

Open access • Posted Content • DOI:10.1101/2020.12.09.20246496

The association between socioeconomic status and pandemic influenza: systematic review and meta-analysis — Source link

Svenn-Erik Mamelund, Clare Shelley-Egan, Ole Rogeberg

Institutions: Work Research Institute, University of Oslo

Published on: 11 Dec 2020 - medRxiv (Cold Spring Harbor Laboratory Press)

Topics: Pandemic, Meta-analysis and Odds ratio

Related papers:

- Is high socioeconomic status a risk factor for multiple sclerosis? A systematic review
- · Populations at risk for severe or complicated influenza illness: systematic review and meta-analysis
- Heterogeneity in the Reporting of Mortality in Critically III Patients during the 2009-10 Influenza A (H1N1)
 Pandemic: A Systematic Review and Meta-regression Exploring the Influence of Patient, Healthcare System and
 Study-specific Factors
- · Contribution of socio-economic status on the prevalence of cerebral palsy: a systematic search and review
- Low Socioeconomic Status Is Associated with Worse Survival in Children with Cancer: A Systematic Review

medRxiv preprint doi: https://doi.org/10.1101/2020.12.09.20246496; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license .

Long title: The association between socioeconomic status and pandemic influenza: systematic review and meta-analysis Short title: Socioeconomic status and pandemic influenza

Authors: Svenn-Erik Mamelund* (Work Research Institute, Oslo Metropolitan University), Clare Shelley-Egan (Work Research Institute, Oslo Metropolitan University) and Ole Rogeberg (Frisch Centre, University of Oslo)

*Corresponding author (masv@oslomet.no)

Abstract:

Background: The objective was to document whether and to what extent there was an association between socioeconomic status (SES) and disease outcomes in the last five influenza pandemics.

Methods/Principle Findings: The review included studies published in English, Danish, Norwegian and Swedish. Records were identified through systematic literature searches in six databases. Results are summarized narratively and using meta-analytic strategies. We found studies only for the 1918 and 2009 pandemics. Of 14 studies on the 2009 pandemic including data on both medical and social risk factors, after controlling for medical risk factors 8 demonstrated independent impact of SES. A random effect analysis of 46 estimates from 35 studies found a pooled mean odds ratio of 1.4 (95% CI: 1.2 - 1.7), comparing the lowest to the highest SES, but with substantial effect heterogeneity across studies –reflecting differences in outcome measures and definitions of case and control samples. Analyses by pandemic period (1918 or 2009) and by level of SES measure (individual or ecological) indicate no differences along these dimensions. Studies using healthy controls tend to find low SES associated with worse influenza outcome, and studies using infected controls find low SES associated with more severe outcomes. Studies comparing severe outcomes (ICU or death) to hospital admissions are few but indicate no clear association. Studies with more unusual comparisons (e.g., pandemic vs seasonal influenza, seasonal influenza vs other patient groups) report no or negative associations.

Conclusions/Significance: Results show that social risk factors help to explain pandemic outcomes in 1918 and in 2009 although the mechanisms and types of social vulnerabilities leading to disparities in outcomes may differ over time. Studies of the 2009 pandemic also showed that social vulnerability could not always be explained by medical risk factors. To prepare for future pandemics, we must consider social along with medical vulnerability.

medRxiv preprint doi: https://doi.org/10.1101/2020.12.09.20246496; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license .

Introduction

It used to be believed that pandemic and infectious disease risks are the same for all, irrespective of social background or socioeconomic status (SES). But when 61-year old superstar Madonna shared this belief on Instagram on the 23rd of March 2020, calling COVID-19 "the great equalizer" from a milky bath sprinkled with rose-petals (2), fans and others quickly pointed to the disproportionate pandemic burden and suffering of the poor. Their criticism is supported by a number of studies showing that certain indigenous people, people of colour, immigrants and the poor experienced disproportionate harm from COVID-19 as measured by infection rates, hospitalizations, the need for intensive care unit treatment, and death (3-6).

The idea that outcomes from infectious disease pandemics are socially neutral has an old history among lay people, researchers and policy makers responsible for pandemic preparedness plans. Literature on SES and 1918 influenza outcomes published by social historians between 1970 and 1990 argued that the disease was so highly transmissible that everybody was equally affected (7-11), pointing to anecdotal evidence such as the president and King of Spain falling ill and the Swedish Prince Erik dying at age 29(12). The studies typically lacked empirical analysis interpreting high quality data within statistical models, however. Empirical studies appearing from the mid-2000s often reported evidence inconsistent with the socially neutral hypothesis: SES seemed to be linked to exposure, susceptibility and access to care, and SES indicators were statistically associated with mortality (13-15). Although several studies of the 2009 pandemic also found SES associated with various pandemic outcomes (16-18), this social inequality in risk is still ignored in international pandemic preparedness plans (19). A systematic assessment of the evidence for such risk inequalities has been lacking, however, apart from a systematic review and meta-analysis of how the risk of 2009 influenza pandemic outcomes differ for disadvantaged populations (mainly indigenous people) (20).

In this paper, we present the first systematic review and meta-analysis on the association between SES and disease outcomes in the last 5 influenza pandemics. The objective was to document whether and to what extent there was an association between indicators of socioeconomic status (e.g. income, education) and pandemic outcomes (infection, hospitalizations, mortality) in the last five influenza pandemics (1889, 1918, 1957, 1968, 2009). In terms of PICOS criteria, the Population (P) consists of groups defined by socioeconomic status, the intervention (I) or exposure or risk factor is pandemic influenza, the comparison (C) or alternative interventions is not relevant, while the outcomes (O) are morbidity, hospitalization, or death associated with influenza pandemics. All types of study designs were considered (S). As described in our pre-registered

analysis plan, we hypothesized that the association between SES and pandemic outcomes would increase with outcome severity, as higher income and SES tend to be associated with access to resources and protective factors that reduce the risk of progression to more severe outcomes.

Our review identified studies on the 1918 and 2009 pandemics only, with evidence of a social gradient in the disease burden of both these pandemics. Associations with SES were statistically significant in 8 of the 14 studies on the 2009 pandemic that adjusted estimates for medical risk factors, indicating that both sets of risk factors are needed to understand pandemic disease severity. We did not find support for the hypothesis that social risk factors were more important for severe than for less severe outcomes.

Materials and Methods

Bibliographic database search

A systematic search of Medline, Embase, Cinahl, SocIndex, Scopus and Web of Science was performed to identify all relevant articles published on socioeconomic factors and pandemic influenza. The strategy for the literature search was developed by two information specialists in cooperation with the research group, starting 5 October 2017. Several pilot searches were conducted in Web of Science and Medline respectively, on 12 and 19 October 2017, to ensure a sensitive search. The search strategy combined relevant terms, both controlled vocabulary terms (i.e. MeSH) and text words. The main search strategy used in Medline is available in PROSPERO 87922 and in the appendix, and the final search was carried out on 17 November 2017. The strategy was modified to fit the other databases listed above. To generate manageable results, restrictions on language (English, Danish, Norwegian and Swedish) and publication type (article/research article) were added to the searches in the other databases. The searches in Medline and Embase were performed without publication type restrictions. The search strategy was peer-reviewed by a third information specialist using a structured tool based on the PRESS-framework (21). Reference lists of relevant known studies were also screened and experts in the field consulted in order to identify other additional sources. Finally, we also contacted authors of published studies to ask for relevant data not presented in the papers or in appendices. However, we did not get any responses that made it into the paper and our analysis

Inclusion criteria for title and abstract screening

After adding all identified records to an Endnote library and removing duplicates, the remaining results were imported to the program Covidence. Here, additional duplicates were removed. Each article's title and abstract were screened by two of the

authors (SEM and CSE), according to the selection criteria. After screening of titles and abstracts, we added full-text versions of articles in Covidence. Divergences in the inclusion of studies were re-assessed by the same researchers until consensus was reached in terms of inclusion or exclusion. The criteria for inclusion were:

- 1. The study period 1889-2009 includes the five pandemics in 1889, 1918, 1957, 1968 and 2009
- 2. Studies looking at the association between SES and pandemic outcome (morbidity, severe disease and mortality). SES was captured by key words such as education, income, occupational social class etc. (see search history for more examples). Morbidity was captured by key words such as infection rates, transmission rates, lab confirmed influenza, flu like illness, and influenza like illness (ILI). Severe disease was captured by key words such as disease severity, critical illness, critical disease, severe illness, severe disease, hospitalization, patient admission, hospital admission, intensive care unit (ICU) admission, and ICU treatment. Mortality was captured by key words such as fatal outcome, fatal illness, fatal disease, fatality, lethal outcome, lethal illness, lethal disease, terminal outcome, terminal illness, terminal disease, lethality, death, death rate, and mortality rate. All of these key-words were used in both pilots and the final search as described above. The search strategy also covered studies of ethnic and disadvantaged populations, as some of these included covariates for socioeconomic confounders that fell within our inclusion criteria.
- 3. Studies covering both seasonal and pandemic influenza distinguishing between non-pandemic and pandemic years.
- 4. Studies covering all regions/countries, type of studies (interventional, observational, etc.) and populations (age, gender, pregnant women, soldiers etc.).

Exclusion criteria for title and abstract screening

The following criteria excluded studies from the systematic literature review:

- 1. Studies on pandemic diseases other than influenza
- 2. Studies on seasonal influenza only
- 3. Studies on both seasonal and pandemic influenza that *did not* distinguish between non-pandemic and pandemic years
- 4. Studies on influenza vaccine uptake, attitudes towards influenza vaccination and compliance with (non)pharmaceutical interventions during influenza pandemics
- 5. Case studies or qualitative studies on the associations between socioeconomic factors and pandemic outcomes
- 6. Studies on social justice and pandemic influenza

medRxiv preprint doi: https://doi.org/10.1101/2020.12.09.20246496; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license .

- 7. Studies of pandemic influenza preparedness plans
- 8. Studies on ethnic and disadvantaged minorities that *did not* report controls for socioeconomic confounders

Data selection and extraction

We drafted a data abstraction form, pilot tested it and modified it, where necessary. Two reviewers (SEM and CSE) independently extracted data from all included studies. Any disagreements were resolved via discussion or by involving a third reviewer for arbitration. 1-5 and 6 below were entered into separate spreadsheets for each article. The following information was extracted:

- 1. Article info
 - a. First author
 - b. Year published
 - c. Journal
- 2. Data sample
 - a. Country or region of analysis
 - b. Pandemic years (1889, 1918, 1957, 1968, 2009)
 - c. Sample inclusion criteria i.e. characteristics of sample/population (civilian, military, gender, pregnant, agegroup/median/average age, patient group etc).
 - d. Sample size
 - e. Unit of analysis (individuals, households, regions, hospitals etc)
 - f. Data aggregation level (observations of individual units, aggregated units, etc.). e.g., if hospitals are the unit of analysis, does the data used occur at the hospital level or is it pooled across hospitals?
 - g. Source of outcome data, e.g., census, routine notification data (e.g. influenza cases reported to a doctor), survey data, register data
 - i. If survey or population data had incomplete coverage
 - 1. Response rate/coverage
 - 2. Representativity: Is the sample shown to be representative for the population? i.e. has a non-

response analysis been carried out?

- 3. Outcome variable Pandemic outcome (a. morbidity, b. hospitalization, c. mortality)
 - a. Definition of morbidity: influenza-like illness (ILI), Lab-confirmed Infection rates (PCR), transmission rates (reproduction number, R0), immunity/antibodies towards influenza (HI titer above a certain threshold) due to exposure to the disease and not vaccination
 - b. Definition of hospitalization; Hospitalized inpatients with (PCR) or without confirmed influenza; patients admitted to intensive care unit (ICU) or not; mechanically ventilated patients ("lung machines") or not; inpatients vs outpatients
 - c. Definition of cause of mortality: Influenza and pneumonia (PI), excess mortality (PI, all causes of death etc.), respiratory diseases, pneumonia etc.
- 4. Baseline outcomes (control type), i.e. what was the control group or baseline outcome comparison? (general healthy population, infected patients, the hospitalized, patients with lab-confirmed seasonal influenza)
- 5. Independent variables of interest relating to SES
 - a. Type of SES indices (education, income, crowding, density, deprivation index, unemployment, occupational social class, poverty status, % below poverty level)
 - b. Definition or brief descriptive text on SES indices (e.g., if based on a specific type of poverty index etc.)
- 6. Statistical methodology
 - a. Design of study (cross sectional, longitudinal, case-control, cohort studies)
 - b. Estimation technique (Cross tables, correlation analysis, OLS, Poisson regression, Logistic regression, Cox regressions, GEE regressions, GLMM models etc.)
 - c. Control variables included (e.g. age, gender, marital status, pre-existing disease, health behavior etc.) in light of sample restrictions (e.g. for pregnant women, sex is not among the controls)
 - d. Reference categories with which all point estimates are compared
- 7. Results reported (separate spreadsheet)

Data Synthesis

Our narrative review includes a table of the study characteristics of the included studies, such as study authors and year, pandemic years, study region (region/country/hospital), sample inclusion criteria, sample size, unit of outcomes, data

aggregation level, data sources and type, outcomes, baseline outcomes, SES measure, design, statistical techniques, controls and whether the study estimates are used in the meta analysis and whether SES is an independent predictor. The quantitative part of the study pools results across individual studies using meta-analytic methods. Such methods pool the evidence reported from different studies, weighting each study by its precision.

The simplest meta-analytic model ("fixed effect") is appropriate when several studies estimate the exact same parameter, making random sampling variation the only source of variation in estimates. This is unlikely to be appropriate in our context, where studies assess the associations between SES indicators and medical outcomes using different indicators of SES and flu outcomes in data from different countries and time periods that allow for different levels of confounder control, etc. The differences in the underlying associations studied can be viewed as a form of *effect heterogeneity*, implying that the studies would report different estimates even if sampling variation could be removed. Since the estimated associations are related, however, we can estimate the *distribution* of these underlying associations using a "random effects" model. And finally, we may take this a step further by exploring whether study-level covariates (e.g., country, period, SES-indicator) are associated with particularly high or low estimates.

We searched the identified studies in our meta-review for quantitative estimates of associations between SES indicators and influenza related outcomes. The resulting estimates were assessed for inclusion in the meta-analysis, and included if they could be expressed as an odds-ratio or relative risk for low versus high socioeconomic status. This implied that estimates had to include an indicator of socioeconomic status at the individual or ecological level, and had to allow for an estimate of how the incidence or prevalence of some flu related outcome varied by levels of this indicator. Where studies included estimates for distinct data subsamples (different age groups, periods), single estimates pooling all data were preferred if available. If not, the separate estimates were all included. For some studies, multiple estimates were also extracted if they performed different comparisons (e.g., risk of infection, and risk of hospitalization given infection). We also collected study level factors indicating the pandemic period (1918 vs 2009), country/region, and whether the study estimate involved an odds ratio or a relative risk or rate. The specific studies included and all judgments and adjustments concerning inclusion and adjustments of reported numbers are detailed in the supporting materials.

Relative to the pre-analysis plan, the ambitions of the quantitative analysis and quality assessments (using e.g. NOS(22)) were scaled back given the large heterogeneity across the studies included (see Table 1). The pre-analysis plan specified three

types of analysis (1). The first, a standard random effect analysis with subsample analyses, was conducted as planned using the «REML» algorithm in the Metafor meta-analytic package for R (23). The second, a PET-PEESE analysis testing and adjusting for publication bias, was found unsuitable given the large effect heterogeneity (24). The third, a Bayesian model to assess "doseresponse" effects and assess how estimates vary with study-level indicators and the type of comparisons made, is included in a simplified version without the "dose-response" element.

A Bayesian model differs from the ones described above in that it includes a prior distribution for the parameters. A prior distribution expresses reasonable beliefs regarding the parameter values before running the analysis. The analysis calculates how likely the observed data is for different parameter values in the prior distribution, and updates the prior distribution in light of the data, resulting in a posterior distribution that blends the pre-existing knowledge encoded in the prior with the evidence from the observed data. In our context, the benefit of such an approach is that it allows us to assess the joint impact of multiple study level indicators simultaneously despite having few observations, by viewing the parameters for each study level indicator as a draw from a distribution (i.e., a hierarchical specification). Such a hierarchical specification reduces the danger of reporting large but spurious associations that are statistically significant by chance, since the hierarchical specification imposes a partial pooling across the parameters (25). If the evidence as a whole indicates that estimates vary no more across study level indicators than we would expect due to sampling variation, then this will pull the individual indicator coefficients towards zero.

Results

Narrative review

Flow of included studies Our database search identified 8,411 records. After leaving out duplicates, 4,203 studies were imported for screening. After removing another 75 duplicates, we screened the titles/abstracts of 4,128 records. Of these, 3952 studies were irrelevant, and 176 full text studies were then assessed for eligibility. In this phase, 117 studies¹ were excluded leaving us with 59 studies from

¹ Reasons for these **117** exclusions were the following: **50** No control for socioeconomic factors in addition to biological risk factors; **18** No control for SES in a study of ethnic groups and biological risk factors; **15** No control for SES in addition to ethnic groups; **15** No control for socioeconomic confounders; **4** Wrong patient population; **4** Wrong time period; **2** No quantitative data; **2** wrong language; **1** Duplicate; **1** Spanish language; **1** Studies on both seasonal and pandemic influenza that do not distinguish between non-pandemic and pandemic years; **1** Reason not given; **1** Wrong intervention; **1** Wrong outcomes; **1** Wrong study design.

which to extract data. In the data extraction phase, we removed an additional 15 studies². The final number of studies included in the narrative synthesis was therefore 44 (see also PRISMA Flow Chart in appendix).

Study characteristics

The review identified a total of 44 studies, 9 studies of "Spanish flu of 1918-20" (13-15, 26-31) and 35 of the "Swine flu of 2009-2010" (16, 17, 32-64) (Table 1). We found no studies of the Russian flu of 1889-90, the Asian flu of 1957-58 or Hong-Kong flu of 1968-70. Most of the studies used data from North America, including 11 for USA (17, 27, 30, 33, 40, 41, 48, 50, 55, 56, 59) and 6 for Canada (38, 45, 49, 52, 60, 62); Europe, including 6 for England (16, 26, 31, 32, 44, 64), 4 for Spain (39, 46, 51, 57), 2 for Norway (13, 14), and 1 for 30 EU/EFTA countries (53); 4 for Australia (42, 43, 54, 61) and 3 for New Zealand (28, 29, 34). While a few studies used data from Central America/South America including 1 for Mexico (37) and 1 for Brazil (47), and Asia, including 1 for Iran (35) and 1 for China (63), we identified no studies using data from Africa. Finally, 3 studies had a global approach studying several countries (15, 36, 58).

The sample inclusion criteria varied greatly from study to study. Two of the 44 studies studied military populations, one of these studied mortality in randomly selected records (28), the other studied mortality on one transport troop ship (29). Of the 42 studies using civilian study populations, some studied particular patient populations/cohorts (46, 54, 61, 63), general patients at various hospitals and health centres (17, 32, 33, 35, 39, 40, 47-49, 51, 52, 55, 57, 59, 60, 62), students at schools or students including their families (41, 45), or general populations living in various cities, states, counties or (several) countries (13-16, 26, 30, 31, 34, 36-38, 42-44, 50, 53, 56, 58, 64).

The sample size in each study varies substantially and is reported in Table 1 whenever information was available for the pandemic events (for cases and controls) and the population at risk.

The unit of the outcome variables is either individual in 36 studies (14, 16, 17, 27-40, 42-49, 51, 52, 54, 55, 57, 59-64) or aggregate in 8 studies (13, 15, 26, 41, 50, 53, 56, 58). However, although a study may have had individual-level outcome data, the data aggregation level is sometimes aggregate. In total, 12 studies included studies at an aggregate data level (13, 15, 16, 26, 30, 31, 36, 41, 50, 53, 56, 58). 15 studies had individual-level outcome variables and control variables, but used area-level (and individual-level) SES variables (17, 27, 32, 33, 42-44, 49, 52, 54, 55, 59, 61, 62, 64). Studies using only ecological

² Reasons for these **15** exclusions were the following: **5** wrong intervention; **1** Studies on both seasonal and pandemic influenza that do not distinguish between non-pandemic and pandemic years; **4** Duplicates; **1** No control for socioeconomic confounders; **2** Wrong outcomes; **1** Wrong time period; **1** Wrong study design.

SES variables thus picked up a combination of individual-level and area-level SES effects on the outcome variables. Finally, in 17 of the studies, outcomes, explanatory variables and controls are all measured for individuals and the data aggregation level was thus the individual level (14, 28, 29, 34, 35, 37-40, 45-48, 51, 57, 60, 63).

There were generally three types of data source used in the 44 studies included in the narrative synthesis: 1) 28 studies used active surveillance of events coupled with SES and covariate data via questionnaires, face-to-face or telephone interviews or censuses (17, 32-44, 46-52, 54, 57, 59-63); 2) 14 studies used national vital registration systems on events coupled with SES and covariate data via censuses (13-16, 26-29, 31, 53, 55, 56, 58, 64); 3) 2 studies used telephone survey or data collected via door-to-door survey to collect both event and population at risk data (30, 45).

The 3 broad categories of outcomes were studied (see details in Table 1): 1) people seeing doctors due to symptoms of influenza like illness (ILI)/influenza transmission(R0)/lab-confirmed influenza infection (using PCR tests)/immunity towards influenza (using blood serum samples to look for antibodies) (26, 27, 30, 32, 34, 35, 41-45, 52, 54, 57, 60, 61, 63); 2) lab-confirmed influenza hospitalizations/ICU treatment/mechanical ventilation (17, 33, 38, 39, 46-51, 55, 57, 59, 62); 3) lab-confirmed pandemic deaths/Influenza-Pneumonia (PI) deaths/excess deaths associated with pandemic influenza (13-16, 26-31, 36, 37, 40, 53, 56, 58, 59, 64).

The choice of baseline outcomes (or controls in case-control studies) partly depends on the outcomes studied, and includes: 1) General population at risk (13-17, 26-33, 36, 50, 53, 56, 58-60, 64); 2) General population at risk without H1N1 Infection or ILI (41-45); 3) Patients with ILI, persons in quarantine for a suspected case and a close H1N1 contact or patients with ILI testing negative for influenza A H1N1 infection (30, 35, 52, 63); 4) pre-pandemic immunity (34, 61); 5) seasonal influenza A deaths (37); 6) Non-hospitalized H1N1 positive patients or hospitalized H1N1 positive non-severe (not ICU or death) (38, 39, 55, 59, 62); 7) Outpatients with H1N1 infection (40, 46-49, 51, 57); 8) Seronegative for H1N1 (54); 9) Patients with other diseases than ILI (57).

The studies that used individual-level SES measures used one or several of the following; (household) income (40, 48, 60), economic status (30), education (35, 37-40, 46-49, 51, 52, 60, 63), occupation-based social class (14, 28, 29, 57), size of apartments, poor housing or crowding measures (14, 26, 34, 40, 45, 49, 51), and having health insurance (40). Some used both individual-level and area-level measures of SES. The SES measures used at the area-level are often (but not always) indexes of economic, social and housing deprivation/development (13, 15-17, 27, 31-33, 36, 41-44, 48-50, 52-56, 58, 59, 61, 62, 64).

medRxiv preprint doi: https://doi.org/10.1101/2020.12.09.20246496; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

The 44 studies included in the review used study designs that falls into four categories: 1) Systematic review and meta-analysis (36); 2) Cross sectional univariate or control-variable design (13, 15-17, 26-34, 42-45, 50, 53-56, 59, 60, 64); 2) Case-control design (35, 37-41, 46-49, 51, 52, 57, 61-63); 3) Longitudinal survival analysis (14); 4) Time-series analysis (58).

The identified studies were descriptive or explanatory. The descriptive studies used statistical techniques to calculate pandemic disease burden estimates and univariate correlations between the outcomes and various variables as well as demographic standardization techniques to control for age and sex (16, 17, 28, 30-33, 44, 56, 60). The explanatory multivariate studies used modelling techniques such as OLS (13, 15, 50, 58), generalized linear mixed models (45), logistic regressions (26, 29, 34, 35, 38-41, 46-49, 52, 54, 55, 57, 59, 61-63), propensity score logistic regressions (37), Poisson regressions (27, 53, 59, 64), Cox regressions (14, 51), random effect meta-regressions (36), and various types of Bayesian models (42, 43).

Study results

The results in the 9 identified studies on the 1918 influenza and SES were mixed (13-15, 26-31). After various controls were made, 6 studies found a significant and expected *higher* risk for *lower* SES in mortality (15) or mortality/transmission rates, but not for all SES measures (13, 14, 27); a significant *higher* mortality risks for *lower* SES, but only for 2 out of 3 pandemic waves (31); or a significant *higher* risks for *lower* SES in both for morbidity and mortality (30), while 3 studies found no association between SES and mortality (28, 29) or mortality and transmission rates (26). However, none of the 6 studies documenting significant expected associations with a higher pandemic risk for lower SES had data to control for medical risk factors. Hence, some or all of the identified associations between SES and the pandemic outcomes in the 6 above mentioned studies could potentially have been "explained away" by controlling for having latent tuberculosis (65) or other known comorbidities (66).

To get an idea as to whether SES *may* have played an independent role in the variation in pandemic outcomes in 1918, we now describe the results for the identified studies of the 2009 pandemic. Fourteen of the 35 identified studies on the 2009 pandemic had data to adjust for both medical and social risk factors (34, 35, 38, 40, 45-48, 51, 52, 54, 57, 59, 61); after adjusting for medical risk factors, 7 of these studies documented independent and *expected* impact of SES (*higher* risks for *lower* SES) on either infection/immunity (34, 54), hospitalization (46-48, 51) or both of these outcomes (57); 1 study found both expected significant associations with SES (higher risk of hospitalization) and non-significant (ICU and death) impact of SES after medical risk factor were controlled for (59); 5 studies found non-significant effects of SES on ILI/infection/immunity (45, 52, 61),

hospitalization/ICU (38) and mortality (40); and finally, 1 study found a significant but *unexpected* impact of SES on infection, that is *higher* infection rates for those with *higher* vs. lower education (35). Although the findings in these 14 studies investigating both social and medical vulnerabilities are somewhat mixed, they show that medical risk factors are not simply 100% correlated with socioeconomic factors, and in 8 of these 14 studies social factors explain other parts of the variation in the pandemic outcomes than medical factors.

21 of the 35 identified studies on the role of SES in the 2009 pandemic outcomes *did not* control for medical risk factors but found the following: First, 12 studies found significantly *higher* risks for the *lowest* socioeconomic status group, of which 5 studied ILI/infection/immunity (32, 43, 44, 63); 4 investigated hospitalizations (17, 33, 39, 49); and 4 studied mortality (16, 36, 56, 64). Second, 7 studies found non-significant associations with SES, of which 2 studied ILI/infection/immunity (42, 60); 2 studied hospitalizations (50, 62) or ICU treatment (62), and 3 studied mortality (37, 53, 58). Finally, 2 studies found respectively a higher risk of a lab-confirmed case (41) or ICU treatment (55) in the *highest* SES groups. It is clear though, that most of the studies on SES and 2009 pandemic not controlling for medical at risk factors (13 of 21), show that lower SES groups have the highest risks of the 3 considered pandemic outcomes.

Table 1. Overview of 44 studies included in the systematic review by study characteristics

*	Study authors and year	Study region	Pandemic period	Sample inclusion criteria	Sample size	Unit of outcomes	Data aggregation level	Data sources	Outcomes	Baseline outcomes	SES measures	Design	Statistical technique	Controls	Estimates used in meta analysis and is SES
								_							an independe nt predictor?
2	(32)	London, England	20 April- 28 June 2009	People of all ages seeing a doctor for influenza at hospitals and community clinics in London	2,819 H1N1 patients (confirmed, presumed and probable) with valid LSOA postcodes	Individuals	Individual cases, but SES of cases based on the IMD of area post-codes	Data on cases and contacts were from the London Flu Response Center database and where coupled to IMD 2007	Influenza cases per 100,000	Population at risk in each LSOA area	Area Index of multiple Deprivation (IMD) 2007 quintiles (economic, social and housing issues)	Cross- sectional univariat e design	Bivariate rate ratios with 95% Cl	Age and weekly interactions with IMD	Meta analysis: Yes (all ages and whole period) SES measure significant
3	(33)	New York, USA	24 April-7 July 2009	Active hospitalized- based surveillance and passive collection of on demographics, risk conditions, and clinical severity	996 H1N1 patients (929 Confirmed and 67 probable)	Individuals	Individual cases, but SES of cases based on United Hospital Fund Poverty neighborhoods	Active hospitalized- based surveillance and passive collection of on demographic, risk conditions, and clinical severity	Hospitalizatio ns per 100,000	Population at risk in high, medium or low poverty areas	Tertiles of percentage of residents living <200% of the federal poverty level according to the 2000 US Census	Cross- sectional univariat e design	Bivariate Rate ratios with 95% Cl	Age	Meta analysis: Yes SES measure significant
4	(34)	New Zealand	Nov 2009- March 2010	Randomly selected serum samples from GPs countrywide and in the Auckland region 3 months after the pandemic	1,687 serum samples	Individuals	Individual observations	seroprevalenc e data coupled with questionnaire s evaluating demographics and potential risk factors.	H1N1 Infection rates (Seroprevale nce; Antibody titer >1:40)	Baseline immunity was measured from 521 sera collected during 2004 to April-2009	Damp housing (poor housing conditions is an often used measure of SES, see (67))	Multi- stage random cross- sectional design	Multivariat e logistic regressions	Age, ethnicity, gender, vaccination history, chronic illness	Meta analysis: Yes SES measure ns.
6	(35)	Eight cities in Hamedan Province, western Iran	July- December 2009	Subjects (cases and controls) were selected from patients with signs and symptoms of	245 cases and 388 controls	Individuals	Individual observations	Data are from health centers on H1N1 infection status coupled with covariate	Cases were identified by pharyngeal soap specimens positive for	Controls were testing negative for influenza A virus using PCR	Education 1. low education: illiterate, primary school and	Unmatch ed case- control study	Multivariat e logistic regressions	Age, sex, pregnancy, suspected close contact with	Meta analysis: Yes

				respiratory tract infection who were referred to health centers				data from interviewers using predetermine d questionnaire s	influenza A virus using PCR		middle school. 2. High education: high school and academic			influenza patients, smoking, region (urban rural), trip during last week, chronic disease, influenza vaccination , and BMI	SES measure significant
7	(26)	England & Wales	12 Oct 1918-5 April 1919	Influenza deaths in all parts of E & W	-	Aggregate: 305 adm. units & 62 counties	Aggregate	Deaths from National vital registration systems and demographic data from the 1921 census	Influenza death rates and reproduction number R (the average number of secondary cases generated by an index case)	Population at risk	People per acres, dwellings and rooms	Cross- Cross- sectional control- variable design	Spearman correlation s, using a Bonferroni correction for multiple comparison s (transmissi bility and death rates) and multivariat e logistic (26)regressi ons (death rates)	Population size, fall and winter waves, urban-rural	Meta analysis: No There were no association between transmissib ility, death rates and indicators of population density and residential crowding
10	(36)	Global (226 studies from 50 countries met the inclusion criteria)	2009-2010	Described confirmed, probable or suspected cases of 2009–2010 influenza A (H1N1) infection; and (2) described patient(s) who were critically ill	10695	Individuals	Aggregate, Global	Medline, Embase, LiLACs and African Index Medicus to June 2009- March 2016	Mortality associated with H1N1- related critical illness	Population at risk	World Bank economic development status of countries (High, upper middle, lower middle income)	Systemat ic review and meta analysis	Random effects meta regressions	No controls	Meta analysis: No SES measure significant
11	(37)	Mexico	10 April to 13 July 2009	Data from clinical files from all influenza A deaths	239 H1N1 cases and 85 influenza A controls	Individuals	Individual observations	Patients' clinical records and reporting forms from health facilities	Lab- confirmed A/H1N1 deaths (rt- PCR-test)	Seasonal influenza A deaths	Education (Primary school or less, Junior high school, High school or higher level)	Case- control	Propensity score multivariat e logistic regressions	Sex, age, have a partner, smoking, employme nt status	Meta analysis: Yes SES measure ns.

12	(38)	Canada (Quebec)	16 April-1 July 2009	Lab-confirmed H1N1 hospitalizations or ICU admission/ deaths	321 hospitalized incl. 47 ICU and 15 deaths (cases) and 395 non- hospitalized N1H1 infection patients (controls)	Individuals	Individual observations	Suspected H1N1 case at primary care clinics or hospital coupled with other data from standardized questionaries'	Lab- confirmed influenza associated hospitalizatio ns (24 hrs or more) and ICU/death	Non- hospitalized H1N1 patients (vs. hospitalized) or hospitalized non-severe (vs. ICU/death)	Education (high school not competed, non- University certificate, university degree)	Case- control	Multivariat e logistic regressions	Age, sex, HCW, smoking, flu jab in 2008-09, consultatio n, days after onset, antiviral use, pregnancy, underlying condition, obesity	Meta analysis: Yes (both outcomes included) SES measure ns.
13	(39)	Spain (Andalusia, Basque Country, Catalonia, Castile and Leon, Madrid, Navarra and Valencia)	July 2009- Febr. 2010	Lab-confirmed hospitalization (RT-PCR)	699 hospitalized and 703 non- hospitalized cases of a(H1N1) infection	Individuals	Individual observations	Data from 36 hospitals and primary care centers in 7 spanish regions	Lab- confirmed hospitalizatio ns (patient admitted to hospital for > 24 hours with RT-PCR confirmed H1N1 infection)	Non- hospitalized people with RT-PCR confirmed infection with the same pandemic virus	Education Secondary or higher	Case- control	Multivariat e logistic regressions	Age, sex, ethnic group	Meta analysis: Yes SES measure significant. However, data on underlying health collected but not controlled for
14	(27)	USA (Chicago)	29 Sep-16 Nov 1918	Influenza and pneumonia (PI) mortality	7971 PI deaths	Individuals	Individual deaths, but SES measured at the level of 496 Census tracts	Historical maps of point- level mortality incidence, spatial data and near contemporan eous census data	Influenza and pneumonia mortality and reproduction number (R0)	Population at risk	Census tract- based SES (% illiteracy, unemployme nt, homeowners hip, population density)	Cross- sectional control- variable design	Poisson regressions with GEE and Spearman correlation S	Age	Meta analysis: Yes % illiterate sig. predictor of mortality controlling for age and all other SES variables. Sig. ass btw. RO and population density, illiteracy, and

15	(40)	USA (Alaska, Arizona, New Mexico, Oklahoma, Wyoming)	15 April 2009-31 Jan 2010	Lab-confirmed A (H1N1) fatalities; state residents who died relating to infection with lab-confirmed influenza A	145 fatal cases and 236 controls	Individuals	Individual observations	Medical records (notifiable disease reports), death certificates, interviews with cases and	Lab- confirmed A(H1N1) fatalities using RT- PCR test	Outpatients with lab- confirmed H1N1	Healthcare insurance, >1,5 persons per room, graduated high school, poverty (<us\$ 25000/year)</us\$ 	Matched case- control	Logistic regressions	Age, sex, race, barriers to health care access, urban-rural health seeking behavior,	unemploy ment but not homeowne rship. Meta analysis: Yes (poverty) none of the SES variables were
16	(41)	USA (23 counties)	23 April-8 June 2009	English language media reports of A (H1N1) cases	32 public primary & secondary schools with at least one confirmed H1N1 case and 6815 control schools located in the same 23 counties as the case schools	Aggregate, Schools	Aggregate	controls Health Map	Media reports of A (H1N1) cases	Schools located in the same 23 counties as the case schools without N1N1 cases	Title 1 school (Whether or not schools qualifies for a federal funding to support economically disadvantage d students.	Matched case- control	Logistic regression	vaccination status, health behaviors, pre-existing conditions. Highest grade at school and size	Meta analysis: Yes SES measure significant
17	(42)	Australia (Brisbane)	Jan-Dec 2009	Lab-confirmed daily A (H1N1) cases	11,979 cases	Individuals	Individual cases, but SES measured for postcode areas (SLA)	Queensland Health, SEIFA data from Australian Bureau of Statistics (ABS) & daily rainfall & temperature data from the Australian	Lab- confirmed daily A (H1N1) cases	Rest of the population with no lab- confirmed case	SEIFA: socioeconomi c index for areas, incl. education, occupation and wealth	Cross- sectional control- variable design	Bayesian spatial conditional autoregress ive poisson models	Rainfall (mm) and temperatur e (degrees Celsius)	Meta analysis: No SES measure ns.

								Bureau of Meteorology							
18	(43)	Australia (Queenslan d)	7 May-31 Dec 2009	Lab-confirmed A (H1N1) cases	-	Individuals	Individual cases, but SES measured for postcode areas (SLA)	Queensland Health, SEIFA data from Australian Bureau of Statistics (ABS) & daily rainfall & temperature data from the Australian Bureau of Meteorology	Lab- confirmed daily A (H1N1) cases	Rest of the population with no lab- confirmed case	SEIFA: socioeconomi c index for areas, incl. education, occupation and wealth	Cross- sectional control- variable design	Flexible Bayesian, space-time. SIR models	Rainfall (mm) and temperatur e (degrees Celsius)	Meta analysis: No SES measure significant
19	(44)	England (West Midlands)	16 April-6 July 2009	Lab-confirmed A (H1N1) cases	3063 cases	Individuals	Individual cases, but SES measured for postcode areas	FluZone, a national surveillance database with case reporting. SES data from IMD 2007	Lab- confirmed A (H1N1) cases	Rest of the population with no lab- confirmed case	Index of Multiple Deprivation of an area and postcodes (IMD 2007). It includes seven dimensions: income, employment, health deprivation and disability, skills and training, barriers to housing and services, crime and disorder, living environment SES indexes IMD 2007: Index of Multiple Deprivation	Cross- sectional	Descriptive analysis	Age, sex, ethnicity, exposure and illness severity, but no controls were made	Meta analysis: No SES measure significant
21	(45)	Canada (Rural community of British Columbia:	Late April/early May 2009	One elementary school and on- reserve aboriginal participants:	83 ILI cases and 281 non-ILI cases	Individuals	Individual observations	Phone survey of households with at least one child enrolled in	Influenza-like illness (ILI)	Non-ILI cases	Household density	Cross- sectional control- variable design	Generalise d linear mixed models (GLMM)	Age, chronic conditions, aboriginal status	Meta analysis: Yes

23	(46)	local town and surroundin g First Nation reserves	July 2009-	Patients ared 6	105	Individuals	Individual	any of the community schools	lab-	Outpatient	Parents	Matched		received vaccination 2008-09	SES measure ns.
23	(40)	(Andalusia, the Basque Country, Castile and Leon, Catalonia, Madrid, Navarre, and Valencia	Feb. 2010	months aged o months to 18 years with confirmed H1N1 at 32 Hospitals of the Spanish National Health survey	confirmed H1N1 hospitalized cases and 184 outpatient controls with confirmed H1N1		observations	National Health Service	confirmed A (H1N1) inpatient (hospitalized) cases	(non- hospitalized) controls with confirmed H1N1	education (Primary or lower vs. secondary or higher)	case control, prospecti ve, observati onal study	regressions	pulmonary, disease, neurologica l disease, diabetes mellitus, cardiovascu lar disease, and non- Caucasian ethnicity	analysis: Yes SES measure significant
24	(47)	Brazil (Paraná)	2009	Patients (in- and outpatients) with lab- confirmed H1N1 infection	1911 Inpatient cases and 2829 outpatients controlls	Individuals	Individual observations	Brazilian Ministry of Health National Case Registry Database	Lab- confirmed A (H1N1) inpatient cases and outpatient controlls	Lab- confirmed H1N1 outpatients controlls	Level of education (Literate vs. illiterate)	Retrospe ctive observati onal case- control study	Logistic regressions	age, gender, ethnicity, having a comorbiditi y, number of comorbiditi s, 8 types of underlying health conditions, smoking, clinical manifestati ons, treatment (Oseltamivi r), time to treatment initiation in days	Meta analysis: Yes SES measure significant
26	(48)	USA (New York)	1 Oct 2009-28 Feb 2010	Lab-confirmed illness among adults and children	128 inpatients with lab- confirmed flu cases matched by age and month of	Individuals	Individual observations	Sentinel surveillance system used by NYC Department of Health and Mental Hygiene;	Lab- confirmed A (H1N1) inpatient cases and outpatient influenza A controls	Non- hospitalized lab- confirmed influenza A controls (assumed to be H1N1)	Education (Some college or more, not a high school graduate, high school graduate), annual	1:2 case- control study design, matching by age group and	Conditional multivariat e logistic regressions	Access to care (primary physician, insurance) and at least one underlying	Meta analysis: Yes Education among adults and neighbourh

28	(49)	Canada		Recidents of all	diagnosis with 246 non- hospitalized lab- confirmed influenza A controls (assumed to be H1N1) 401 self.	Individuals	Individual	telephone interview to collect clinical and demographic data	lab	Non-	household income and neighbourho od poverty (% Persons living below the federal poverty line)	Case-	Binomial or	condition (various diseases, pregnancy and obesity)	ood poverty among children and adults were significant
		(Ontario)	in 2009 (April 23- July 20 and August 1 Nov 6)	Residents of all ages who received nasopharyngeal swabs and tested positive for H1N1	401 self- reported hospitalizati on cases and 624 non- hospitalized controls (150 hospitalized and 184 non- hospitalized in wave 1, 251 hospitalized and 440 non- hospitalized in wave 2)		hospitalizations by individual- level education and contextual level SES variables	data and standardised phone interviews	confirmed A (H1N1) inpatients (hospitalized patients)	Non- hospitalized controls H1N1 positives	level education level (of adult participants aged 18 years or older & of parents respondents for children younger than 16 years), household density (individuals per sleeping rooms) and several contextual level SES variables (employment , education, income, social and material deprivation)	control study	Binomial of multinomia I logistic regression, using generalized estimating equations to account for clustering/ dependenc e in the data	Age and gender	Analysis: Yes (Total deprivation and individual and parental education for both waves). First wave: High school education or less and living in a neighborho od with high material or total deprivation sign. Second wave: High school education or less sign. Moreover, a mediation analysis showed that clinical risk factors explain only a portion of the ass. btw SES &

															hospitalizat ion.
29	(50)	USA (California)	3 April-15 Sep 2009	Reported counts of H1N1 hospitalizations, not lab- confirmed	2010 hospitalizati ons	58 counties	Aggregate	California Department of Public Health surveillance data	Reported H1N1 Hospitalizatio ns	Population at risk in each 58 counties	Education (% of persons aged > 25 years with a high school diploma); Poverty (% of pop under poverty line); Income (median HH income in dollars)	Cross- sectional control- variable design	OLS	Sex, race/ethnic ity, age, climate, agricultural and transportat ion variables	Meta analysis: No The 3 SES variables were ns. but results not shown
30	(13)	Norway	1918-1919	PI deaths covering the whole of Norway	16,005 deaths	Aggregate, 351 medical districts	Aggregate	Regional district physician reports and census data	PI mortality reported to a doctor	Population at risk	% receiving public support due to poverty; Wealth per person (in 1000 Nok); Average number of persons per room	Cross- sectional control- variable design	OLS	age, sex, ethnicity, % in fishing, coast- inland, summer wave exposure	Meta analysis: No Poverty and wealth, but not crowding was sign.
31	(14)	Norway (Frogner and Grønland/ Wexels parishes in Oslo)	1 Feb 1918-1 feb 1919	PI deaths in the two selected parishes	250 Pl deaths	Individuals	Individuals	Death certificates coupled with census data	PI mortality reported on death certificates	Population at risk	Occupational based social class, apartment size (1-8 rooms +) and parish	Longitudi nal multivari ate survival analysis	Cox regressions	Age, sex, marital status	Meta analysis: Yes (occupation based social class) Apartment size and parish but not occupation- based social class was sign.
34	(51)	Spain (Andalusia, the Basque Country, Castile and Leon, Catalonia,	July 2009- Feb 2010	Patients recruited from hospitals & primary health care clinics & emergency units during the	699 hospitalized and 699 non- hospitalized with Lab- confirmed	Individuals	Individuals	Cases filled in a questionaries' at the health centre or by phone to obtain	Hospitalized lab- confirmed A (H1N1) cases	Non- hospitalized (family physician visits at primary health care	Education (Secondary or higher vs no formal education or primary education)	Multicent er Matched case- control (accordin g to age,	Binomial logistic regression using Cox conditional logistic regressions	Sex, ethnicity, prior preventive information , prior pandemic	Meta analysis: Yes (education) Education decreases

		Madrid.		peak of the	cases			covariate		clinics and	and	date of		vaccination	&
		Navarre.		influenza A	A(H1N1)			information		emergency	overcrowding	hospitalis		previous	Overcrowdi
		and		2009 nandemic	cases using					units) cases	(helow the	ation in		outnatient	ng
		Valencia)		in	(RT-PCR)					of A(H1N1)	fifth	of the		care or	increases
		Valencia								infection	nercentile of			emergency	outcome
										meetion	the	21 days		care and	significantly
											distribution of	21 uays) Q.		unfavourab	Significantiy
											square	or ovince		le medical	
											square	of the		factors	
											nietres			lacions	
											avaliable per	residence		(SITIOKING,	
											person in the	or the		norbia	
											normai	case)		obesity	
											residence of			(BIVII >40),	
											all study			nypertensi	
											participants)			on, lung	
														disease,	
														cardiovascu	
														lar disease,	
														kidney	
														failure,	
														diabetes,	
														chronic	
														liver	
														disease,	
														immunodef	
														iciency,	
														disabling	
														neurologica	
														l disease,	
														malignancy	
														,	
														transplanta	
														tion,	
														cognitive	
														dysfunction	
														, seizure	
														disorders	
														and	
														rheumatic	
														diseases)	
35	(15)	Global	1918-20	Data for	27	Countries	Aggregate	Human	Excess	Population at	Income (Per-	Cross-	OLS with	Latitude, to	Meta
		study		populations	countries	and states		mortality	mortality by	risk	head income	sectional	log of	control for	analysis:
		covering 27		where vital	for 1918-			database, B.R.	comparison		in real	control-	pandemic	diurnal	Yes
		countries		registrations are	1920, 24 US			Mitchels	of annual		international	variable	mortality	temperatur	
		with high-		believed to be	states with			International	death rates		dollars	design	, and log	e	Log per-
		quality vital		more than 80%	data			Historical	during the		(corrected for	, j	income and	fluctuation	head
		registration		complete,	available for			Statistics	pandemic to		price		absolute		income in
		data for the		supplemented	the period.			Series,	the average		changes)		value of		1918 sign.
				with	and nine			subnational	of annual		<u> </u>		latitude		J

		1918-1920 pandemic		subnational data for US states & provinces of "pre-partition" India	Indian provinces			data from US states and provinces of prepartition India	death rates before and after the pandemic						
36	(52)	Canada (Ontario)	13 April-20 July 2009	Residents (children and adults) tested for A(H1N1) using RT-PCR	240 cases and 112 controls among children (< 18 years) and 173 cases and 229 controls among adults (>18 years)	Individuals	Individuals H1N1 status by individual education and several ecological SES variables	Clinic-based sample from Ontario, individuals presented to clinics for medical care + standardised telephone interviews	Lab- confirmed 2009 pandemic cases	RT-PCR negative H1N1 cases	Individual Education (high school or less and post- secondary school completion) Area measures: Material, social, total, low employment rate, low income.	Test- negative case- control study	Logistic regressions	age, gender, bmi, ethnicity, current smoker, underlying medical conditions, household density, children in household, receipt of 2008 seasonal vaccine, tested prior to 11th June 2009, healthcare provider, Toronto residence, immigrant category	Meta analysis: Yes (Total deprivation , one for adults and one for children). None of the SES variables were sign. in univariate models and were therefore not entered in the multivariat e models.
37	(53)	Europa (30 EU/EFTA countries)	May 2009- May 2010	Confirmed and notified fatal pandemic influenza A(H1N1) deaths in EU/EFTA region	2896 fatal cases	Aggregate, Countries	Aggregate	ECDC and Eurostat	Lab- confirmed and notified deaths	Population at risk	GDP per capita	Cross- sectional control- variable design	Random effect Poisson regressions	greenhouse gas emissions, concertatio n of particular matter, latitude, hospital beds per 100,000 inhabitants, per capita governmen t expenditur	Meta analysis: Yes GDP per capita was sign. in univariate model, but not in multivariat e model.

38	(54)	Australia	Sep. 2009-	Adult subjects in	1184	Individuals	Individual	Blood samples	Haem	Seronegative	Australian	Cross-	Multivariat	e on health, unmet need for medical examinatio n/treatmen t, Gini coefficient, employme nt rate, proportion of population aged 65+, old age dependenc y ratio, women per 100 men	Meta
38	(54)	Australia (Barwon statistical division in Southeaste rn Australia)	Sep 2009- May 2010	Adult Subjects in Geelong Osteoporosis Study, a group randomly selected from electoral rolls, were invited to participate in this sub-study to provide blood samples and complete a questionnaire. Sample of seropositive adults prior to the availability of a vaccine	individuals (129 seropositive s and 1055 seronegativ es)	Individuals	seropostive status by ecological SES variables	and self- report questionnaire	naem agglutination inhibition test, seroposotivit y was defined as a titre > 1:40	persons	Australian Bureau of Statistics' Index of Relative Socioeconomi c Advantage and Disadvantage (IRSAD) Area-level measure of education, occupation, income, unemployme nt and household structure (quintiles 1-5)	cross- sectional control- variable design	e logistic regressions	age, DMI, obese, current smoker, healthcare worker, childcare worker/tea cher, employme nt status, highest level of education, lives alone, lives with children aged <12 years, chronic respiratory disease, pregnancy, chronic heart diabetes	nieta analysis: Yes The SES variable was significant in multivariat e models

39	(31)	England and Wales (62 of 82 counties)	Week ending 29 June 1918 to 10 May 1919	Counties with SES info from 2000 which could be linked to counties in 1918	Sample covers 333 units and 62 out of 82 counties	Individual deaths	Aggregate	Weekly influenza deaths & annualised rates/1000 population, collated by the Registrar General's Office in 1920	Influenza mortality	Population at risk	The average of Ward Scores from the Indices of Deprivation 2000: District level Presentations for England It combines a number of indicators which cover a range of domains (Income, Employment, Health Deprivation and Disability, Education, Skills and Training, Housing and Geographical Access to Services) into a single deprivation score for each area.	Cross- sectional control- variable design	non- parametric Spearman correlation coefficient	Pre- pandemic mortality, age, population size (persons/ac re)	Meta analysis: No SES measure sign. in waves 1 and 3, but not wave 2
40	(55)	USA (state of Massachus etts)	26 April-30 Sep 2009 (before the vaccine became available)	Patients met the following inclusion criteria: 1) Patients were discharged from acute care hospital. 2) assigned 1 or more diagnosis codes corresponding to a grouping of ICD-9. 3) younger than 65 years	4874 hospitalizati ons of which 526 admitted to ICU	Individuals	Individual hospitalizations, but area-level SES variables	Linked hospital discharge and American Community Survey and US Census data	Lab- confirmed H1N1 ICU stays	Hospitalized non-ICU patients	% of pop below poverty level 2006-2010 for zip code areas	Cross- sectional control- variable design	Logistic regressions	Racial/ethn ic groups, gender, age, admission though EP/OP	Meta analysis: Yes Those in less affluent SES groups had sign. lower risk of ICU stay than the most affluent SES group

41	(56)	USA (341	July 2009-	Only states with	Sample size	Aggregate,	Aggregate	County-level	H1N1 deaths	Population at	Per capita	Univariat	Correlation	No controls	Meta
		US counties	June 2010	consistent	not given.	341		H1N1 deaths	according to	risk	personal	e and	S		analysis:
		in 14 states)		reporting and		counties		are from CDC	CDC		income;	cross-			Yes
				updating of				and SES			median	sectional			
				H1N1 statistics,				variables from			household	design			In
				that is reporting				US census and			income;				univariate
				standards met				CDC			educational				models
				by the CDC							attainment				poverty
								11% of US			(persons aged				positively
								counties			>/= to 25				predicted
								covered, SES			vears),				mortality
								measures are			percent high				while
								representativ			school				income and
								e to similar			graduate or				education
								characteristics			higher.				variables
								to USA as a			educational				negatively
								whole			attainment				nredicted
								Whole			(nersons aged				mortality
											>/=25 vears)				Multivariat
											percent				e modelling
											bacholor's				was not
											dogroo or				was not
											highor:				carrieu out.
											neerle of all				
											people of all				
											ages in				
40	(57)	Casia	1h. 2000	Casas	715	te aliviale a la	الموازر بزوار بواو	Linesited and	Lah	lufa ati a a	poverty (%)	Matabad	Laciatia	la madal	Mata
42	(57)	Spain	July 2009-	Cases and	715 primary	Individuals	Individuals		LdD-	medal	occupational	Matcheu	LOGISTIC	for model	mahaia
		(Anualusia,	Feb 2011	controls were				primary care	commed	model:	Dased Social	case-	regressions	infontion.	dridiysis:
		the Basque		aged > 18 years	HINI cases,			data	HINI Cases	Controis	class (ivianual	control		infection:	res
		Country,		and picked from	715 otner				and	were primary	vs. non-	study		age,	
		Castile and		36 hospitals and	diseases				hospitalizatio	care patients	manual			pregnancy,	SES variable
		Leon,		22 primary-care	than ILI				ns (RT-PCR)	with other	workers)			diabetes	sign. in
		Catalonia,		centres	primary					disease than				and	multivariat
		Madrid,			centre					ILI				influenza	e models
		Navarre,			controls,					Hospitalizati				vaccination	for both
		and			and 406					on model:				. In	infection
		Valencia)			hospitalized					cases were				hospitalizat	and
					H1N1 cases					primary care				ion model:	hospitalizat
										centre H1N1				age,	ion risks
										cases				pregnancy,	
														COPD,	
														cardiovascu	
														lar disease,	
														diabetes,	
														and	
														influenza	
														vaccination	

44	(16)	England	1 June 2009-18 April 2010	All deaths reported due to pandemic flu	349 out of 365 deaths (95,6%) in England	Individual deaths	Aggregate: Individuals aggregated up to five approximately equal population groups to create area deprivation quintiles	National Health Service; basic set of demographic information	Pandemic deaths, no info whether these were lab- confirmed or not, but they were probably lab- confirmed	Population at risk	Index of Multiple Deprivation of an area and postcodes (pooled measure based on income, education, housing, health and crime) (1-5, where 5 is least deprived and 1 most deprived)	Cross- sectional table analysis	Direct age- sex standardiza tion of mortality rates using mid-point 2009 pop estimates for England	Age, sex, and Urban and rural areas	Meta analysis: Yes SES variable significant with and without urban-rural interactions
45	(58)	Global: 20 countries covering 35% of the world population	2009 pandemic mortality	Weekly virology and underlying cause-of-death mortality time series for 2005– 2009	123,000- 203,000 deaths in the last 9 months of 2009	Aggregate	Aggregate	Weekly virology data from the WHO FluNet and national mortality time series	Excess mortality associated with the 2009 pandemic	Population at risk	Gross national income (GNI) per capita (US dollars	Univariat e cross- sectional time- series analysis	Multivariat e OLS regressions	-	Meta analysis: No. Coefficients not given in the paper or in online appendix Estimates between Gross national income and mortality was ns.
48	(28)	New Zealand	27 Aug 1918- March 1919	Male soldiers (New Zealand Expeditionary Forces (NZEF) in both hemispheres in 1918-1919 pandemic period)	930 deaths, taken from 1000 randomly selected records	Individuals	Individuals	Death certificates	Influenza, pneumonia, and bronchitis deaths	NZEF population at risk	Pre- enlistment occupational based social class (1-3 (most privileged), 4- 6 and 7-9 (least privileged)	Univariat e cross- sectional design	Univariate Rate ratios	No controls	Meta analysis: Yes SES measure not significant
49	(29)	New Zealand	20 July-13 Oct 1918	Male navy soldiers (military personnel in HM New	77 deaths, 1117 military personnel plus 100	Individuals	Individuals	Death certificates	Influenza and pneumonia deaths	Population at risk at HM New Zealand Transport	Occupation- based social class (1-6 and 7-9 (1 is company	Cross- sectional control- variable design	Multivariat e logistic regression	age, military rank, rurality score,	Meta analysis: YES

				Zealand Transport troop ship Tahiti)	crew (total pop at risk 1217)					troop ship Tahiti	manager and 9 is labourer)			military unit	SES measure not significant
50	(30)	USA (New London, Connecticu t, Baltimore, Maryland, Augusta, Georgia, Macon, Georgia, Des Monines, Iowa, Lousville, Kentucky, Little Rock, Arkansas, San Antonia, Texas, San Francisco, California	1 Sep-Dec 1918	Nine urban localities with a population of at least 25,000, randomly selected, only white populations	94,678 individuals, 26,824 morbidity cases (influenza, pneumonia and "doubtful" cases), X deaths	Individuals	Aggregate	Survey data (e.g. Baltimore: sample 33,776 (5.68% of pop)	Self-reported pandemic morbidity, mortality and case fatality rates (Morbidity: Population at risk in canvassed areas and lethality: mortality among the sick	Economic status (Very poor; poor; moderate; well-to-do (based on the enumerators impression)	Cross- sectional control- variable design	Cross- tables and direct standardiza tion techniques to control for age- differences etc.	age, sex, size of household	Meta analysis: Yes SES measure sign. related with both outcomes.
51	(17)	USA (New Haven County, Connecticu t)	2009-10	Hospitalized, laboratory confirmed influenza among adults 18 years and older	213 hospitalizati ons	Individuals	Individual lab- confirmed hospitalizations but neighbourhood level SES measures (185 Census tracts)	Surveillance data (Connecticut Emerging Infections Program's influenza- associated hospitalisatio n surveillance system) + chart reviews & interviews with healthcare providers & with patients or their proxies. Census tract level data obtained from	H1N1 lab- based hospitalizatio ns	Population at risk in New Haven	Below federal poverty, no high school diploma, median income	Cross- sectional design	Age- adjusted incidence of influenza- associated hospitalizat ions among adults by neighbourh ood SES characterist ics.	Age.	Meta analysis: Yes All 3 SES measures are sign. and display a clear social gradient

								the US Census Bureau's 2006-2010 American Community Survey (ACS)							
52	(59)	USA (state of New Mexico)	14 Sep 2009-13 Jan 2010	Hospitalized, positive influenza hospitalization, Mechanical ventilation and death among the hospitalized	926 lab- confirmed H1N1 hosp. Patients, 106 mechanicall y ventilated and 35 deaths	Individuals	Individuals outcomes, but 33 counties divided into 4 quartiles by median household income	New Mexico Department of Health statewide surveillance of hospitalizatio ns and deaths. Estimates from the US Census Bureau's Small Area Income and Poverty Estimates programme.	H1N1 related hospitalisatio ns, mechanical ventilation and death	Comparison group for hospitalizatio ns: general statewide population; Comparison group for mechanical ventilation and death among those hospitalized were the hospitalized	Household Income (County median household annual income quartile)	Cross- sectional control- variable design	Poisson and logistic regressions	Hospitalizat ion model: age, gender, and race/ethnic ity. Mechanical ventilation model: age, gender, and race/ethnic ity, obesity, high risk conditions, neuraminid ase treatment, time from illness onset to seeking medical care. Mortality risk model: ns in unadjusted model, therefore no multivariat e model	Meta analysis: Yes SES measure sign. in model for hospitalizat ion risk but not in models for mechanical ventilation and death
53	(60)	Canada (Winnipeg, Manitoba)	Oct- Dec 2009	Adults presenting to three inner city community clinics were recruited as study participants	458 study participants (174 participants Oct-12 Nov, before the vaccine was available),	Individuals	Individuals	Serological testing and questionnaire data	Seropositive cases	convenience sample population at risk	Education (High school or not) and annual household income	Univariat e & cross- sectional analysis	Prevalence estimates with exact binomial 95% Cl using Clopper	no controls	Meta analysis: Yes The two SES measures ns. for both periods.

		1 1	1 1	using	206 cases	1	1		1			1	Pearson	1	1
				convenience	13 Nov-Dec,	1	1		i I		ľ	1	intervals	1	1
				sampling.	which did	1	1		i I		ľ	1		1	1
				1	not get take	1	1		i I		ľ	1		1	1
		1 1	1 1	1	the vaccine;	1	1		1			1		1	1
				1	78	1	1		i I		ľ	1		1	1
				1	participants	1	1		i I		ľ	1		1	1
				1	enrolled on	1	1		i I		ľ	1		1	1
				1	or after Nov	1	1		i I		ľ	1		1	1
				1	13 which	1	1		i I		ľ	1		1	1
				1	did get the	1	1		i I		ľ	1		1	1
		1 1	1	1	vaccine are	1	1		1			1		1	1
		1 1	1	1	not	1	1		1			1		1	1
		1 1	1	1	included in	1	1		1			1		1	1
		1 1	1	1	our meta-	1	1		1			1		1	1
				1	analysis)	1	1		i I		ľ	1		1	1
55	(61)	Australia	2009	Antibody titers	1689	Individuals	Individual	Serological	lab-	serological	2006	Case-	Logistic	age.	Meta
	. ,	(Northern	(June-	were	serologic	1	seropositive	data.	confirmed	specimen	Statistical	control	regressions	gender.	analysis:
		Territory)	, August)	determined by	specimen	1	status but SES	specimens	seropositives	prepandemic	Local area	design	U	aboriginal	Yes
		, ,		hemagglutinati	post	1	measure is	from	and attack	(controls	(SLA) was			and Torres	1
		1 1	1	on inhibition	pandemic	1	aggregate	pathology lab.	rates	January 10 to	linked to	1		strait	SES
				against	(cases 3-30	1		and computer	(difference	May 29.	Australian	1		islanders.	measure
		1 1	1	reference virus	September	1	1	matching of	between post	2009)	Bureau of	1		region	ns.
				A/California/7/	2009) and	1	1	data to	and pre-	,	Statistics'	1			1
				2009 on serum	445	1	1	indigenous	pandemic		Socio-	1		1	1
				samples	serological	1	1	status and	immunity)		Economic	1		1	1
		1 1	1	collected	snecimen	1	1	SEIFA			Indexes for	1		1	1
				opportunisticall	prenandemi	1	1	measures	i I		Ara (SEIFA)	1		1	1
				v from	c (controls	1	1	measures	i I		SEIED	1		1	1
				outnatients	lanuary 10	1	1		i I		measures	1		1	1
				outputients	to May 29	1	1		i I		(quintiles) use	1		1	1
				1	2009)	1	1		i I		information	1		1	1
		1 1	1 1	1	2005)	1	1		1		from census	1		1	1
				1	1	1	1		i I		data relating	1		1	1
				1	1	1	1		i I		to material	1		1	1
				1	1	1	1		i I		and social	1		1	1
		1 1	1 1	1		1	1		1		and Social	1		1	1
		1 1	1 1	1		1	1		1		ability to	1		1	1
				1	1	1	1		i I		ability to	1		1	1
				1	1	1	1		i I		participate in	1		1	1
				1	1	1	1		i I		society to	1		1	1
		1 1	1 1	1		1	1		1		optain a	1		1	1
				1	1	1	1		i I		broad level of	1		1	1
				1	1	1	1		i I		relative	1		1	1
				1	1	1	1		i I		socioeconomi	1		1	1
				1	1	1	1		i I		c status for	1		1	1
	1 1	1	(I	1 1	1	1 1	1	1	1 /	1	each SLA	1	1	1 '	1

57	(62)	Canada (province of Manitoba)	2 April-5 Sep 2009	Confirmed H1N1 cases for whom the final location of treatment was known	795,569 community cases, 181 hospitalized but not ICU, 45 admitted to ICU	Individuals	Individual H1N1 case status, but area income quintiles	Lab-confirmed H1N1 data, hospital data and data collection – form completion via interviews	lab- confirmed community cases, hospitaliatio ns and ICU admissions	Two control groups. Community cases (vs. hospitalizatio ns) and hospitalized, non ICU (vs. ICU).	Income based on postal codes (Top three quintiles vs the bottom two quintiles)	Cumulati ve case- control design	Logistic regressions	Age, gender, pregnancy, ethnicity, any comorbidit y, Interval from symptom onset to antiviral treatment, rural vs urban	Meta analysis: Yes SES measure ns. in models for both hospitalizat ions and ICU admissions
58	(63)	China (Beijing)	1 Aug-30 Sep 2009	Households of hospital healthcare workers. Case households were: (1) has an index patient of H1N1. (2) index case was quarantined in household from onset of diagnosis to 7 days after onset of illness; (3) secondary case had potential contact with index patient; (4) symptoms onset of secondary case occurred within 7 days since last known contact with index case during infectious period of index case; (5) RT-PCT confirmation date of secondary case occurred within	54 case households (HH with a self- quarantine d index patient and a secondary case), 108 control households (HH with a self- quarantine d index patient and a close contact)	Individuals	Households	Household transmission data	Lab- confirmed secondary cases (RT- PCT)	Households with a self- quarantined index patient and a close contact	Education (High school and higher vs middle school and lower)	1:2 matched case- control design	Conditional logistic regression	Sharing room with index case- patient; Ventilating room every day; and Frequency of hand washing	Meta analysis: Yes SES measure significant

S9(64)England27-30 April 2009Lab-confirmed ful household members precivusly received a vaccine against pandemic H1N1 2009Individuals is measured for same (86.6%)National is measured for same 232378 superPopulation at riskIndex of resive of riskCross- science of riskPopulation at regressions of an area and variableAge, received a vaccine analy received a vaccine against pandemic fluit detrined failities (86.6%)Individual lab- received pandemic fluit received pandemic fluit pandemic fluit detrined failities (86.6%)National received received pandemic fluit pandemic fluit pandemic fluit pandemic fluit pandemic fluit received for sistNational reserved received reserved reserved received reserved faulties sistPopulation at reserved reserved reserved reserved reserved reserved faulties sistMational reserved reserved reserved reserved reserved faulties sistPopulation at reserved<	
Image: Second	
LabLa	
Image: Second	
Image: specific constraints (a)period of index case; (6) none of the household members previously received a vaccine against pandemic H1N1 2009 influenzaperiod of index case; (6) none of the household members previously received a vaccine against pandemic H1N1 2009 influenzaperiod of index case; (6) none of the household members previously received a vaccine against pandemic H1N1 2009 influenzaperiod of index case; (6) none of the household members previously received a vaccine against pandemic H1N1 2009 influenzaperiod of index influenzaperiod index case; (6) none of the household members previously received a vaccine against pandemic H1N1 2009specific confirmed tab-confirmed deaths, but SES is measured for 32378 superspecific confirmed deaths, but SES is measured for 32378 superNational Health Service is measured for 32378 superlab- confirmed deaths, but SES is measured for 32378 superPopulation at result addresIndex of Sectional (confirmed deaths, but SES is measured for 32378 superNational Health Servicelab- confirmed deathsPopulation at result addresIndex of Sectional (confirmed deathsPopulation at result addresPoisson result addresAge, result addresPoisson result addresAge, result addresPopulation addresPopulation addresPopulation addresPoisson addres </th <th></th>	
Image: Sectional control with the section of the household members previously received a vaccine against pandemic H1N1 2009 influenzaImage: Sectional control with the section of an area and designImage: Sectional control with the section of an area and designPopulation at riskIndex of with the section of an area and designPoisson regressions gender, rural vs YesMethod with the section of an area and design59(64)England27-30 April addition the pandemic flu deaths100Individual lab-confirmed deaths, but SES is measured for section of an area and designNational Health Service of an area and postcodes is measured for section of an area and designPoisson regressions of an area and designAge, with the analysis of the section of an area and designNational Health Service of an area and designIndex of gender, rural vs YesSES	
S9(64)England27-30 April 2009Lab-confirmed nembers previously received a vacine against pandemic H1N1 2009 influenzaIndividuals ab- confirmed fatalities (86.6%)Individuals sectional confirmed deaths, but SES is measured for 32278 superNational heath ServiceIab- confirmed deathsPopulation at riskIndex of Multiple Deprivation of an area and postcodes designCross- sectional control- variable designPoisson regressions gender, rural vs versAge, rural vs versMetric rural vs vers	
Image: Sectional pandemic flux (86.6%)England27-30 April 2009Lab-confirmed fatalities (86.6%)Individuals (86.6%)Individuals (86.6%)Individuals (86.6%)National (All states)Iab- (Confirmed) (All states)Population at (Confirmed) (All states)Index of (Confirmed) (Confirmed) (All states)Population at (Confirmed) (Confirmed) (All states)Poisson (Confirmed) (
Image: base base base base base base base base	
Image: space s	
Image: section of the section of th	
Image: section of the section of th	
Image: Note of the sector o	
59 (64) England 27-30 April Lab-confirmed 337 of 389 Individuals Individual lab- confirmed National lab- Population at Index of Cross- Multiple Poisson Age, Met 2009 AH1N1 lab- confirmed deaths, but SES health Service confirmed risk Multiple sectional regressions gender, anal b pandemic flu confirmed fatalities is measured for is measured for 32378 super etaltities postcodes design etaign etaign sectional sectional rural vs SES 0utput area output area area etaign etaign sectional etaign sectional rural vs ys 0 etait area area etaign etaign etaign sectional etaign sectional etaign sectional etaign etaign <t< th=""><th></th></t<>	
2009 AH1N1 lab- confirmed Health Service confirmed risk Multiple sectional regressions gender, anal pandemic <flue< td=""> flue confirmed deaths, but SES deaths deaths beprivation control- rural vs Yes deaths fatalities (86.6%) 32378 super of an area and variable urban SES output areas output areas confirmed fue aths sectional regressions gender, anal</flue<>	Poisson Age, Meta
pandemic flu deaths confirmed deaths, but SES deaths Deprivation control- rural vs Yes deaths fatalities is measured for is measured for of an area and variable urban SES (86.6%) 32378 super of an area and design SES	regressions gender, analysis:
deaths fatalities (86.6%) is measured for 32378 of an area and super variable urban (86.6%) 32378 super postcodes design SES	rural vs Yes
(86.6%) 32378 super postcodes design SES	urban
	SES
	measure
(LSOA) includes signi	significant.
seven	
dimensions:	
income,	
employment,	
health	
deprivation	
and disability,	
Skills and	
training,	
barriers to	
nousing and	
Services,	
disorder	
living	

* These numbers correspond to the 59 studies from which we extracted data. In the data extraction phase, we removed an additional 15 studies The final number of studies included in the narrative synthesis was therefore the 44 listed in this table, also see documentation in supporting materials.

medRxiv preprint doi: https://doi.org/10.1101/2020.12.09.20246496; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

Quantitative meta-analysis

The quantitative analysis includes 46 estimates drawn from 35 of the 44 studies included in the narrative synthesis (14-17, 27-30, 32-35, 37-41, 45-49, 51-57, 59-64), and a standard random effects analysis of all estimates pooled finds a pooled effect mean odds ratio of 1.4 (95% CI: 1.2 - 1.7), comparing the low to the high SES groups. The pooled estimate is statistically significant at the 0.1 percent level, which means that we would have been highly unlikely to see an estimate of this or larger absolute magnitude if the true mean of the effect distribution was zero. As seen in the forest plot, the individual study estimates differ in both precision and location, with more variation in less precise estimates as we would expect (Figure 1).

Figure 1 - Forest plot. The plot shows the included estimates sorted by precision, along with their weights in the pooled effect estimate.

The random effect analysis finds strong evidence of effect heterogeneity across studies, with an estimated 92% of the total variation across studies reflecting effect differences rather than sampling variation. The estimated standard deviation of the effect distribution is labelled tau and has a point estimate of 0.45 on the log scale. If the underlying effects at the study level are normally distributed around their expectation, this tau is the standard deviation of study effects. Roughly fifty percent of studies would then be estimating "true" ORs in the range of 1.1-1.9. The Cochran's Q test strongly rejects a test of zero heterogeneity

(p < 0.0001), confirming the choice of a random effects over a fixed effect model. Subsample analyses indicated similar results in studies using individual level and aggregate SES indicators, case control and relative risk outcome measures, and studying the 1918 and 2009 pandemic period (Figure 2 and Table 2).

Distinction	Туре	Number of estimates	Pooled RE effect	95% Cl lower bound	95% Cl upper bound	Tau
Measure	Ecological	20	1.38	1.05	1.80	0.53
	Individual	26	1.45	1.20	1.76	0.41
Period	1918	7	1.42	1.10	1.83	0.30
	2009	39	1.44	1.20	1.756	0.50
Method	Relative Risk	10	1.61	1.26	2.06	0.35
	Odds Ratio	36	1.39	1.14	1.69	0.49

Table 2 and Figure 2 - Subsample analyses. The plot shows point estimates and 95% confidence intervals for different subsamples of studies, with a grey circle indicating the number of studies in each subsample.

Subsamples were also defined by specific *combinations* of case and control outcomes (Figure 3). These suggest that studies examining the risk of flu outcomes relative to a general population (here defined as a control sample not selected on indicators of illness) tend to indicate a clear and substantial increased risk for lower SES groups. Studies comparing hospitalized to those

medRxiv preprint doi: https://doi.org/10.1101/2020.12.09.20246496; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license .

infected also point to SES associations. Studies assessing the risk of severe cases (e.g., treatment in ICU or death) *conditional* on hospitalization are fewer, but seem to report no clear SES associations in any direction. Finally, studies using "other" control samples (e.g., patients with flu symptoms who did not have flu, people with non-pandemic flu during a pandemic period, patients accessing or being treated by health care systems for other reasons) tend to find no (or reversed) associations with SES indicators.

Figure 3 Subsample analyses. The plot shows point estimates and 95% confidence intervals for different subsamples of studies, with a grey circle indicating the number of studies in each subsample.

As all of these comparisons are based on different splits of the same study sample, they can be viewed as a series of univariate analyses. To assess the joint contribution of these study level features, and to include country/region indicators, we estimated two Bayesian models: One, without study level covariates, is closely analogous to the above meta-analysis, and was included to ensure that results from the two approaches are similar and comparable. This Bayesian model finds a pooled effect mean of 1.4 with a 95% credibility interval from 1.2-1.7, which is essentially identical to the above estimate of 1.4 (95% CI: 1.2 - 1.7). The estimated standard deviation of the underlying study parameters, analogous to the parameter tau in the earlier analysis, is

medRxiv preprint doi: https://doi.org/10.1101/2020.12.09.20246496; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license .

estimated at 0.46 (0.3-0.6), the same as the above estimated tau of 0.45³. The second Bayesian model included all study level indicators (level of SES indicator, RR/OR indicator, period, case and control outcomes, and country/region), as well as an indicator for each unique *combination* of case and control outcome (as in Figure 3). Jointly, this reduces the estimated unexplained heterogeneity (tau) substantially, with the average value estimated dropping from 0.46 to 0.34)⁴.

As shown in Figure 4 and Figure 5, the Bayesian analysis finds similar results as the earlier subsample analyses, indicating that the patterns for the control and treatment outcome combinations are not "explained away" in an analysis when simultaneously accounting for other study level characteristics.

Figure 4 - Differences across study level covariates. The plot shows average estimates and 95% credibility intervals for different study level covariates. The parameters are constrained to sum to zero within each category (e.g., for each draw from the posterior distribution, the sum of country parameters will sum to zero, as will the sum of the period parameters, etc.) See supporting materials for model details.

³ See supporting materials for model code and discussion of prior choices.

⁴ See supporting materials for model code and discussion of prior choices.

Figure 5 - Differences across case and control outcome combinations. The plot shows average estimates and 95% credibility intervals for all combinations of case and control outcomes observed in the data. See supporting materials for model details.

Discussion

Early research on Covid-19 has shown that the disease burden differs by SES, race and ethnicity (3-6). This is consistent with the results we report from the first systematic literature review on the associations between SES and disease outcomes in the last 5 influenza pandemics. We identified nine studies of the "Spanish flu of 1918-20" and 35 of the "Swine flu of 2009-2010", but no studies of the "Russian flu" pandemic of 1889-90, the "Asian flu" of 1957-58 or the "Hong-Kong flu" of 1968-70. Most of the studies included for the 1918 and 2009 influenza pandemics used data from western high-income countries. Out of 51 estimates from 35 studies, the overall pooled mean pandemic outcome odds ratio was 1.44 (95% CI: 1.23 - 1.68) comparing the lowest to the highest SES groups. There was no evidence suggesting differences by pandemic period (1918 or 2009), the level of SES measure (individual or ecological), or type of method (odds ratio or relative risk). Finally, studies using healthy controls tended to find low SES associated with worse influenza outcome, and studies using infected controls find low SES associated with more severe influenza outcomes. Studies comparing severe outcomes (ICU or death) to hospital admissions were few but indicated no clear association. Studies with more unusual comparisons (e.g., pandemic vs seasonal influenza, seasonal influenza vs other

patient groups) reported no or negative associations. These patterns were similar in a multivariate Bayesian model accounting for all study level indicators simultaneously. The Bayesian model also included indicators for study region/country. Relative to the "across all country/regions" average, studies from Australia, UK and to a lesser extent the USA tend to report stronger associations in our sample, while New Zealand tends to report weaker associations. These country-level results should be viewed as exploratory: two of the three studies from New Zealand (28, 29), for instance, are studies of how pandemic flu outcomes vary across pre-service occupational status amongst military personnel during the 1918 pandemic, which are unlikely to speak broadly to such associations in New Zealand more generally.

Our results provide strong evidence that social risk factors matter for pandemic flu outcomes in addition to medical risk factors. We also documented that in the 2009 pandemic, social risk factors independently explained variation in disease outcomes even when medical risk factors were controlled for (34, 46-48, 51, 54, 57, 59). This resembles the finding of a study of COVID-19 hospital deaths demonstrating that medical risk factors did little to explain the higher risks of the deprived and of immigrants in the UK (4). Although we did not find support for our hypothesis that social disparities would be larger for more severe (e.g. ICU and death) than less severe outcomes (e.g. infection or hospitalization not requiring ICU), the similarity of results for the 1918 and 2009 pandemics show the persistence of individual- and ecological-level social risk factors, although the specific mechanisms and types of social vulnerabilities leading to social disparities in pandemic outcomes may differ between 1918 and 2009, or in 2020 during the COVID-19 pandemic. Results from this review on pandemic influenza and results from studies on the role of social and ethnic vulnerability in COVID-19 disease outcomes (3-6), support recent calls for inclusion of social and ethnic vulnerabilities in addition to medical at risk factors in pandemic preparedness plans (19): Examples given are prioritizing of vaccines for medically vulnerable people living in socially vulnerable areas (urban slums or hard-to-reach groups in rural and remote areas), or SES groups with undiscovered medical vulnerability, and others who are at significantly higher risk of severe disease or death (various indigenous, ethnic, or racial groups, people living in extreme poverty, homeless and those living in informal settlements or; low-income migrant workers; refugees, internally displaced persons, asylum seekers, populations in conflict settings or those affected by humanitarian emergencies, vulnerable migrants in irregular situations and nomadic populations).

The studies reporting on social inequalities in influenza outcomes in 1918 and in 2009, identified in this review, and also early research on social disparities in COVID-19 outcomes, often lacked a discussion of the possible mechanisms for the estimated social disparities, a framework to discuss those mechanisms and/or the data to separate the distal (social and policy) and proximal (behavioral and biological factors) factors for unequal exposure, susceptibility and access to health care leading to socially unequal pandemic outcomes (68). Socially unequal exposure may relate to hand washing behavior or mask use, cleaning of surfaces, cramped living conditions, multigenerational living, occupational exposure, ability to work from home or stay away from work in order to care for family members and use of public transportation. Social disparities in susceptibility may relate to poor nutritional status or, concurrent illnesses (e.g. NCDs). Finally, socioeconomic inequalities in understanding of or access to health advice (e.g. hand hygiene, social distancing, travel advisories) and vaccination or other public recommendations due to poor reading and writing skills may also explain part of variation in outcomes by SES (14, 19).

Two of the studies on the 2009 pandemic included in our review, on Iran (35) and USA (55), reported increased risks for those with high socioeconomic status – contrary to the author's hypothesis. For the US study, the authors suggest that this may reflect social gradients in testing and demand for treatment and health care resources.

An important strength of the study is the use of a pre-registered study protocol for data gathering and analysis, which was peer-reviewed and published prior to the gathering of study data (1). This helped ensure that the process was specified in a reproducible way and followed a rigorous and systematic workflow to identify studies and describe and analyze results. The engagement of professional information specialists to design, test and improve the literature search strategies that were applied to a broad range of literature databases is particularly important, given the lack of any previous systematic reviews on this topic with which our list of included studies could be compared.

Our study also has some potential limitations. First, we carried out our library search 17 November 2017, and potential studies published 2018-2020 are not included. Given the strength and consistency of the results, however, we do not expect that newer studies would alter our general conclusions, at least not for the 2009 pandemic that were the topic of 35 of the 44 included studies. Systematic reviews and meta-analysis of the associations between socioeconomic status/race/ethnicity and COVID-19 are also needed. Second, we would note that the generalizability of our results is necessarily limited by the geographic focus of the research we synthesize: no studies using data from Africa were found, and few from Asia and South America. It is therefore reasonable to ask whether our results are representative outside high-income countries in North America, Europe and Oceania.

medRxiv preprint doi: https://doi.org/10.1101/2020.12.09.20246496; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license .

Conclusion

We have shown that influenza pandemic outcomes in 2009 were not always socially neutral «great equalizers» once you adjust for medical risk factors (34, 46-48, 51, 54, 57, 59). This resembles the finding of a study of COVID-19 hospital deaths demonstrating that medical risk factors did little to explain the higher risks of the deprived and of immigrants in the UK (69). The social lessons from historical influenza pandemics such as those in 1918 or 2009 have not yet been taken into account in influenza pandemic preparedness (19), and this blind spot has also been evident in the response to the COVID-19 pandemic. Such social and ethnic vulnerability factors should be explicitly included and addressed in current and future plans and responses in order to more effectively reduce pandemic burdens, reduce social disparities and ameliorate the social consequences of future pandemics (70). The global health and economic crisis created by the COVID-19 pandemic has made us only too aware of the need for a more holistic and comprehensive approach towards pandemic preparedness.

Acknowledgements:

This research is part of the project PANRISK: Socioeconomic risk groups, vaccination and pandemic influenza, funded by a

research grant from the Research Council of Norway (grant agreement No. 302336). We are indebted to our librarians Bettina

Grødem Knutsen, Ingjerd Legreid Ødemark and Elisabeth Karlsen at the Learning Center and Library, Oslo Metropolitan

University. Without their expertise and assistance in doing library searches this research would never have been accomplished.

References:

Mamelund S-E, Shelley-Egan C, Rogeberg O. The association between socioeconomic status and pandemic influenza: 1. protocol for a systematic review and meta-analysis. Systematic Reviews. 2019;8(1):5.

Smith E. Madonna calls coronavirus 'the great equalizer' in bizarre bathtub video. Page Six. 2020 22 March. 2.

3. Steyn N, Binny R, Hannah K, Hendy S, James A, Kukutai T, et al. Estimated inequities in COVID-19 infection fatality rates by ethnicity for Aotearoa New Zealand. New Zealand Medical Journal. 2020;133(1520).

Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors associated with COVID-19-related 4 death using OpenSAFELY. Nature. 2020;584(7821):430-6.

Drefahl S, Wallace M, Mussino E, Aradhya S, Kolk M, Brandén M, et al. A population-based cohort study of socio-5. demographic risk factors for COVID-19 deaths in Sweden. Nature Communications. 2020;11(1):5097.

6. Liu SH, Liu B, Li Y, Norbury A. Time courses of COVID-19 infection and local variation in socioeconomic and health disparities in England. medRxiv. 2020:2020.05.29.20116921.

7. Rice G. Black November. The 1918 influenza epidemic in New Zealand. Wellington, New Zealand: Allen and Unwin; 1988. 8. Phillips H. Black October: The impact of the Spanish influenza epidemic of 1918 on South Africa: University of Cape

Town; 1984. 9. Tomkins SM. The Failure of Expertise: Public Health Policy in Britain during the 1918–19 Influenza Epidemic. Social History of Medicine. 1992;5(3):435-54.

10. Van Hartesveldt FR. The 1918-1919 pandemic of influenza: the urban impact in the western world. New York: Edwin Mellen Press; 1992.

11. Crosby A. Epidemic and peace, 1918. Westport, Connecticut: Greenwood Press; 1976. medRxiv preprint doi: https://doi.org/10.1101/2020.12.09.20246496; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in

perpetuity. It is made available under a CC-BY 4.0 International license .

12. Mamelund SE. Profiling a Pandemic. Who were the victims of the Spanish flu? Natural History Magazine. 2017(September):6-10.

13. Mamelund S-E. Spanish Influenza Mortality of Ethnic Minorities in Norway 1918–1919. European Journal of Population / Revue européenne de Démographie. 2003;19(1):83-102.

14. Mamelund S-E. A socially neutral disease? Individual social class, household wealth and mortality from Spanish influenza in two socially contrasting parishes in Kristiania 1918–19. Social Science & Medicine. 2006;62(4):923-40.

Murray CJ, Lopez AD, Chin B, Feehan D, Hill KH. Estimation of potential global pandemic influenza mortality on the basis 15. of vital registry data from the 1918–20 pandemic: a quantitative analysis. The Lancet. 2007;368(9554):2211-8.

Rutter PD, Mytton OT, Mak M, Donaldson LJ. Socio-economic disparities in mortality due to pandemic influenza in 16. England. International Journal Of Public Health. 2012;57(4):745-50.

17. Tam K, Yousey-Hindes K, Hadler JL. Influenza-related hospitalization of adults associated with low census tract socioeconomic status and female sex in New Haven County, Connecticut, 2007-2011. Influenza and Other Respiratory Viruses. 2014;8(3):274-81.

18. Chandrasekhar R, Sloan C, Mitchel E, Ndi D, Alden N, Thomas A, et al. Social determinants of influenza hospitalization in the United States. Influenza & Other Respiratory Viruses. 2017;05:05.

19. Mamelund SE. Social Inequality – a Forgotten Factor in Pandemic Influenza Preparedness. Journal of the Norwegian Medical Association. 2017(12-13):911-3.

20. Tricco AC, Lillie E, Soobiah C, Perrier L, Straus SE. Impact of H1N1 on Socially Disadvantaged Populations: Systematic Review. PLoS ONE. 2012;7(6):1-17.

21. McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. Journal of Clinical Epidemiology. 2016;75:40-6.

22. Wells GA , Shea B, Peterson J, Welch V, Losos M, P T. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.

23. Viechtbauer W. Conducting Meta-Analyses in R with the metafor Package. 2010. 2010;36(3):48.

24. Alinaghi N, Reed WR. Meta-analysis and publication bias: How well does the FAT-PET-PEESE procedure work? Res Synth Methods. 2018;9(2):285-311.

25. Gelman A, Hill J, Yajima M. Why We (Usually) Don't Have to Worry About Multiple Comparisons. Journal of Research on Educational Effectiveness. 2012;5(2):189-211.

26. Chowell G, Bettencourt LM, Johnson N, Alonso WJ, Viboud C. The 1918-1919 influenza pandemic in England and Wales: spatial patterns in transmissibility and mortality impact. Proceedings of the Royal Society of London - Series B: Biological Sciences. 2008;275(1634):501-9.

27. Grantz KH, Cummings DAT, Glass GE, Rane MS, Salje H, Schachterle SE. Disparities in influenza mortality and transmission related to sociodemographic factors within Chicago in the pandemic of 1918. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(48):13839-44.

Summers JA, Shanks GD, Baker MG, Wilson N. Severe impact of the 1918-19 pandemic influenza in a national military 28. force. The New Zealand Medical Journal. 2013;126(1378):36-47.

29. Summers JA, Wilson N, Baker MG, Shanks GD. Mortality risk factors for pandemic influenza on New Zealand troop ship, 1918. Emerg Infect Dis. 2010;16(12):1931-7.

30. Sydenstricker E. The Incidence of Influenza among Persons of Different Economic Status during the Epidemic of 1918. Public Health Reports (1896-1970). 1931;46(4):154-70.

31. Pearce DC, Pallaghy PK, McCaw JM, McVernon J, Mathews JD. Understanding mortality in the 1918-1919 influenza pandemic in England and Wales. Influenza & Other Respiratory Viruses. 2011;5(2):89-98.

Balasegaram S, Ogilvie F, Glasswell A, Anderson C, Cleary V, Turbitt D, et al. Patterns of early transmission of pandemic 32. influenza in London - link with deprivation. Influenza & Other Respiratory Viruses. 2012;6(3):e35-41.

33. Balter S, Gupta LS, Lim S, Fu J, Perlman SE. Pandemic (H1N1) 2009 surveillance for severe illness and response, New York, New York, USA, April-July 2009. Emerging Infectious Diseases. 2010;16(8):1259-64.

34. Bandaranayake D, Huang QS, Bissielo A, Wood T, Mackereth G, Baker MG, et al. Risk factors and immunity in a nationally representative population following the 2009 influenza A(H1N1) pandemic. PLoS ONE [Electronic Resource]. 2010;5(10):e13211.

35. Cheraghi Z, Irani AD, Rezaiean S, Ahmadzadeh J, Poorolajal J, Erfani H, et al. Influenza A (H1N1) in Hamedan Province, Western Iran in 2009: A case-control study. Journal of Research in Health Sciences. 2010;10(1):15-21.

medRxiv preprint doi: https://doi.org/10.1101/2020.12.09.20246496; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in

perpetuity. It is made available under a CC-BY 4.0 International license .

36. Duggal A, Pinto R, Rubenfeld G, Fowler RA. Global Variability in Reported Mortality for Critical Illness during the 2009-10 Influenza A(H1N1) Pandemic: A Systematic Review and Meta-Regression to Guide Reporting of Outcomes during Disease Outbreaks. PLoS ONE. 2016;11(5):1-14.

Fajardo-Dolci G, Gutierrez JP, Arboleya-Casanova H, Garcia-Saiso S. Comparing Deaths from Influenza H1N1 and 37. Seasonal Influenza A:Main Sociodemographic and Clinical Differences between the Most Prevalent 2009 Viruses. Influenza Research & Treatment. 2012:1-5.

38. Gilca R, de Serres G, Boulianne N, Ouhoummane N, Papenburg J, Douville-Fradet M, et al. Risk factors for hospitalization and severe outcomes of 2009 pandemic H1N1 influenza in Quebec, Canada. Influenza and other Respiratory Viruses. 2011;5(4):247-55.

39. González-Candelas F, Astray J, Alonso J, Castro A, Cantón R, Galán JC, et al. Sociodemographic Factors and Clinical Conditions Associated to Hospitalization in Influenza A (H1N1) 2009 Virus Infected Patients in Spain, 2009-2010. PLoS ONE. 2012;7(3):1-8.

Hennessy TW, Bruden D, Castrodale L, Komatsu K, Erhart LM, Thompson D, et al. A case-control study of risk factors for 40. death from 2009 pandemic influenza A(H1N1): is American Indian racial status an independent risk factor? Epidemiology And Infection. 2016;144(2):315-24.

41. Hoen AG, Buckeridge DL, Chan EH, Freifeld CC, Keller M, Charland K, et al. Characteristics of US public schools with reported cases of novel influenza A (H1N1). International Journal of Infectious Diseases. 2010;14 Suppl 3:e6-8.

Hu W, Williams G, Phung H, Birrell F, Tong S, Mengersen K, et al. Did socio-ecological factors drive the spatiotemporal 42. patterns of pandemic influenza A (H1N1)? Environment International. 2012;45(Supplement C):39-43.

43. Huang X, Clements AC, Williams G, Mengersen K, Tong S, Hu W. Bayesian estimation of the dynamics of pandemic (H1N1) 2009 influenza transmission in Queensland: A space-time SIR-based model. Environmental Research. 2016;146:308-14.

44. Inglis NJ, Bagnall H, Janmohamed K, Suleman S, Awofisayo A, De Souza V, et al. Measuring the effect of influenza A(H1N1)pdm09: the epidemiological experience in the West Midlands, England during the 'containment' phase. Epidemiology & Infection. 2014;142(2):428-37.

45. Janjua NZ, Skowronski DM, Hottes TS, Osei W, Adams E, Petric M, et al. Transmission dynamics and risk factors for pandemic H1N1-related illness: outbreak investigation in a rural community of British Columbia, Canada. Influenza & Other Respiratory Viruses. 2012;6(3):e54-e62.

Launes C, García-García JJ, Martínez-Planas A, Moraga F, Astigarraga I, Arístegui J, et al. 2009 H1N1: risk factors for 46. hospitalization in a matched case-control study. European Journal of Pediatrics. 2012;171(7):1127-31.

47. Lenzi L, Mello AM, Silva LR, Grochocki MH, Pontarolo R. Pandemic influenza A (H1N1) 2009: risk factors for hospitalization. Jornal Brasileiro De Pneumologia: Publicacao Oficial Da Sociedade Brasileira De Pneumologia E Tisilogia. 2012;38(1):57-65.

48. Levy NS, Nguyen TQ, Westheimer E, Layton M. Disparities in the Severity of Influenza Illness: A Descriptive Study of Hospitalized and Nonhospitalized Novel H1N1 Influenza-Positive Patients in New York City: 2009-2010 Influenza Season. Journal of Public Health Management & Practice. 2013;19(1):16-24.

49. Lowcock EC, Rosella LC, Foisy J, McGeer A, Crowcroft N. The Social Determinants of Health and Pandemic H1N1 2009 Influenza Severity. American Journal of Public Health. 2012;102(8):e51-e8.

50. Maliszewski PJ, Wei R. Ecological factors associated with pandemic influenza A (H1N1) hospitalization rates in California, USA: a geospatial analysis. Geospatial Health. 2011;6(1):95-105.

Mayoral JM, Alonso J, Garín O, Herrador Z, Astray J, Baricot M, et al. Social factors related to the clinical severity of 51. influenza cases in Spain during the A (H1N1) 2009 virus pandemic. BMC Public Health. 2013;13(1):1-7.

52. Navaranjan D, Rosella LC, Kwong JC, Campitelli M, Crowcroft N. Ethnic disparities in acquiring 2009 pandemic H1N1 influenza: a case-control study. BMC Public Health. 2014;14(1):1-17.

53. Nikolopoulos G, Bagos P, Lytras T, Bonovas S. An Ecological Study of the Determinants of Differences in 2009 Pandemic Influenza Mortality Rates between Countries in Europe. PLoS ONE. 2011;6(5):1-8.

54. Pasco JA, Nicholson GC, Brennan SL, Bennett KE, Dobbins AG, Athan E. The epidemiology of the first wave of H1N1 influenza pandemic in Australia: A population-based study. Open Public Health Journal. 2012;5:80-5.

55. Placzek H, Madoff L. Effect of Race/Ethnicity and Socioeconomic Status on Pandemic H1N1-Related Outcomes in Massachusetts. American Journal of Public Health. 2014;104(1):e31-e8.

56. Ponnambalam L, Samavedham L, Lee HR, Ho CS. Understanding the socioeconomic heterogeneity in healthcare in US counties: the effect of population density, education and poverty on H1N1 pandemic mortality. Epidemiology And Infection. 2012;140(5):803-13.

medRxiv preprint doi: https://doi.org/10.1101/2020.12.09.20246496; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license .

57. Pujol J, Godoy P, Soldevila N, Castilla J, González-Candelas F, Mayoral JM, et al. Social class based on occupation is associated with hospitalization for A(H1N1)pdm09 infection. Comparison between hospitalized and ambulatory cases. Epidemiology And Infection. 2016;144(4):732-40.

58. Simonsen L, Spreeuwenberg P, Lustig R, Taylor RJ, Fleming DM, Kroneman M, et al. Global mortality estimates for the 2009 Influenza Pandemic from the GLaMOR project: a modeling study. PLoS Medicine. 2013;10:e1001558-1277.

Thompson DL, Jungk J, Hancock E, Smelser C, Landen M, Nichols M, et al. Risk Factors for 2009 Pandemic Influenza A 59. (H1N1)-Related Hospitalization and Death Among Racial/Ethnic Groups in New Mexico. American Journal of Public Health. 2011;101(9):1776-84.

Thompson LH, Mahmud SM, Keynan Y, Blanchard JF, Slater J, Dawood M, et al. Serological survey of the novel influenza 60. A H1N1 in inner city Winnipeg, Manitoba, 2009. The Canadian Journal of Infectious Diseases & Medical Microbiology. 2012;23(2):65-70.

Trauer JM, Laurie KL, McDonnell J, Kelso A, Markey PG. Differential effects of pandemic (H1N1) 2009 on remote and 61. indigenous groups, Northern Territory, Australia, 2009. Emerging Infectious Diseases. 2011;17(9):1615-23.

62. Zarychanski R, Stuart TL, Kumar A, Doucette S, Elliott L, Kettner J, et al. Correlates of severe disease in patients with 2009 pandemic influenza (H1N1) virus infection. CMAJ Canadian Medical Association Journal. 2010;182(3):257-64.

Zhang Y, Seale H, Yang P, MacIntyre CR, Blackwell B, Tang S, et al. Factors associated with the transmission of pandemic 63. (H1N1) 2009 among hospital healthcare workers in Beijing, China. Influenza & Other Respiratory Viruses. 2013;7(3):466-71.

Zhao H, Harris RJ, Ellis J, Pebody RG. Ethnicity, deprivation and mortality due to 2009 pandemic influenza A(H1N1) in 64. England during the 2009/2010 pandemic and the first post-pandemic season. Epidemiology And Infection. 2015;143(16):3375-83.

65. Mamelund S-E, Dimka J. Tuberculosis as a Risk Factor for 1918 Influenza Pandemic Outcomes. Tropical Medicine and Infectious Disease. 2019;4(2):74.

Dimka J, Mamelund S-E. 1918 Influenza Outcomes among Institutionalized Norwegian Populations: Implications for 66. Disability-Inclusive Pandemic Preparedness. . Scandinavian Journal of Disability Research. 2020;22(1):175-86.

Galobardes B, Shaw M, Lawlor DA, Lynch JW. Indicators of socioeconomic position (part 1). Journal of Epidemiology and 67. Community Health. 2006;60(1):7-12.

68. Quinn SC, Kumar S. Health inequalities and infectious disease epidemics: a challenge for global health security. Biosecurity And Bioterrorism: Biodefense Strategy, Practice, And Science. 2014;12(5):263-73.

69. Williamson E, Walker AJ, Bhaskaran KJ, Bacon S, Bates C, Morton CE, et al. OpenSAFELY: factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. medRxiv. 2020:2020.05.06.20092999.

Schmidt H, Pathak P, Sönmez T, Ünver MU. Covid-19: how to prioritize worse-off populations in allocating safe and 70. effective vaccines. BMJ. 2020;371:m3795.

Supporting information files:

- 1. Medline search strategy
- 2. PRISMA Checklist
- 3. PRISMA Flow Diagram
- 4. Specific studies included and all judgments and adjustments concerning inclusion and adjustments of reported numbers.