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Abstract

Background

To date, few studies have investigated the causal relationship between mortality and long-

term exposure to a low level of fine particulate matter (PM2.5) concentrations.

Methods and findings

We studied 242,320 registered deaths in Queensland between January 1, 1998, and

December 31, 2013, with satellite-retrieved annual average PM2.5 concentrations to each

postcode. A variant of difference-in-differences (DID) approach was used to investigate the

association of long-term PM2.5 exposure with total mortality and cause-specific (cardiovas-

cular, respiratory, and non-accidental) mortality. We observed 217,510 non-accidental

deaths, 133,661 cardiovascular deaths, and 30,748 respiratory deaths in Queensland dur-

ing the study period. The annual average PM2.5 concentrations ranged from 1.6 to 9.0 μg/
m3, which were well below the current World Health Organization (WHO) annual standard

(10 μg/m3). Long-term exposure to PM2.5 was associated with increased total mortality and

cause-specific mortality. For each 1 μg/m3 increase in annual PM2.5, we found a 2.02%

(95% CI 1.41%–2.63%; p < 0.01) increase in total mortality. Higher effect estimates were

observed in Brisbane than those in Queensland for all types of mortality. A major limitation

of our study is that the DID design is under the assumption that no predictors other than sea-

sonal temperature exhibit different spatial-temporal variations in relation to PM2.5 exposure.

However, if this assumption is violated (e.g., socioeconomic status [SES] and outdoor physi-

cal activities), the DID design is still subject to confounding.

PLOS MEDICINE

PLOSMedicine | https://doi.org/10.1371/journal.pmed.1003141 June 18, 2020 1 / 19

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPEN ACCESS

Citation: YuW, Guo Y, Shi L, Li S (2020) The

association between long-term exposure to low-

level PM2.5 and mortality in the state of

Queensland, Australia: A modelling study with the

difference-in-differences approach. PLoSMed 17

(6): e1003141. https://doi.org/10.1371/journal.

pmed.1003141

Academic Editor: Ellen Kirrane, U.S. EPA, UNITED

STATES

Received: January 8, 2020

Accepted:May 13, 2020

Published: June 18, 2020

Copyright: © 2020 Yu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The authors are not

permitted to share the third party raw data used in

the analyses. For information on data access and R

codes, readers are asked to contact Mr. Rongbin

Xu (rongbin.xu@monash.edu), who is a data

repository manager.

Funding: YG was supported by a Career

Development Fellowship of the Australian National

Health and Medical Research Council

(#APP1107107 and #APP1163693, https://www.

https://doi.org/10.1371/journal.pmed.1003141
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003141&domain=pdf&date_stamp=2020-06-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003141&domain=pdf&date_stamp=2020-06-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003141&domain=pdf&date_stamp=2020-06-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003141&domain=pdf&date_stamp=2020-06-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003141&domain=pdf&date_stamp=2020-06-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003141&domain=pdf&date_stamp=2020-06-18
https://doi.org/10.1371/journal.pmed.1003141
https://doi.org/10.1371/journal.pmed.1003141
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:rongbin.xu@monash.edu
https://www.nhmrc.gov.au/


Conclusions

Long-term exposure to PM2.5 was associated with total, non-accidental, cardiovascular, and

respiratory mortality in Queensland, Australia, where PM2.5 levels were measured well

below the WHO air quality standard.

Author summary

Whywas this study done?

• Long-term exposure to fine particulate matter (PM2.5) is identified as one of the leading

risk factors for death.

However, previous studies have been subject to uncertainty and potential biases due to

unmeasured or omitted confounders.

• The difference-in-differences (DID) approach could mimic an experimental research

design using observational study data to provide an effect estimate by adjusting for

unmeasured confounders.

• Few studies investigate the influence of long-term exposure to low-level PM2.5 on cause-

specific mortality, particularly for the concentrations consistently well below the current

WHO annual standard.

What did the researchers do and find?

• We used a variant of the DID approach to investigate the association between long-term

exposure to low-level PM2.5 and cause-specific mortality in Queensland, Australia,

between 1998 and 2013.

• We studied 242,320 registered deaths from 7 categories of diseases in Queensland and

found a 2.02% increase in total mortality for each 1 μg/m3 increase in annual PM2.5.

• The associations were consistent across cardiovascular, respiratory, and non-accidental

mortality.

What do these findings mean?

• Our findings support growing evidence that, when controlling for unmeasured con-

founders by design, low-level PM2.5 exposure may contribute to increased risk of

mortality.

• Long-term exposure to PM2.5-mortality association even at PM2.5 levels below the

WHO air quality guideline informs decision-making for environmental health manage-

ment and making air pollution control strategies.

• The findings should be interpreted cautiously because the DID design is based on the

assumption that all potential spatial-temporal factors were controlled, and the variability

of confounders was held constant during the study period.
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Introduction

Ambient particulate matter with diameters less than 2.5 micrometers (fine particulate matter;

PM2.5) has been identified as the fifth leading mortality risk factor in 2015, contributing to 4.2

million deaths [1]. While a growing body of literature [2–6] has examined the causal effect of

PM2.5 on mortality, scientific evidence remains weak. Causal model approaches seek to mimic

randomized controlled trials, whereby exposure is measured independent of the other predic-

tors of the health outcome. This effectively eliminates the possibility of confounding. Propen-

sity score matching and inverse probability weighting are the most common approaches to

reweight the study populations to ensure exposure is independent of all measured confounders

[7]. Wu and colleagues applied a propensity score approach to estimate the causal effect of

long-term PM2.5 exposures on mortality in New England [8]. Wang and colleagues employed

a doubly robust causal modelling approach with inverse probability weights to estimate the

hazards of long-term exposure to PM2.5 on survival in the southeast United States [9]. How-

ever, this method only accounts for measured confounders and unmeasured biases that are

highly correlated with the measured confounders [10]. Another approach to estimating the

causal effect is the regression discontinuity design. This approach compares observations lying

closely on either side of a threshold to estimate the average treatment effect [11]. In one such

study, Avraham Ebenstein and colleagues employed the regression discontinuity design to

investigate the causal effect of particulate matter with a diameter of less than 10 micrometers

(PM10) on Chinese life expectancy by assigning different coal subsidy policies for indoor heat-

ing on both sides of Huai River [12]. However, the estimated effects could still be misled by

other potential confounders that occur at the same threshold [13].

To address this limitation, a difference-in-differences (DID) approach has been proposed

[14]. DID estimates the effect of an exposure or treatment on an outcome by comparing the

average change over time in the outcome variable for a treatment group, compared to the aver-

age change over time for a control group. A DID method mimics an experimental research

design using observational study data to provide a causal estimate by adjusting for unmeasured

confounders. It assumes that differences between outcomes that change over time are caused

by the differences between the observed and counterfactual exposures, rather than by other

factors such as socioeconomic status (SES), population, smoking, and obesity, because such

factors among other unmeasured confounders are similar between locations across time. Sev-

eral studies have utilized the DID method to explore the association between PM and mortality

[2,15–18]. For example, Corrigan and colleagues used a DID approach to examine the associa-

tion between changes in PM2.5 and changes in cardiovascular mortality rates before and after

the implementation of a new PM2.5National Ambient Air Quality Standards (NAAQS) in the

US [17]. Wang and colleagues estimated the causal effect of long-term exposure to PM2.5 on

mortality in New Jersey by developing a variant of the DID approach [2]. Similar models were

used to assess the long-term PM2.5-mortality association in 207 cities across the US [18].

Most of the DID studies estimated the effect of long-term exposure to PM and mortality at

relatively high concentrations [15,16,19]. For example, Matteo Renzi and colleagues used a

DID approach to estimate the effect of annual PM10 exposure with a range of 21.9 ±4.9 μg/m3

in the Latium region, Italy [15]. Another study’s estimated mortality changes were specifically

attributable to high exposure to PM2.5 in China between 2000 and 2010 [19]. However, grow-

ing studies have shown that there is no obvious PM2.5 threshold for the PM2.5-mortality associ-

ation even at PM2.5 levels under the World Health Organization (WHO) air quality guideline

(10 μg/m3 of annual average PM2.5). A meta-analysis including 14 studies conducted on partic-

ipants with average exposure to PM2.5 below 10 μg/m3 supported the nonlinear PM2.5-mortal-

ity exposure-response association, where the effect increased rapidly at lower concentrations
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[20]. However, few studies [3,4] have explored the association of PM2.5 with mortality below a

concentration of 10 μg/m3. Therefore, exploring the relationship between long-term low levels

of PM2.5 and cause-specific mortality is warranted, particularly in areas with consistently low

PM2.5 concentrations in Australia.

In addition, significant differences exist between rural and urban areas in terms of popu-

lation characteristics, air pollution concentration, and chemical and physical composition.

These may contribute to different health effects on cause-specific mortality, especially in

Queensland, where approximately half of the population lives in the Brisbane metropolitan

area. To address this gap, we assessed the association of long-term exposure to low-level

PM2.5 with total mortality and cause-specific mortality from cardiovascular, respiratory,

and non-accidental causes in Queensland and Brisbane during 1998–2013 using a DID

approach [2].

Methods

This study is reported as per the Strengthening the Reporting of Observational Studies in Epi-

demiology (STROBE) guideline (S1 STROBE Checklist). We did not include a formal prospec-

tive analysis plan, but the study methodology and analysis were planned before conducting the

DID approach, with the exception of the analysis of relative change rate and the effect modifi-

cation by stratifying the age groups. This study was approved by the Monash University

Human Research Ethics Committee.

Study area

Queensland is the second largest state in Australia, with an area of 1,852,642 square kilometers,

and located in the northeast of the country [21] (Fig 1). Typically, Queensland experiences two

weather seasons: a winter with mild temperatures and minimal rainfall, and a humid summer

with both high temperatures and high levels of rainfall. As of 2016, it was composed of

4,689,134 inhabitants (449 postcode zones), mainly concentrated along the coast and in the

state’s South East. Brisbane was the largest city in the state, with 2,109,466 residents in 2016. In

this study, Brisbane was divided into a total of 119 postcode zones.

Data resources

Individual-level data, such as sex, age, and total and cause-specific mortality from 1 January,

1998, to 31 December 2013, were obtained from Queensland Health (https://www.health.qld.

gov.au/public-health). Daily data on temperature were obtained from the Scientific Informa-

tion for Land Owners (SILO) data set (https://www.longpaddock.qld.gov.au/silo/). Annual

population and SES census data (including weekly income per person, Socio-Economic

Indexes for Areas [SEIFA]) were provided by the Australian Bureau of Statistics (https://www.

abs.gov.au/).

All mortality data were coded with the ICD-9 code before 1999 or ICD-10 code after that

time. Specifically, the diseases of interest included the following: mental and behavioral dis-

orders (F00–F99), diseases of the nervous system (G00–G99), diseases of the circulatory sys-

tem (I00–I99), diseases of the respiratory system (J00–J99), diseases of the digestive system

(K00–K93), diseases of the genitourinary system (N00–N99), and external causes of mor-

bidity and mortality (V01–Y98). In this study, we focus on the annual counts of death from

non-accidental causes (all above diseases except for V01–Y98), cardiovascular (ICD-9: 390–

459, ICD-10: I00–I99), and respiratory causes (ICD-9: 460–519, ICD-10: J00–J99) during

the study period (1998–2013).
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Exposure data

The annual mean PM2.5 data were derived from the Atmospheric Composition Analysis

Group, which estimated annual PM2.5 concentrations at 0.01˚ × 0.01˚ (approximately 1 km × 1

km) spatial resolution globally using a Geographically Weight Regression with an out-of-sam-

ple cross-validated R2 of 0.81. The regression incorporated satellite data, simulated aerosol

composition, and land use information [22]. The population-weighted annual mean PM2.5

concentrations were assigned to each postcode area.

Statistical analyses

DIDmethod. This study was based on a variant of DID design [2] to investigate the rela-

tionship of PM2.5 with total mortality and cause-specific mortality (non-accidental, cardiovas-

cular, and respiratory causes). The substance of the DID design is that through comparing the

same population to itself at different time points, some unmeasured individual and behavioral

factors that remain constant over time have been controlled. In this study, the DID design was

used to estimate the effect of PM2.5 on mortality by comparing the concordance between dif-

ferences in counts of cause-specific deaths and differences in PM2.5 over time (from 1998 to

2013) in a given location (449 spatial units of postcode areas in this study). Specifically, a typi-

cal DID model is as follows:

Yct
A¼a ¼ bc0 þ b

1
aþ b

2
Zc þ b

3
Ut þ b

4
Wct þ � ð1Þ

where YctA
= α is the outcome in location c and year t under exposure A = α, α is PM2.5 concen-

tration, Zc reflects spatial confounders with minimal variability over the time period (e.g.,

SES); Ut represents temporal confounders that change over time but not among locations; and

Wct denotes confounders that vary across time and locations. Therefore, differences in

Fig 1. The annual average PM2.5 concentrations in Queensland during 1998–2013. PM2.5, fine particulate matter
(particulate matter with a diameter of<2.5 μm). The base map was obtained from Australian Statistical Geography
Standard (ASGS), https://www.abs.gov.au/websitedbs/d3310114.nsf/home/digital+boundaries, CC BY 2.5 AU.

https://doi.org/10.1371/journal.pmed.1003141.g001
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outcomes between time periods will be

Yct
A¼at � Ycðt�1Þ

A¼at�1 ¼ b
1
ðat � at�1

Þ þ b
3
ðUt � Ut�1

Þ þ b
4
ðWc:t � Wc:t�1

Þ ð2Þ

whereby βc0 and Zc have cancelled out because effects occur simultaneously in the location c. If

we take the difference of these differences above between locations c and c^, we have

½Yct

A¼at � Ycðt�1Þ
A¼at�1 � � ½Y

cbt
A¼bt � Y

c
cðt�1Þ

A¼bt�1 �

¼ b
1
½ðat � at�1

Þ � ðbt � bt�1
Þ� þ b

4
½ðWc:t � Wc:t�1

Þ � ðW
cb:t � W

cb:t�1
Þ� ð3Þ

where b is the exposure in location c^. If the changes in Wc.t between time t − 1 and t are the

same in both locations, [(Wc.t−Wc.t−1)−(Wĉ.t−Wĉ.t−1)] will equal zero. The difference in out-

comes between locations relies solely on changes in exposure (i.e., the causal estimate). Hence,

the benefit of this approach is that the known and unknown confounders have been adjusted.

Historically, the DID model has been used in two places over two study periods; nevertheless,

Wang and colleagues [2] developed this approach using a generalized case with multiple loca-

tions and time periods.

In our study, we fit a model as follows:

ln½EðYc;tÞ� ¼ bc0 þ b
1
PMc;t þ b

2
Ic þ b

3
It

þ b
4
Tempsumþb

5
Tempwinþb

6
sd tempsumþb

7
sd tempwinþb

8
SEIFA

þ offsetðlogðPc;tÞÞ ð4Þ

where Yc,t denotes the number of deaths in spatial unit c and year t; PMc,t denotes the annual

mean concentration of PM2.5 in unit c and time t; Ic is a dummy variable for each spatial unit

in 449 postcode areas in Queensland; It represents a dummy variable for each year from 1998

to 2013; Tempsum, Tempwin and sd tempsum; sd tempwin reflect average temperatures and their

standard deviations (SDs) for both summer and winter, respectively; and sd tempsum and

sd_tempwin were included to control the fluctuations and variations of seasonal temperature

[23]. SEIFA was the Socio-Economic Indexes for Areas, which in this model, reflects the level

of economic development in a particular place. We added offset(log(Pc,t)) as an offset term

using logarithms of the annual population of each place. The outcomes were presented as per-

cent increase risk of cause-specific mortality for 1 μg/m3 increase in annual PM2.5.

Our model is based on the following assumptions: (1) The DID relies on a parallel trend

assumption that in the absence of intervention (e.g., in the absence of the impact of PM2.5 or

the concentration of PM2.5 remains constant in this study), the unobserved differences among

locations are constant over time. Although there is no statistical test for this assumption,

annual trends were evaluated visually for relative changes in PM2.5 and mortality rate over 16

years. We applied a relative change rate (RCc,t) to calculate the percentage change for each area

unit in each year with the following equation: RCc,t = (Rc,t−Ec)/Ec×100; Ec ¼

P
2013

t¼1998
Rc;t

16
, where

RCc,t denotes the annual percent changes of PM2.5 or mortality rate in area c, year t; Rc,t is the

annual concentration of PM2.5 or the cause-specific mortality rate in the same stratum; and Ec

denotes the average of Rc,t from 1998 to 2013 in each area unit. (2) We assumed that, apart

from seasonal temperature, no predictors exhibit differential spatial-temporal variations in

relation to the exposure [2,15]. Under that assumption, overall spatial and temporal confound-

ing is removed from the DID design. However, if this assumption is violated, the DID design

is still subject to confounding.

Conditional Poisson regression. We applied a conditional Poisson regression model [24]

to perform the DID design, to estimate the association of long-term exposure to PM2.5 with
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mortality using the “gnm” package in R software (version 3.2.5). We adjusted for summer and

winter temperatures and SEIFA effect, conditional on strata of spatial units. Additionally, we

also estimated whether the effect was modified by different proportions of age and sex based

on Census 2016 data using subgroup analyses.

Sensitivity analysis. We performed sensitivity analyses to test the robustness of the results

using a random-effects meta-analysis, estimating whether the effect estimate in a specific pop-

ulation was disparate from the pooled effect estimate in Queensland. The potential nonlinear-

ity of the association between PM2.5 and total and cause-specific mortality was examined using

cubic splines with 3 degrees of freedom. We also modelled the summer and winter tempera-

tures using natural splines with 3 and 4 degrees of freedom, respectively, to assess for modifica-

tion of health effects of PM2.5 by season. In order to control the impact of the population age

structure, we tested the effect modification by stratifying the population into two age groups:

<65 years and�65 years, using the offset term of age-specific person-years. All analyses were

conducted using R software (version 3.2.5).

Results

We studied 242,320 deaths in 7 categories of diseases (ICD10: F00–F99, G00–G99, I00–I99,

J00–J99, K00–K93, N00–N99, V01–Y98) from 1998 to 2013, which accounted for 60.5% of reg-

istered deaths during the study period. Specifically, 217,510 non-accidental deaths, 133,661

deaths from cardiovascular diseases, and 30,748 deaths from respiratory diseases in the

Queensland region were investigated. Table 1 displays the distribution of deaths, PM2.5, and

temperature in Brisbane and Queensland over the study period. In short, 81.9% of deaths were

over 65 years old and 50.8% were male. The average PM2.5 concentrations were 6.0 μg/m
3

(range: 2.13–8.00 μg/m3) in Brisbane (S1 Fig) and 3.63 μg/m3 (range: 1.63–9.00 μg/m3) in

Queensland (Fig 1), with interquartile ranges (IQRs) of 2.00 μg/m3 and 2.23 μg/m3, respec-

tively. There was a decrease of 9.33% in the standardized death rate in Queensland over the

16-year study period (S1 Table). There was no significant change in PM2.5 or temperature dur-

ing the study period. The annual average PM2.5 ranged from 2.01 to 5.28 μg/m3, along with a

downward trend from 1998 to 2008 and with slight increase between 2008 and 2013. The

range of seasonal mean temperature varied from 24.5˚C to 26.5˚C in summer and from 15.0˚C

to 16.4˚C in winter (S1 Table). In terms of the relative changes of PM2.5 and mortality rate, we

calculated the percentage changes (RCc,t) of both the annual concentration of PM2.5 and the

total mortality rates for all area units in the study period, as presented in Fig 2. As depicted,

changes in mortality rates loosely follow changes in the PM2.5 concentrations, which can sup-

port our parallel trend assumption, although a reverse trend was observed in 2010.

In this study, we found a significant association between long-term exposure to PM2.5 and

total mortality, with 2.02% (95% CI 1.41%–2.63%; p < 0.01) and 5.65% (95% CI 4.08–7.25%;

p < 0.01) increases in total mortality per 1 μg/m3 increase in annual PM2.5 in Queensland and

Brisbane, respectively. We also observed increases in cause-specific mortality associated with

elevated PM2.5 levels (Table 2). Higher effect estimates were observed in Brisbane than those

in Queensland for all types of mortality.

We additionally investigated the association between long-term PM2.5 and cause-specific

mortality grouped by age and sex (Table 3). In Queensland, individuals under the age of 65

had a high risk of total, non-accidental, and cardiovascular death, with 5.76% (95% CI 4.29%–

7.25%; p < 0.01), 6.18% (95% CI 4.29%–8.11%; p < 0.01), and 6.50% (95% CI 4.08%–9.20%;

p < 0.01), respectively. In contrast, residents in Brisbane over the age of 65 were more likely to

have elevated risk with 5.02% (95% CI 3.46%–6.50%; p < 0.01) and 4.08% (95% CI 2.22%–

6.08%; p < 0.01) in non-accidental and cardiovascular mortality, respectively, for every 1 μg/
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m3 increase in annual average PM2.5. We also found larger effect estimates for the total mortal-

ity in females versus males in Queensland (2.84%, 95% CI 1.92%–3.67%; p < 0.01 versus

1.31%, 95% CI 0.50%–2.22%; p < 0.01).

Sensitivity analyses indicate our main findings are robust. With a random effect meta-anal-

ysis, we found that there were statistically significant pooled effects with a 2.76% (95% CI

0.61%–3.97%; p < 0.01) increase in total mortality, a 2.28% (95% CI 0.61%–3.97%; p < 0.01)

increase in cardiovascular mortality, a 5.55% (95% CI 3.75%–7.39%; p < 0.01) increase in

respiratory mortality, and a 2.88% (95% CI 1.37%–4.41%; p < 0.01) increase in non-accidental

mortality (Fig 3 and S2 Table). The associations between PM2.5 and total/cause-specific mor-

tality tend to be nonlinear, with a threshold around 4.5 μg/m3 for PM2.5 exposure (Fig 4). In

addition, after modification by age group, we estimated a 5.21% (95% CI 3.20%–7.25%;

p < 0.01) increase in total mortality among the<65 age group, whereas we estimated a 0.95%

(95% CI −1.20% to 3.14%; p = 0.39) increase among subjects�65 years old, which were consis-

tent with our model results (S3 Table). Moreover, the results were similar after adjusting for

both the annual average and SD of temperature using natural splines with 3 and 4 degrees of

freedom, respectively (S4 Table).

Discussion

This study examined the association of low levels of PM2.5 (<9.0 μg/m3) with cause-specific

mortality using a DID approach, which controls for potential unmeasured and omitted

Table 1. The descriptive summary of population, income, SEIFA, mortality, PM2.5, and temperature in Queensland.

Characteristic Brisbane Other states Queensland

Population 2,109,466 2,579,668 4,689,134

<65 age (%) 87.04 82.84 84.75

�65 age (%) 12.96 17.16 15.25

Census account 119 330 449

Weekly income/person (median) 725.0 597.0 623.5

SEIFA 4,132 3,867 3,910

Death counts per year for sex

Female (%) 3,324 (51.91) 4,130 (48.35) 7,453 (49.21)

Male (%) 3,080 (48.09) 4,611 (51.65) 7,692 (50.79)

Death counts per year for age groups

<65 age (%) 1,066 (16.65) 1,670 (19.11) 2,736 (18.07)

�65 age (%) 5,338 (83.35) 7,071 (80.89) 12,409 (81.93)

Death counts for diseases

Non-accidental 93,188 124,322 217,510

Cardiovascular 57,099 76,562 133,661

Respiratory 13,384 17,364 30,748

Death counts per year 102,464 139,856 242,320

Environmental data

PM2.5 (median) 6.0 [5.0, 7.0] 3.0 [3.0, 3.8] 3.6 [3.0, 5.2]

Mean winter temperature 15.6 (2.0) 15.8 (2.4) 15.8 (2.7)

Mean summer temperature 24.8 (1.9) 25.9 (1.9) 25.6 (2.0)

Data are presented as mean (SD) for continuous normally distributed variables, median [IQR] for continuous non-normally distributed variables, or number (%) for

categorical variables. Population, census account, and SEIFA are based on census 2016 data.

Abbreviations: IQR, interquartile range; PM2.5, fine particulate matter (particulate matter with a diameter of<2.5 μm); SD, standard deviation; SEIFA, Socio-Economic

Indexes for Areas

https://doi.org/10.1371/journal.pmed.1003141.t001
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confounders. We found that long-term exposure to PM2.5 was associated with increased risks

of total mortality and cause-specific mortality, despite low-level concentrations falling consis-

tently below the current WHO annual standard (10 μg/m3). Furthermore, the effect estimates

were higher in the urban area (Brisbane) when compared to statewide estimates for the study

period.

In the presence of unmeasured confounders, it is difficult to determine causality in observa-

tional studies, especially for relatively weak health risk factors such as particulate matter. The

PM2.5-mortality association may be affected by factors that are not perfectly measured or rou-

tinely collected, such as SES and outdoor physical activities. Therefore, if these unmeasured

factors are omitted or unavailable, it might result in biased effect estimates [25,26]. It should

Fig 2. The percentage changes in mortality rate and PM2.5 concentrations in area units during 1998–2013. The percentage changes are the percent difference
between the values of PM2.5 or mortality rate (per 1,000 persons) in area unit specific to each year and the average of the values from 1998 to 2013 in the same area unit,
divided by the average of the values in area unit specific to the time from 1998 to 2013. The error bars for both lines are the range (maximum–minimum) of all areas.
PM2.5, fine particulate matter (particulate matter with a diameter of<2.5 μm).

https://doi.org/10.1371/journal.pmed.1003141.g002

Table 2. Associations between long-term PM2.5 and cause-specific mortality.

Mortality types Brisbane Queensland

Percent increase (95% CI) p-Value Percent increase (95% CI) p-Value

Non-accidental 5.65 (4.08–7.25) <0.01 1.92 (1.36–2.63) <0.01

Cardiovascular 4.08 (2.02–6.18) <0.01 1.41 (0.60–2.22) <0.01

Respiratory 7.25 (3.05–11.29) <0.01 5.44 (3.67–7.25) <0.01

Total 5.65 (4.08–7.25) <0.01 2.02 (1.41–2.63) <0.01

Total mortality includes 7 kinds of classification of diseases (ICD-10: F00–F99, G00–G99, I00–I99, J00–J99, K00–K93, N00–N99, V01–Y98). Non-accidental causes

include all the above diseases except for V01–Y98. Cardiovascular deaths (ICD-9: 390–459; ICD-10: I00–I99); respiratory causes (ICD-9: 460–519; ICD-10: J00–J99).

Abbreviation: PM2.5, fine particulate matter (particulate matter with a diameter of<2.5 μm)

https://doi.org/10.1371/journal.pmed.1003141.t002
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be noted that many factors affect PM2.5-attributable mortality rates [27]. In addition to the var-

iations witnessed in nonlinear exposure–response relationship across different causes of deaths

[20,27–29], regional variations in ambient PM2.5, population characteristics, and baseline dis-

ease incidence rates all contribute to variations of PM2.5-attributable mortality [27]. Even

though controlled exposure studies [30] and randomized participants [31] could reduce cer-

tain sources of bias and control for the unmeasured confounders, ethical considerations could

be given on account of the potential for toxic components in the chemical composition of

PM2.5.

However, a well-designed observational study such as a DID method may overcome the

limitations of a nonrandomized observational study [18,32]. A case in a DID study is com-

pared to itself at different time points so that certain confounders (including the unmeasured

ones) such as population structure and lifestyle factors that remain stable or rarely varied dur-

ing the study period are cancelled out because the comparisons occur among the population in

the same places [15,19,33,34]. In our case, we controlled for certain slow-changing spatial-tem-

poral variations by design, such as population and SES, which play a role in confounding the

PM2.5-mortality association [18]. We also included seasonal temperature, which varies in dif-

ferent periods across the study areas and correlated to PM2.5 exposure and mortality as well as

other potential factors. Controlling for temperature may indirectly remove the impacts of

other factors like influenza epidemics. Therefore, we assumed that most unmeasured potential

and omitted confounders had been controlled.

Several studies have used a similar DID design to investigate the potential association

between long-term PM exposure and mortality [2,16–19]. For comparison purposes, we have

converted the percent change in our study to a 10 μg/m3 increase and found a 22.14% (95% CI

Table 3. Associations between long-term PM2.5 and cause-specific mortality in different ages and sexes in Queensland and Brisbane.

Subgroup Area Non-accidental Cardiovascular Respiratory Total

Percent increase (95%
CI)

p-Value Percent increase (95%
CI)

p-Value Percent increase (95%
CI)

p-Value Percent increase (95%
CI)

p-Value

<65 ages Brisbane 2.33 0.26 −3.23 0.18 4.50 0.45 3.36 0.04

(−1.59, 6.40) (−8.39, 1.61) (−6.76, 17.00) (0.10, 6.61)

Queensland 6.18 <0.01 6.50 <0.01 3.98 0.13 5.76 <0.01

(4.29, 8.11) (4.08, 9.20) (−1.19, 9.42) (4.29, 7.25)

�65 ages Brisbane 5.02 <0.01 4.08 <0.01 5.55 <0.01 4.92 <0.01

(3.46, 6.50) (2.22, 6.08) (1.61, 9.75) (3.46, 6.61)

Queensland 1.41 <0.01 0.70 0.07 5.65 <0.01 1.21 <0.01

(0.70, 2.12) (−0.10, 1.61) (3.77, 7.57) (0.60, 1.92)

Female Brisbane 7.79 <0.01 6.50 <0.01 11.29 <0.01 7.90 <0.01

(5.76, 9.75) (3.98, 9.09) (5.55, 17.23) (5.97, 9.86)

Queensland 2.84 <0.01 2.12 <0.01 7.57 <0.01 2.84 <0.01

(1.92, 3.77) (1.01, 3.36) (4.92, 10.19) (1.92, 3.67)

Male Brisbane 1.82 0.08 0.10 0.88 0.70 0.78 2.02 0.04

(−0.20, 3.87) (−2.37, 2.74) (−4.21, 5.87) (0.10, 3.87)

Queensland 1.21 <0.01 0.60 0.30 3.77 <0.01 1.31 <0.01

(0.30, 2.02) (−0.50, 1.82) (1.41, 6.18) (0.50, 2.22)

Data are presented as the percent increase in death. Total mortality includes 7 kinds of classification of diseases mortality (ICD10: F00–F99, G00–G99, I00–I99, J00–J99,

K00–K93, N00–N99, V01–Y98). Non-accidental causes include all the above diseases mortality except for V01–Y98. Cardiovascular deaths (ICD-9: 390–459; ICD-10:

I00–I99); respiratory causes (ICD-9: 460–519, ICD-10: J00–J99).

Abbreviation: PM2.5, fine particulate matter (particulate matter with a diameter of<2.5 μm)

https://doi.org/10.1371/journal.pmed.1003141.t003
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15.02%–29.69%) increase in total mortality for the entire population of Queensland. This find-

ing was slightly higher than that of Wang and colleagues [2], who developed a variant of DID

approach to study 1938 census tracts in New Jersey from 2004 to 2009. They reported that

each 10 μg/m3 increase in annual PM2.5 was associated with a 15.5% (95% CI 0.8%–32.3%)

increase in the natural-cause mortality. Different outcome metrics might explain differences

in results, e.g., we used 7 causes of death in Queensland instead of the natural-cause mortality.

Another study estimated the city-specific health effects of PM2.5 on mortality in 207 US cities

between 2000 and 2010. They observed a link between long-term PM2.5 and mortality with a

hazard ratio (HR) of 1.2 (95% CI 1.1–1.3) for each 10 μg/m3 increase in annual PM2.5. How-

ever, direct comparisons between these results and the current study should be cautious

because they combined the city-specific exposure, which tends to have different mixture com-

position of ambient particles [35].

Fig 3. The pooled effects of PM2.5-mortality associations in Queensland by using a random effect meta-analysis. Total
mortality includes 7 kinds of classification of diseases (ICD-10: F00–F99, G00–G99, I00–I99, J00–J99, K00–K93, N00–N99,
V01–Y98). Non-accidental includes all above diseases except for V01–Y98. Cardiovascular (ICD-9: 390–459, ICD-10: I00–
I99); respiratory causes (ICD-9: 460–519, ICD-10: J00–J99). PM2.5, fine particulate matter (particulate matter with a diameter
of<2.5 μm).

https://doi.org/10.1371/journal.pmed.1003141.g003
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Fig 4. The association between annual average PM2.5 and the increase of cause-specific/total mortality in Queensland from 1998 to 2013. The association was
examined using cubic splines with 3 degrees of freedom in generalized nonlinear models. Dotted lines: 95% CI; (A) cardiovascular causes: ICD-9: 390–459; ICD-10: I00–
I99; (B) respiratory causes: ICD-9: 460–519; ICD-10: J00-J99; (C) non-accidental causes: ICD-10: F00–F99, G00–G99, I00–I99, J00–J99, K00–K93, N00–N99; and (D)
total mortality: ICD-10: F00–F99, G00–G99, I00–I99, J00–J99, K00–K93, N00–N99, V01–Y98. PM2.5, fine particulate matter (particulate matter with a diameter of
<2.5 μm).

https://doi.org/10.1371/journal.pmed.1003141.g004
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The yields in this study were higher compared to many previous cohort studies [36–40].

For example, a recent representative cohort of American adults [40] estimated the HR of 1.12

(95% CI 1.08–1.15) for all-cause mortality and 1.23 (95% CI 1.17–1.29) for cardiopulmonary

mortality per 10 μg/m3 long-term exposure to PM2.5. Most of the cohort studies are based on

the exposure levels at a fixed time or area and consider some potential confounders that have

been measured or observed. Our study considers the variability in exposure and potential

influences in time and space, and the unmeasured confounders were captured by design.

While cohort studies primarily rely on survey design and methodologies to obtain individual-

level data, our study focuses on the spatiotemporal effects of PM2.5 on mortality at a macro

scale by comparing differences in mortality and exposure of PM2.5 by postal code. In a system-

atic review, Vodonos and colleagues observed higher estimates in the hybrid space-time model

than other methods [20]. In addition, another possible explanation for the relative high results

in our study might be that the PM2.5 concentrations were much lower than in other studies,

with a mean exposure of 3.63 μg/m3 (<9.00 μg/m3) in Queensland. Previous studies [20,41]

have provided evidence for a nonlinear PM2.5-mortality association, where mortality increased

sharply with low exposure levels and leveled off at higher exposure. A recent systematic review

[20] estimated a 1.29% (95% CI 1.09–1.50) increase in all-cause mortality per 1 μg/m3 increase

in PM2.5 at a mean exposure of 10 μg/m3, which decreased to 1.03% (95% CI 0.97–1.11) at

15.7 μg/m3 and to 0.82% (95% CI 0.52–1.12) at 30 μg/m3. They also restricted concentrations

of PM2.5 to<10 μg/m3 and found a 2.4% (95% CI 0.80–4.00) increase per 1 μg/m3, which is

consistent with our results.

Our results show a PM2.5-mortality association at levels below the current WHO air quality

standard. Throughout the study period, the annual PM2.5 concentrations across Queensland

areas were well below the current the WHO standard (10 μg/m3 of annual average PM2.5) and

the US Environmental Protection Agency (EPA) standard (12 μg/m3 of annual average PM2.5);

however, the PM2.5-mortality association remained present in spite of this. A growing body of

research has suggested that low-level PM2.5 exposure may increase mortality. Shi and col-

leagues estimated a 9.28% increase in mortality for every 10-μg/m3 increase in annual PM2.5

for populations�65 years in the US. [42]. Aligning with our study, Markar and colleagues [3]

and Schwartz and colleagues [4] used different causal reference methods to estimate the effects

on mortality at concentrations of PM2.5 below the standards.

Mounting toxicological literature has provided evidence for the causal effect of PM2.5 on

mortality [43–46]. For example, one study on animals [45] reported that mice with 6 months

exposure to a low concentration of PM2.5 compared with animals exposed to filtered air dem-

onstrated marked increases in atherosclerotic plaque, macrophage infiltration, and vasocon-

strictor responses in the aortic arch. Another study [43] found more severe lung dysfunction

in mice exposed for 8 months to PM2.5 of 16.8 μg/m
3 when compared to animals exposed to

PM2.5 of 2.9 μg/m
3.

Several underlying biological mechanisms have been investigated for the damaging effects

of PM2.5 on organ systems, especially on the respiratory and cardiovascular system [47–50].

The first is the direct pathway. Ultrafine particles directly translocate into the bloodstream and

into specific organs, which aggravate the local oxidative stress and inflammation, causing the

atherosclerotic plaque instability, and ultimately induce the cardiotoxicity effects and increase

the risk of congestive heart failure, arrhythmias, and cardiovascular mortality [47–49].

Another pathway may increase oxidative stress and activate inflammation. The free radicals

and organic components of PM2.5 can generate a rich milieu of inflammatory mediators and

induce free radical production to oxidize lung cells, which directly causes cell injury in the

lungs [51] and may indirectly release into the blood or systemic circulation, leading to cardio-

vascular and pulmonary disease and even death [50,52].
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We also found that PM2.5 had larger effects on mortality in the urban area (Brisbane) when

compared to statewide. In our study, the elderly inhabitants in Brisbane displayed a higher

increase in death relative to statewide rates (4.92%, 95% CI 3.46%–6.61%; p < 0.01, versus

1.21%, 95% CI 0.06%–1.92%; p < 0.01). One possible explanation is the consistently higher

concentrations of PM2.5 found in Brisbane (with an annual average of 6.0 μg/m3) compared to

Queensland (with an annual average of 3.63 μg/m3). Furthermore, chemical and physical parti-

cle compositional differences in rural and urban areas also show different health effects on

mortality [35,53]. Increasing evidence suggests that observed rural-urban disparities in popu-

lation density could result in differences in PM2.5-associated mortality rates [54]. In our study,

compared with the rest of Queensland, approximately half of the overall population (44.9%

based on Census 2016 data) resides in Brisbane, resulting in more widespread exposure to

PM2.5 than in rural areas (S2 Fig and S3 Fig).

Growing evidence has shown that the elderly are at a higher risk of total mortality attribut-

able to particulate matter [42,55]. Contrary to these findings, however, our study found that

young people (below the age of 65) in Queensland experienced higher risks comparatively

(5.76%, 95% CI 4.29%–7.25%; p < 0.01, versus 1.21%, 95% CI 0.06%–1.92%; p < 0.01). In Bris-

bane, those over 65 had a higher risk of mortality associated with PM2.5 in comparison with

people below 65. This may be explained by differential exposure and physical activity between

urban and rural residents, which may vary by age [56]. Compared with older adults, young

people in rural areas may have higher rates of outdoor physical activity, which may lead to

greater air pollution exposure [57]. With regards to sex sub-analysis, in our study, females in

Brisbane experienced a greater risk than females in Queensland. We found that females in our

study had higher PM2.5-attributable mortality than the male population in both Brisbane and

statewide. Even though an inverse relationship between all-cause mortality and PM2.5 exposure

among female farmers was found in an American study [58], it is noted that there is a signifi-

cant difference in individual-level behaviors between urban and rural residents, such as physi-

cal activity and smoking [59].

Our study has several strengths. To the best of our knowledge, no other studies have com-

prehensively explored the link between long-term exposure to PM2.5 and cause-specific mor-

tality in Queensland when controlling for unmeasured confounding by design. Our study is

based on 7 categories of disease-specific mortality, with a relevantly long study period (16

years). Additionally, we employed a variant of DID approach to explore the association

between long-term exposure and mortality. Our results have provided compelling evidence for

an association between long-term exposure to PM2.5 and mortality at levels below the current

WHO air quality standard (10 μg/m3 of annual average PM2.5). Finally, we investigated the

PM2.5-attributable mortality in the highly populated metropolis and found more severe risks

on cause-specific mortality in Brisbane.

There are also some limitations to this study. We assumed that no predictors other than sea-

sonal temperature exhibit different spatial-temporal variations in relation to PM2.5 exposure.

However, there are other potential spatial and temporal confounders that vary by periods

across the study areas and correlate with the PM2.5 exposure, such as employment rate [2,60]

and influenza epidemic [15]. Furthermore, even though the DID study design may eliminate

most unmeasured confounders, these factors held as ideal assume that confounders such as

population, SEIFA, and some other unmeasurable factors like behavior habits in one area

maintained unchanged over the study period. Additionally, our study was unable to measure

individual-level exposure and potentially introduced ecological bias because the study was

conducted on a population-level scale. Because the assessment of the environmental exposures

was based on individual zip code, errors in geocoding and invariable yearly exposure in every

postal code for all residents may lead to potential exposure misclassification. Moreover, we
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cannot estimate the association between PM2.5 and natural-cause mortality because of limited

data availability. Furthermore, the basic population size and social-economic data in our study

were based on Census 2016, which is likely to change over time.

This study provides evidence that long-term exposure to PM2.5, even at low levels well

below the current WHO air quality standard, is associated with non-accidental, cardiovascular,

and respiratory mortality in Queensland and Brisbane, by using a variant of DID approach to

control the unmeasured confounding. Even though the explanation of the DID approach relies

on several assumptions that are theoretical and, to some extent, unprovable, the findings are

important for scientific understanding of the health effects of air pollution and to inform pol-

icy makers.
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obtained from Australian Statistical Geography Standard (ASGS), https://www.abs.gov.au/

websitedbs/d3310114.nsf/home/digital+boundaries, CC BY 2.5 AU.

(TIF)

S2 Fig. The population density in Queensland based on 2016 census. The base map was

obtained from Australian Statistical Geography Standard (ASGS), https://www.abs.gov.au/

websitedbs/d3310114.nsf/home/digital+boundaries, CC BY 2.5 AU.

(TIF)

S3 Fig. The population density in Brisbane based on 2016 census. The base map was

obtained from Australian Statistical Geography Standard (ASGS), https://www.abs.gov.au/

websitedbs/d3310114.nsf/home/digital+boundaries, CC BY 2.5 AU.

(TIF)
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