

ute−1 × 100 g of tissue−1, and Volts (1PU is a pre-defined 

electrical signal in mV). As the blood flow was presented 

in different units, the results were calculated into stand-

ardised mean differences [33]:

Mean values and standard deviations of basal flow 

and peak flow were used to calculate the standardised 

mean difference for the response to LTH as measured 

with laser Doppler/LSCI between diabetic patients and 

healthy control subjects [34]. �e SMD is an outcome 

measure that is difficult to interpret as it does not give an 

absolute difference or ratio. Cohen designed an effect size 

index to interpret the importance of the found effect [35]. 

According to Cohen, an effect size of 0.2 SMD is consid-

ered small, 0.5 SMD medium, and 0.8 SMD large.

�e meta-analysis was performed in Review Manager 

5.3. �e I2 was determined to check for heterogeneity 

Standardised mean difference

=

Increase in diabetes group − Increase in control group

Pooled standard deviation
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between studies [36]. If the I2 was 50% or higher, it was 

assumed there was substantial heterogeneity [37]. If 

heterogeneity was assumed, subgroup analysis was per-

formed. A random effects model was used in case hetero-

geneity was not explained by the subgroup analysis.

When the standard deviations of the absolute changes 

from baseline were not available from individual stud-

ies, the missing standard deviations were imputed as 

described in detail in the Cochrane Handbook [38–40]. 

�e correlation coefficients were calculated from an 

unpublished validation study performed by Unilever 

R&D Vlaardingen presenting standard deviations for 

basal flow (77.6 AU), peak flow (peak 1: 210.1 AU; pla-

teau: 238.4 AU), and change (peak 1 vs baseline: 148.2 

AU; plateau vs baseline: 201.0 AU). By using these 

imputed correlation coefficients, the standard deviations 

of the change from basal flow to peak flow were calcu-

lated for the studies missing the standard deviations.

Several studies contained multiple diabetes groups, e.g. 

a non-neuropathic diabetes group and a neuropathic dia-

betes group. �ese groups were analysed as if they were 

separate studies. �e shared control group, the healthy 

control subjects, was evenly divided among the two dia-

betes groups and used as two separate control groups as 

described in the Cochrane Handbook [38]. �e outcome 

is continuous, therefore the mean change was the same in 

both control groups.

A priori variables were determined that could have 

an effect on the outcome. �ese variables were used to 

define subgroup analyses. Regarding participant char-

acteristics age (young to old), type of diabetes (type 1 

vs type 2), BMI (normal weight to obesity), duration of 

diabetes (short duration to long duration), and glycated 

haemoglobin (low HbA1c value to high HbA1c value) were 

determined as possible influential variables. Regarding 

methodology the duration of the heat stimulus (<20 min 

vs  >20  min) and location of measurement (forearm 

vs tibia vs quadriceps) were deemed to be of possible 

influence.

Eligible studies were also evaluated on quality of con-

duct and/or reporting. For the quality assessment we 

used a list of quality criteria that was developed by 

Downs and Black to assess the quality of observational 

studies [41]. �e criteria were adapted for use for our 

analysis, involving only studies without medical inter-

vention (Additional file  1). �e highest possible quality 

score was 17 points. �e quality scores are presented in 

Table 1.

Results
Meta-analysis

Selection process

�e systematic search yielded a total of 1445 studies. 

During the first selection, studies were excluded that 

did not meet the criteria (Fig.  1), resulting in the selec-

tion of 314 studies. After the second selection procedure, 

22 studies were selected as eligible for inclusion in the 

meta-analysis. �e reference lists of these 22 studies were 

Fig. 1 Flowchart of study selection
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searched for eligible studies, which yielded one addi-

tional study. Finally, a number of the eligible studies were 

excluded from the meta-analysis due to crucial missing 

results or incorrect methods. Another reason of exclu-

sion was that LTH was not the only stimulus and that 

therefore the effects of LTH could not be separated from 

other stimuli. �is resulted in the inclusion of 13 studies 

in the meta-analysis.

Overview of included studies

All 13 included studies were analytical cross-sectional 

studies, investigating the association between a risk fac-

tor and outcome at a single point in time. �ese studies 

contained a total of 857 participants with the number 

of participants in each study ranging from 20 to 150 

(Table 1).

All studies used a laser Doppler flowmeter. Basal flow 

was standardised to a normal temperature. �ese tem-

peratures ranged from 30 to 35  °C. �e temperature to 

obtain maximum vasodilation was 44 °C in most studies. 

Only two studies used a lower temperature, i.e. 43 °C [42] 

and 42  °C [43]. �e included studies differed on several 

methodological characteristics. Duration of the heat-

ing to obtain maximum vasodilation: in five studies the 

skin was heated for less than 20  min [42, 44–47], while 

in eight studies heating was applied for 20 min or more 

[43, 48–54]. �ere were three locations of measurements: 

eight studies measured on the forearm [42, 43, 46–48, 

52–54], three on the pretibial surface of the leg [49–51], 

and two on the quadriceps muscle [44, 45].

Pooled overall risk estimate

Baseline dermal blood flow did not differ between con-

trol and diabetes group (p  =  0.51). �e pooled overall 

estimate showed a lower microvascular response to local 

thermal stimulus of −0.78 SMD (95% CI −1.06, −0.51) 

in diabetic patients compared to control subjects (Fig. 2). 

�e mean estimates of all studies showed a lower SMD 

in the diabetic patients compared to the control group of 

which eleven subgroups out of ten studies reached signif-

icance [43–45, 47, 48, 50–54].

Heterogeneity analysis

A heterogeneity of 69% (p  <  0.0001) was found in the 

meta-analysis. �erefore heterogeneity was assumed and 

subgroup analyses were performed. However, the latter 

could not explain the heterogeneity and a random effects 

model was used.

Fig. 2 Forest plot of pooled overall effect of microvascular function in diabetic patients versus control subjects based on a random effects model. 
Studies containing subgroups (for instance Arora 1998a and Arora 1998b) were studies presenting two different diabetes groups. The a-subgroups 
contained diabetic patients with additional complications and the b-subgroups diabetic patients without complications
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Subgroup analyses

A priori, several variables were selected to be of possible 

influence on the effect. �ere were no differences between 

studies conducted on T1DM, T2DM, or both types of 

diabetes. �e studies that did not specify the type of dia-

betes [44, 45] were significantly different, with an SMD 

of −2.52 (95% CI −3.40, −1.64, I2 0%) (Fig. 3). However, 

this difference may also be explained by the unique loca-

tion of the measurement [44, 45]. Only in these studies 

blood flow was determined on the quadriceps and showed 

a significant different effect size compared to studies 

conducted on the forearm (−0.71 SMD, 95% CI −1.01, 

−0.41) or pretibial surface (−0.58 SMD, 95% CI −0.99, 

−0.16) (Fig.  4). Subgroup analyses for the variables age, 

BMI, duration of diabetes, HbA1c, and duration of heating 

showed no significant effects (data not shown).

Quality of conduct of the eligible studies was moderate 

(10 studies scored 6–11 out of 17; Table 1).

Evidence from systematic literature review

Iontophoresis

�e first selection of studies (n  =  314) was checked 

for studies eligible for a systematic review of the 

microvascular reactivity after iontophoresis with ACh 

and SNP. Based on the criteria mentioned in the “Meth-

ods” section  22 studies were suitable for inclusion. 6 of 

the 22 studies did not make a distinction in the types of 

diabetes [54–59], 6 were conducted in T1DM [52, 53, 

60–63] and 11 in T2DM patients [12, 43, 63–70].

Several studies not differentiating between types of dia-

betes showed a diminished response to ACh [54, 55, 57, 

59] and SNP [54, 55, 57] iontophoresis in diabetic patients. 

However, the differences seem to be more marked and 

more significant after ACh iontophoresis than after SNP 

iontophoresis [55, 57]. Studies comparing T1DM patients 

with healthy controls show similar results. �e reduction 

in blood flow due to diabetes seems to be clearer after ion-

tophoresis with ACh than after iontophoresis with SNP 

[52, 53, 61]. Next to a reduction in peak vasodilation, Katz 

et al. [60] showed that time to peak vasodilation after ACh 

iontophoresis was doubled in diabetic subjects compared 

to controls, while there was no difference after SNP ionto-

phoresis. �ree studies reported a difference in response 

to both ACh and SNP between patients with T2DM and 

control subjects [12, 43, 64]. �e differences were similar 

in all three studies and microvascular response was shown 

Fig. 3 Forest plot of subgroup analysis for microvascular function according to type of diabetes
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to be reduced by a third for both vasoactive substances. 

A study [63] comparing the microvascular reactivity of 

patients with T1DM, T2DM, and healthy control subjects, 

observed a reduced response to ACh in subjects with 

T2DM, but did not report a difference in response to SNP. 

In contrast, two studies reported a significant difference 

between patients with T2DM and control subjects for 

SNP iontophoresis but not for ACh iontophoresis [68, 69]. 

�e response to SNP iontophoresis was reduced by a third 

in diabetic patients compared to control subjects. �ree 

studies, however, observed no differences between T2DM 

patients and healthy control subjects [65–67]. Caballero 

et al. [12] described a reduced response, assessed as peak 

vasodilation and percentage increase over baseline, to 

ACh and SNP in patients with impaired glucose tolerance 

and relatives of diabetic patients as compared to healthy 

control subjects. Although not significant, the response 

gradually decreased from relatives of diabetic patients 

to subjects with impaired glucose tolerance to diabetic 

patients [12]. Two of three studies with diabetic patients 

with microvascular complications (albuminuria, neuropa-

thy or retinopathy) observed at least a trend towards an 

additional impairment in microvascular function as com-

pared to diabetic patients without complications [54, 69].

Discussion
�e present meta-analysis provides a number of impor-

tant observations. First, our meta-analyses shows an 

effect size of the association between diabetes mel-

litus and microvascular dysfunction as assessed by 

LTH response that can be considered to be nearly large 

according to Cohen’s effect size index [35]. Secondly, sub-

group analysis showed a difference in effect size between 

locations of measurement. �e fact that the response 

reported in studies conducted in the quadriceps muscle 

was more reduced than in the forearm or pretibial surface 

could suggest that assessment of dermal microvascular 

function at the quadriceps would be the preferred choice 

to discriminate healthy from diabetic subjects. However, 

these findings are limited by the small subgroup size for 

the quadriceps (n  =  40) and being conducted by only 

one research group [44, 45]. �e relatively small stand-

ard deviation reported by this group affects the SMD size 

effect [44, 45] and could either represent the excellence 

of measurement or a typical smaller variation specifically 

for the quadriceps as measurement site.

�irdly, no differences in effect size were found 

between T1DM and T2DM or whether both types of 

diabetes were included, which may indicate that the 

Fig. 4 Forest plot of subgroup analysis for microvascular function according to location of measurement
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microvascular function is impaired by diabetes per se 

and not by a factor common to either T1DM or T2DM. 

Patients with T1DM tend to be younger, leaner, have had 

diabetes for a longer period and a worse glycemic control 

compared to T2DM patients [71] and thus could have a 

poorer microvascular health. However, T2DM patients 

tend to be overweight and are older in age [71], char-

acteristics that could also impair the microcirculation. 

Our observation is confirmed by the fact that sensitivity 

analyses for age, BMI, duration of diabetes, and HbA1c 

revealed no explanation for the heterogeneity of the data.

Likewise, no differences were found in subgroup analysis 

for duration of heating. However, the comparison is lim-

ited since the data was not reported optimally in a num-

ber of studies. �e heating procedure should at least take 

40 min to allow detection of the nerve-axon reflex-related 

first peak within the first 10  min, followed by a nitric 

oxide-dependent plateau-phase at the end of the proce-

dure [72]. In a number of studies the plateau-phase was 

likely not reached yet. �ese issues give possible explana-

tions for the lack in differences in subgroup-analyses.

It is interesting to note that four studies included two 

different diabetes groups: a group of diabetic patients 

with additional microvascular complications such as 

dermopathy and a group of matched diabetic patients 

without these complications [47, 49, 51, 54]. Although 

not considered a priori, these studies allowed us to differ-

entiate between diabetic patients with and without addi-

tional microvascular complications. �e findings of these 

studies indicate that the diabetes group with additional 

complications had an attenuated response compared to 

the groups without these complications. Even though the 

observed difference between these groups was not sig-

nificant, the attenuated response in diabetic patients with 

additional complications may support our hypothesis 

that a longer duration of diabetes and additional compli-

cations in diabetic patients are associated with a larger 

degree of impairment of the microvascular reactivity. In 

line with our assumption, other groups reported an addi-

tional worsening of microvascular function in diabetic 

patients with microvascular complications [73–75].

As LTH causes vasodilation by different mechanisms, 

a nerve-axon reflex and a nitric oxide-mediated peak 

[72], this reactivity test was deemed to successfully assess 

which aspect is impaired in diabetes. However, due to the 

lack of guidelines on reactivity tests with a heat stimulus, 

studies differed in duration of heating. �erefore the dif-

ference between the two peaks could not be assessed and 

the underlying mechanism resulting in microvascular 

dysfunction in diabetes could not be reviewed. Overall, 

consensus on standardisation of the microvascular LTH 

response is required to qualify the method as a patient-

friendly diagnostic tool.

�e quality of study conduct was moderate. �is may 

reflect either the quality of the study design, but may also 

be affected by (poor) description and reporting of the 

study. �erefore, the quality assessment was not used for 

excluding studies. �e quality assessment has revealed 

that the conduct (or reporting thereof ) of dermal micro-

vascular function as assessed by the LTH response in 

diabetic patients requires improvement. �is conclusion 

supports the recommendation to strive for standardiza-

tion of the methodology.

Multiple studies reported a reduction in vasodilation in 

diabetic patients after iontophoresis of particularly ACh 

[52, 53, 55, 57, 61–63]. �is implies that the microvascu-

lar dysfunction in diabetic patients is essentially endothe-

lium-dependent. Also, the impairment appears to be 

more evident in type 1 diabetes than in type 2 diabetes. 

�is may be due to the longer duration of diabetes in 

type 1 diabetic patients and the worse glycaemic control, 

which may enhance the microvascular impairment, as an 

increase in HbA1c values was found to be correlated with 

a decrease in microvascular response [43, 47, 64, 76, 77]. 

�is correlation is in line with the observation by Cabal-

lero et  al. [12] that microvascular reactivity gradually 

decreased from relatives of diabetic patients to subjects 

with impaired glucose tolerance to diabetic patients. In 

addition, two studies with diabetic patients with micro-

vascular complications reported at least a trend towards 

an additional impairment in microvascular function as 

compared to diabetic patients without complications 

[54, 69]. However, those effects were not significant and 

the evidence for a stepwise impairment of microvascu-

lar function from subjects at risk for diabetes to diabetic 

patients with complications is rather limited.

Strengths and limitations
�is review has several strengths. It is the first system-

atic review on dermal microvascular dysfunction in dia-

betes and provides a clear insight in this association. 

Many studies have been conducted addressing this topic, 

but general consensus was not created yet. Furthermore, 

we used the PRISMA Statement [78] and the Cochrane 

Handbook [37] as guidance for this systematic review. 

�is ensures a clear structure of our review and objective 

methods for data-extraction and -analysis.

Nevertheless, our meta-analysis also has several limita-

tions. Importantly, we observed heterogeneity between 

studies. Meta-analyses include studies with differences 

in study design and additionally are prone to be affected 

by confounding. �e number of subjects (n  =  857) 

included was limited, whilst the variance between stud-

ies in characteristics of the participants and methodol-

ogy used may have been too large to reveal the major 

contributors to the heterogeneity. Laser Doppler and 
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LSCI in combination with local thermal hyperaemia are 

frequently used methods. Nevertheless, there are no offi-

cial guidelines available for these measurements and a 

better standardization is required [73]. Cracowski et  al. 

[20] developed ten suggestions which should be followed 

to minimize the variability of these measurements. �e 

lack of official guidelines explains why studies differed on 

methodological aspects such as location of measurement, 

duration of heating, maximum temperature or outcome 

measure. �e development and implementation of offi-

cial guidelines for laser Doppler measurements in com-

bination with LTH would improve the reproducibility of 

the measurement and the comparability of data between 

studies.

Another limitation was the difference in outcome meas-

ures between studies. Not only the unit was different, the 

absolute values of these outcome measures were also dif-

ferent in range and for this reason we used the SMD. SMD 

provides an indication of the strength of the association 

between diabetes and dermal microvascular dysfunction, 

but cannot be used to determine the absolute difference 

between diabetic patients and control subjects.

Furthermore, the quality of reporting of the selected 

studies was not optimal. For example, the gender of the 

subjects or use of medication is not reported in all publi-

cations. �is is reflected in the scores the studies received 

during the quality assessment. Moreover, ten eligible 

studies were excluded from the analysis due to missing 

data and no response from the authors, or due to the 

use of an additional stimulus besides local heating. �e 

excluded studies showed similar results as the included 

studies and therefore it is unlikely that the exclusion of 

these studies substantially influenced the findings.

Conclusions
Diabetic patients show an impaired dermal microvascu-

lar hyperaemic response to local heating compared to 

healthy subjects. An important issue for future research 

is the implementation of guidelines for microvascular 

LTH response to strengthen the validity of this tool for 

assessing (progress of ) diabetes-related microvascu-

lar complications. Further LDF/LSCI studies including 

higher number of healthy subjects, prediabetic subjects 

and diabetic patients with and without complications 

would be required to demonstrate the stepwise impair-

ment of microvascular function in diabetes and to con-

firm the applicability of LDF/LSCI as a diagnostic tool.

Additional �le

Additional �le 1. Quality assessment tool.
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