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Abstract. To this day, the prediction of space weather ef-

fects near the Earth suffers from a fundamental problem:

The radial propagation speed of “halo” CMEs (i.e. CMEs

pointed along the Sun-Earth-line that are known to be the

main drivers of space weather disturbances) towards the

Earth cannot be measured directly because of the unfavor-

able geometry. From inspecting many limb CMEs observed

by the LASCO coronagraphs on SOHO we found that there

is usually a good correlation between the radial speed and

the lateral expansion speed Vexp of CME clouds. This lat-

ter quantity can also be determined for earthward-pointed

halo CMEs. Thus, Vexp may serve as a proxy for the oth-

erwise inaccessible radial speed of halo CMEs. We studied

this connection using data from both ends: solar data and in-

terplanetary data obtained near the Earth, for a period from

January 1997 to 15 April 2001. The data were primarily pro-

vided by the LASCO coronagraphs, plus additional informa-

tion from the EIT instrument on SOHO. Solar wind data from

the plasma instruments on the SOHO, ACE and Wind space-

craft were used to identify the arrivals of ICME signatures.

Here, we use “ICME” as a generic term for all CME effects in

interplanetary space, thus comprising not only ejecta them-

selves but also shocks as well. Among 181 front side or limb

full or partial halo CMEs recorded by LASCO, on the one

hand, and 187 ICME events registered near the Earth, on the

other hand, we found 91 cases where CMEs were uniquely

associated with ICME signatures in front of the Earth. Eighty

ICMEs were associated with a shock, and for 75 of them both

the halo expansion speed Vexp and the travel time Ttr of the

shock could be determined. The function Ttr=203–20.77* ln

(Vexp) fits the data best. This empirical formula can be used

for predicting further ICME arrivals, with a 95% error mar-

gin of about one day. Note, though, that in 15% of com-

parable cases, a full or partial halo CME does not cause any

ICME signature at Earth at all; every fourth partial halo CME

and every sixth limb halo CME does not hit the Earth (false
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alarms). Furthermore, every fifth transient shock or ICME or

isolated geomagnetic storm is not caused by an identifiable

partial or full halo CME on the front side (missing alarms).
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Magnetospheric physics (Storms and substorms) – Solar

physics, astrophysics and astronomy (flares and mass ejec-

tions)

1 Introduction

Our modern hi-tech society has become increasingly vul-

nerable to disturbances from outside our Earth system, in

particular to those initiated by explosive events on the Sun.

The economic consequences are enormous (see, e.g. Siscoe,

2000). That’s one reason why space weather and its pre-

dictability have recently attained major attention, not only

with the involved scientists but also with the general public.

Another reason is the new quality of observational data that

have been obtained over the last decade from a new gener-

ation of space-based instruments. They have allowed ma-

jor advances, among others, in the understanding of the pro-

cesses involved near the Sun, in interplanetary space, and in

the near-Earth environment (see, e.g. the review by Crooker,

2000).

Unfortunately, the preciseness of predictions of space

weather effects is still poor. Solar energetic transients, i.e.

flares and coronal mass ejections (CMEs), occur rather spon-

taneously, and we have not yet identified unique signatures

that would indicate an imminent explosion and its probable

onset time, location, and strength. The underlying physics

is not yet sufficiently well understood. Solar energetic par-

ticles, accelerated to near-relativistic energies during major

solar storms arrive at the Earth’s orbit within minutes (see,

e.g. Garcia, 2004) and may, among other things, severely en-

danger astronauts on the way to the Moon or Mars. But we

have no appropriate warning tool yet!
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Fig. 1. The X17 flare and the halo CME of 28 October 2003, as

seen by the SOHO instruments EIT (a), LASCO C2 (b) and C3

(c). This most dramatic event caused major disturbances in space

weather and affected the Earth’s system in various ways: charged

particles were accelerated to near-relativistic energies, such that

they could penetrate spacecraft skins and disturbed, for example,

the CCD cameras on SOHO (see c) and other satellite instrumenta-

tion; an extremely fast interplanetary shock wave was initiated that

reached the Earth only 19 h later; a severe geomagnetic storm (Dst

−363 nT) was launched, with bright aurora even all over Europe

and the US. This was about 5 h earlier than predicted using the tool

described in this paper.

Even once a notable outbreak has actually been observed,

it is still hard to predict whether the ejected gas clouds will

reach the Earth at all, at which time and what their effects

will be. (The interplanetary counterparts of CMEs are often

called “ICMEs”. In this paper, we use this term in a more

generic way, such that it comprises all CME effects in inter-

planetary space, i.e. not only the ejecta themselves but tran-

sient shocks as well.) This is the main aspect to be addressed

in this paper.

Of crucial importance is to determine the direction in

which an eruption is originally pointed, since only one out of

ten CME events hits the Earth (see, e.g. Webb and Howard,

1994 and St. Cyr et al., 2000). Space-based coronagraphs

keep providing spectacular views of erupting gas clouds (see,

e.g. the Web page http://star.mpae.gwdg.de/release/movieg.

html) but they show just their projections onto the plane

of the sky and do not allow to infer the ejection direction.

CMEs pointed along the Earth-Sun line appear as “halos”

around the occultor disk in a coronagraph’s field-of-view

(Howard et al., 1982). Complementary disk observations

are required for deciding whether a halo CME is pointed

towards or away from the Earth. The value of such con-

certed observations has been demonstrated ever since the set

of modern solar telescopes on the Solar and Heliospheric

Observatory (SOHO) spacecraft went into operation in early

1996 (Plunkett et al., 1998; Thompson et al., 1998). The

disk images taken by the EUV Imaging Telescope (EIT, De-

laboudinière et al., 1995; Delannée et al., 2000) at a suf-

ficiently high time cadence allow almost continuous detec-

tion of flare explosions and filament eruptions. Simultane-

ously, the instruments C1 (no longer operating since June

1998), C2, and C3 of the Large Angle and Spectrometric

Coronagraph (LASCO, Brueckner et al., 1995) observe the

corona above the solar limb in a range from 1.1 Rs from

Sun center out to 32 Rs , with unprecedented sensitivity. In

Fig. 1 we show a typical example of a halo CME as ob-

served by EIT, C2 and C3. Such images and animated se-

quences plus data from other instruments both in space and

on the ground are available on the Internet almost in real time

(see, e.g. http://sohowww.estec.esa.nl). Many professional

and amateur space weather analysts are routinely taking ad-

vantage of their sites (e.g. http://www.sec.noaa.gov/today.

html, http://sidc.oma.be, http://www.estec.esa.nl/wmwww/

wma/spweather/, http://www.spaceweather.com/, http://dxlc.

com/solar/).

Of particular value are the messages the LASCO opera-

tions team issues for any halo CME as soon as it appears

(http://lasco-www.nrl.navy.mil/halocme.html). Some char-

acteristic data, such as exact timing, angular span, front

speed (also called “plane of the sky speed”) and position

angle of the fastest feature, any potential association with

flares and other events seen by EIT, are also given, and

images and movies are made accessible through the In-

ternet: ftp://ares.nrl.navy.mil/pub/lasco/halo. Detailed in-

formation on all CMEs, including halos, is listed under

http://cdaw.gsfc.nasa.gov/CME list/.

http://star.mpae.gwdg.de/release/movieg.html
http://star.mpae.gwdg.de/release/movieg.html
http://sohowww.estec.esa.nl
http://www.sec.noaa.gov/today.html
http://www.sec.noaa.gov/today.html
http://sidc.oma.be
http://www.estec.esa.nl/wmwww/wma/spweather/
http://www.estec.esa.nl/wmwww/wma/spweather/
http://www.spaceweather.com/
http://dxlc.com/solar/
http://dxlc.com/solar/
http://lasco-www.nrl.navy.mil/halocme.html
ftp://ares.nrl.navy.mil/pub/lasco/halo
http://cdaw.gsfc.nasa.gov/CME_list/
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The mere knowledge of a halo’s general direction means

an enormous step forward. The “away” events that are usu-

ally not geo-efficient can now be revealed right away. How-

ever, for the “toward” events the arrival times at Earth remain

hard to predict, since the line-of-sight speed of a halo CME

cannot be measured directly.

The data catalogs show that the CME front speeds vary

widely between 200 km/s and more than 2000 km/s, i.e. by a

factor of 10. However, for those cases with a uniquely rec-

ognizable arrival of ICME effects at Earth, the travel speeds

vary by not more than a factor of 3 (see, e.g. Cane et al., 2000;

Gopalswamy et al., 2000). Apparently, the faster ICMEs

are significantly decelerated (Woo et al., 1985, see also, e.g.

Watari and Detman, 1998, and references therein), and the

slower ones are post-accelerated in the ambient solar wind

flow (Lindsay et al., 1999b). Brueckner et al. (1998), based

on a number of 8 cases then known, had even concluded that

the travel time of most ICMEs from the Sun to the Earth

(measured from the first appearance in C2 images to the be-

ginning of the maximum Kp index of an associated geomag-

netic storm) always amounts to about 80 h, regardless of the

halos’ behavior close to the Sun. Brueckner’s “80 h rule”, as

the most simple prediction tool, appears to work pretty well

in many cases, in particular near activity minimum. Sev-

eral researchers have tried to find relationships between CME

properties and ICME signatures, “with an eye towards space

weather forecasting”, as Lindsay et al. (1999b) phrased it.

Gopalswamy et al. (2000) determined from coronagraph im-

ages the speed of the fastest moving halo CME feature, i.e.

its speed VPS projected on the plane of the sky, and com-

pared it with the transit time of the associated ICME towards

1 AU, as defined by the in-situ appearance of intrinsic ICME

signatures, i.e. magnetic clouds and low plasma beta. It is

here where Gopalswamy et al. (2000) differ from other au-

thors who used the onset of associated geomagnetic effects

(e.g. Brueckner et al., 1998; Wang et al., 2002a). Assum-

ing a global, effective acceleration/deceleration representing

the solar wind ICME interaction, Gopalswamy et al. (2000)

derived a simple relation between the initial speed VPS of

a CME and its propagation. The authors consider this a

first step towards a future predictive tool, although the travel

times derived using their scheme deviate considerably from

the observed travel times. Further studies (e.g. Webb et al.,

2000; Cane et al., 2000; Gopalswamy et al., 2001c; Vršnak

and Gopalswamy, 2002; Michalek et al., 2002; González-

Esparza et al., 2003a,b; Yurchyshyn et al., 2003) tried to

improve the prediction accuracy, but they all keep suffering

from the problem of deducing the proper propagation speed

of ICMEs. In a recent analysis Burkepile et al. (2004) stud-

ied that projection effect by selecting a subgroup of 111 limb

CMEs observed by the Solar Maximum Mission (SMM). Not

only do these limb CMEs have, on average, greater speeds

than the average values obtained from all SMM CMEs (see

Hundhausen, 1993), they also come from lower latitudes and

have smaller cone angles. All this provides strong evidence

that projection effects systematically influence the apparent

CME properties.

2

2

Fig. 2. The halo CME of 5 November 1998 (E90), for illustration

of the different meaning of expansion speed Vexp and the plane of

the sky speed VPS . In this case we measured Vexp=1116 km/s,

and VPS=1118 km/s, A shock arrived at the Earth 55.6 h later, i.e.

about 7 h earlier than we predicted (case E20 in Table 2). A severe

magnetic storm (Dst −142 nT) peaked 14 h after shock arrival. The

images are running differences between LASCO C3 images.
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Figure 2 illustrates the problem: The plane of the sky

speed VPS as defined in the figure is containing almost in-

evitably a component resulting from a projection effect. In

the case of the 11 November 1998 halo CMEs, the ejection

is apparently pointed to the northwest. This is consistent with

the location of the associated M8 flare at N18 W21. Needless

to say, an observer located somewhere else in the heliosphere

would have determined a different value of VPS for the same

CME, in contrast to Vexp, the speed of lateral expansion.

The work by Plunkett et al. (1998) made use of the ob-

servation that the outer boundaries of most limb CMEs form

a cone of constant spread with a median angular extent of

about 50◦. This was confirmed for many more limb CMEs

by St.Cyr et al. (2000). Adopting this value and knowing

the projection speed VPS of a halo’s outer rim they inferred

a value around 600 km/s for its true frontal speed. Based

on similar considerations, Zhao et al. (2002) derived their

“cone model” of halo CMEs. They tried to fit 3 free parame-

ters (angular width, latitude and longitude of cone axis) such

that an observational image sequence is met best. This way,

they inferred geometric and kinematic properties for the 12

May 1997 CME. However, they had to admit that “there are

limitations for some halo CMEs”. Michalek et al. (2003),

also using a cone model, derived the cones’ parameters by

taking into account the moments of first appearance of the

CME above opposite limbs on the occultor edge. No con-

clusive results were obtained, though, which is due – in the

authors’ opinion - to several shortcomings, for example, pos-

sible acceleration and expansion of CMEs, missing symme-

try of CMEs.

In some cases, interplanetary shocks on their way through

the heliosphere generate type II radio emission at the local

plasma frequency and its harmonics. This provides a means

of remotely observing and even tracking ICMEs (LeBlanc

et al., 2001, see also Reiner et al., 1998 2003b and ref-

erences therein). This technique has been used for study-

ing ICME dynamics and interactions (Reiner et al., 2003b;

Gopalswamy et al., 2001a,b, 2002a,b; Lara et al., 2003), but

usually after the fact. For near-real-time predictions the type

II radio emission is only of limited value.

The basic task remains to find and measure early on the op-

timum proxy data for the otherwise inaccessible propagation

speed of a halo CME towards an observer. In analogy, one

would have to measure the speed of a car approaching head-

on. This is usually achieved by RADAR techniques, but

nothing similar works out in the case of head-on CMEs. Al-

ternately, one could measure how fast the car’s image grows

in a telescope’s field-of-view. The apparent lateral expan-

sion speed is a unique measure of the unknown line-of-sight

speed. In fact, Fred Hoyle (1957) in his book “The Black

Cloud” let a clever scientist calculate the arrival time of a

deadly cloud approaching the Earth from deep space using

the apparent expansion alone. Upon this warning, mankind

was able in time to take provisions for survival. Based on

this idea, we developed a similar, purely empirical technique.

It makes use of the following well-established observational

facts:

1. The cone angles of CME expansion and, more gener-

ally, the shapes of the expanding CMEs are usually well

maintained (Plunkett et al., 1998). The CME shapes

remain “self-similar”. We remember that Low (1982)

had already noticed the “often observed coherence of

the large-scale structure of the moving transient”, which

could be explained by what he called “self-similar evo-

lution”. He studied the expulsion of a CME quantita-

tively on the basis of an ideal, polytropic, hydromag-

netic description and found self-similar solutions that

describe the main flows of white-light CMEs as they are

observed (see also Low, 1984; Gibson and Low, 1998;

and Low, 2001).

2. We found it surprising in our inspection of hundreds of

CMEs that the shapes of the vast majority of CMEs ap-

pear to be consistent with a nearly perfect circular cross

section. Indeed, halo CMEs moving exactly along the

Sun-Earth line exhibit generally a circular and smooth

shape. This observation is rather surprising in that

CMEs are resulting from the eruption of basically 2-D

elongated filament structures (for further discussion see

the review by Schwenn, 1986). Thus, the apparent lat-

eral CME expansion speed can be considered indepen-

dent of the viewing direction.

The expansion speed Vexp is the only parameter which can

uniquely be measured for any CME, be it on the limb or

pointed along the Sun-Earth line, on the front or back side;

Vexp would be an ideal proxy for deriving the unknown ra-

dial CME speed Vrad and allowing predictions of ICME ar-

rivals at Earth, provided there is a correlation between Vexp

and Vrad . It is the intention of this paper to find and establish

such a correlation that then may be applied as a practical tool

for space weather forecasting.

Therefore, we determined the characteristics of all relevant

CMEs observed between January 1997 and 15 April 2001.

We searched for signatures of these ejections using in-situ

plasma data obtained from spacecraft near the Earth. For

those cases where a unique association could safely be made

we noted the total travel time from the Sun to Earth. We

found that there is indeed a marked correlation between the

expansion speed Vexp of halo CMEs and their travel time to

the Earth.

A preliminary version of this tool has already been pre-

sented some time ago (Schwenn et al., 2001; Dal Lago et

al., 2003a) and was applied tentatively by several experts in

the forecasting community, with good success even for ex-

treme events, e.g. the “Halloween events” (see Fig. 1). How-

ever, in the vast literature on the subject there exist discrep-

ancies between associations and interpretations even of iden-

tical events. Also, there is major disagreement between var-

ious authors about the reliability of predictions, i.e. the sig-

nificance of missing and false alarms. After all, we decided

to redo and double-check the whole analysis and search for

statistically sound results.
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This is the outline of the paper:

– In Sect. 2 we give some useful background informa-

tion on the status of our current understanding of the

whole scenario (for more detailed general reviews see,

e.g. Webb, 2000, 2002, and the discussion in Cliver and

Hudson, 2002). This section provides some definitions

and explanations of relevant terms and processes we are

addressing in this paper. The experienced reader may

wish to skip this section

– In Sect. 3 we revisit observations from the SOLWIND

coronagraph and the Helios 1 space probe. Favorable

orbital constellations allowed determining both: the ra-

dial speed of certain limb CMEs and the travel time of

the respective ICMEs to an in-situ observer. This ex-

ercise tells us which quality of travel time predictions

can be expected for the optimum cases where the CME

head-on speed near the Sun can be measured precisely.

– In Sect. 4 we study a number of limb CMEs observed

by LASCO where the radial speed and the expansion

speed could both be measured. If the correlation be-

tween those two quantities is good enough, we can then

use one of them as proxy data for the other one.

– In Sect. 5 we describe and illustrate how we searched

through available data recently obtained and listed all

relevant signatures of CMEs, on the one hand, and

ICME signatures, on the other hand.

– In Sect. 6 we searched for correlations between the two

types of events. We went in both directions: from CMEs

at the Sun to their potential ICME signatures in front of

the Earth, and the other way round: from ICMEs at the

Earth back to their potential sources at the Sun.

– In Sect. 7 we inspect the 91 cases with a unique associa-

tion of solar and near-Earth events and derive an empir-

ical function for the expected ICME travel time vs. the

measured expansion speed.

– In Sect. 8 we discuss the various remaining uncertain-

ties for reliable predictions.

– In Sect. 9 the main results are briefly summarized. The

concluding remarks address some unsolved problems

for future predictions.

2 Useful background information on CMEs, ICMEs,

shocks and geomagnetic disturbances

Geomagnetic disturbances and storms are closely related to

the interplanetary magnetic field (IMF) and its fluctuations,

both in magnitude and direction. In particular, a southward

pointing IMF (Bz negative) will allow magnetic reconnection

with the northward pointing Earth’s field to occur. As a con-

sequence, geomagnetic disturbances and even severe geo-

magnetic storms will be initiated (Rostoker and Fälthammar,

1967, for reviews see, e.g. Tsurutani and Gonzalez, 1997, or

Gonzalez et al., 1994, 1999). So the main question arises:

which effects cause Bz to turn south?

In the Skylab era of the 1970s the two fundamentally dif-

ferent sources of Bz south swings were identified. These

swings will be described below.

Bz south swings: sources on the non-active Sun

Solar wind high-speed streams are dominated by large-

amplitude transverse Alfvénic fluctuations causing major ex-

cursions of both the proton flow and the IMF vector on time

scales of minutes to hours (Belcher and Davis, 1971, see

also Marsch, 1990). These high-speed streams were found to

emerge from coronal holes, which at solar activity minimum

are covering the Sun’s polar caps, with some stable exten-

sions to equatorial latitudes. They are representatives of the

non-active Sun. They corotate with the Sun, often for sev-

eral months. Once these high-speed streams reach the Earth,

the occasional southward deflections of the IMF, due to the

Alfvén turbulence, stir medium level geomagnetic activity

(see Tsurutani and Gonzalez, 1987). Bartels (1932), had

postulated “M-regions” on the Sun as sources of these geo-

magnetic effects. The close association between high-speed

streams and M-regions had already been noted in the earliest

solar wind observations from the Mariner 2 space probe in

1962 (Snyder et al., 1963). Tsurutani and Gonzalez (1987)

and Tsurutani et al. (2004b) inspected the effects of high-

speed streams on geomagnetism in terms of “high-intensity,

long-duration, continuous AE activity (HILDCAA) events”.

The compression and deflection of the plasma flow in the

corotating interaction regions (CIRs) in front of high-speed

streams may also lead to substantial Bz south components

and thus contribute to geomagnetic activity in the rhythm of

the solar rotation (Schwenn, 1983; Tsurutani et al., 2004b).

It does not matter whether the steepening at the CIRs has

already led to the formation of corotating shocks or shock

pairs at the CIRs, a process which only rarely occurs inside

the Earth’s orbit (see Schwenn, 1990).

Bz south swings: sources on the active Sun

The major geomagnetic storms are linked to solar activ-

ity and come in a very irregular fashion. Since Carrington’s

famous flare observation in 1859, which he correctly asso-

ciated with the subsequent giant geomagnetic storm (for the

original report, see Meadows, 1970, see also Tsurutani et al.,

2003) the close association between these two phenomena

seemed to be well established. More than one hundred years

later the existence of CMEs and their even more pronounced

significance for the Earth was revealed (Gosling et al., 1974,

for a recent review see Gopalswamy, 2004). It is important to

remember the definition of a CME (Hundhausen et al., 1984,

see also Schwenn, 1996): We define a coronal mass ejection

(CME) to be an observable change in coronal structure that

1) occurs on a time scale of a few minutes and several hours

and 2) involves the appearance (and outward motion) of a

new, discrete, bright, white-light feature in the coronagraph

field-of-view.” Note that this definition does not specify the
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origin of the “feature”, nor its nature, be it the ejecta them-

selves or the effects driven by them.

CMEs cause gigantic plasma clouds (often called ICMEs

for “Interplanetary” counterparts of CMEs) to leave the Sun,

which then drive large-scale density waves out into space.

They eventually steepen to form collisionless shock waves,

similar to the bow shock in front of the Earth’s magneto-

sphere. These density waves are surprisingly difficult to de-

tect optically even with the modern, most sensitive corona-

graphs (Vourlidas et al., 2003). On the other hand, shock

signatures are the most prominent ones announcing in-situ

the arrival of an ICME. Figure 3 gives a good example of a

fast ICME event as seen in-situ by the Helios 1 space probe.

The sheath plasma (see, e.g. Tsurutani et al., 1988) be-

hind the shock front results from compression, deflection,

and heating of the ambient solar wind by the ensuing ejecta.

The sheath may contain substantial distortions of the IMF

due to field line draping (McComas et al., 1989) around the

ejecta cloud pressing from behind.

The ejecta themselves (called “piston gas” or “driver gas”

in earlier papers) are often separated from the sheath plasma

by a tangential discontinuity. Their very different origin

is discernible from their different elemental composition

(Hirshberg et al., 1970), ionization state (Bame et al., 1979;

Schwenn et al., 1980; Gosling et al., 1980; Zwickl et al.,

1982; Henke et al., 1998; Lepri et al., 2001), temperature

depressions (Gosling et al., 1973; Montgomery et al., 1974;

Richardson and Cane, 1995), cosmic ray intensity decreases

(“Forbush decreases”, see, e.g. Cane et al., 1994), the appear-

ance of bi-directional distributions of energetic protons and

cosmic rays (Palmer et al., 1978; Richardson et al., 2000) and

supra-thermal electrons (Gosling et al., 1987; Shodhan et al.,

2000).

For about one-third of all shocks driven by ICMEs, the

succeeding plasma shows an in-situ observer the topology

of magnetic clouds (Burlaga et al., 1981, see reviews by,

e.g. Gosling, 1990; Burlaga et al., 1991, Osherovich and

Burlaga, 1997). Smooth rotation of the field vector in a plane

vertical to the propagation direction, mostly combined with

very low plasma beta, i.e. low plasma densities and strong

IMF with low variance give evidence of a flux rope topol-

ogy (Marubashi et al., 1986; Bothmer and Schwenn, 1998)

of these magnetic clouds. This is consistent with the concept

of magnetic reconnection (might be better to call it “discon-

nection”) processes in coronal loop systems in the course of

prominence eruptions at the Sun (Priest, 1988). It is true

though that the boundaries of magnetic clouds are often dif-

ficult to identify (Goldstein et al., 1998; Wei et al., 2003).

Most of these ICME signatures can be found in the event

shown in Fig. 3. Usually, only a fraction of the criteria for

identifying ejecta is encountered in individual events, and

to this day a trained expert’s eye is needed to tell what is

ejecta and what not. The situation is additionally compli-

cated by the class of very slow CMEs found to take off more

like balloons rather than as fast projectiles (Srivastava et al.,

1999a,b). After many hours of slow rise, they finally float

along in the ambient solar wind. Naturally, they do not drive

a shock wave. Only in rare cases do a few of their ejecta sig-

natures (e.g. composition anomalies, magnetic cloud topol-

ogy) remain and disclose their origin.

The compressed sheath plasma behind shocks and the

ejecta clouds may both cause substantial deviations of the

magnetic field direction from the usual Parker spiral, includ-

ing strong, out-of-the-ecliptic components. In either case, a

southward pointing IMF may result, with well-known conse-

quences on the Earth’s geomagnetism (Tsurutani et al., 1988;

Gonzalez et al., 1999; Huttunen et al., 2002).

It is important to keep in mind that the sources of magnetic

field deflections in the sheath plasma and the ejecta are of

fundamentally different origin:

– The field line deflection in the sheath due to draping

depends on the orientation of the ejecta relative to the

heliospheric current sheet and to the observer sitting,

say, near the Earth’s bow shock. Thus, the field ori-

entations in the sheath vary dramatically from case to

case. In some events a southward component never oc-

curs, while in others it lasts for several hours. The com-

pressed, high-density sheath plasma puts the magne-

tosphere under additional pressure, and in conjunction

with a southward Bz the resulting geomagnetic storms

may become particularly severe.

– The magnetic topology inside ejecta clouds is not yet

well understood. It is unclear where the filament lies

within an erupting CME and how it is transformed into

what becomes the ICME later. Even so, the filament’s

pre-eruption orientation is often reflected in the ICME

configuration. In accordance with the filament’s origi-

nal orientation, the field vector inside the ICME might

point to the south at first, then rotate to the east (or

west), and finally to the north (SEN and SWN topolo-

gies as named by Bothmer and Schwenn, 1998). Fig-

ure 3 is an example of this particular type. In the fol-

lowing activity cycle, due to the reversed magnetic po-

larity of the Sun, the northward swing will occur first,

(NES and NWS). With every other activity cycle, Bz

south occurs predominantly at the front or the rear of

the clouds, respectively. This applies to filaments with

axes close to the ecliptic plane (Bothmer and Schwenn,

1998), as are usually encountered around solar activity

minimum. At times of increased solar activity, perpen-

dicular axis orientations are also possible, leading to the

corresponding topologies (ESW, ENW, WSE, WNE).

Note that half of these latter cloud topologies at high

solar activity never have a southward Bz at all. Con-

sequently, those ICMEs do not cause any geomagnetic

disturbances. This might explain in part the lowered oc-

currence rate of geomagnetic storms around maximum

activity, as suggested by Mulligan et al. (1998). For

the set of magnetic clouds that occurred between 1997

and 2002, Huttunen et al. (2004) found that the major-

ity of magnetic clouds with perpendicular axis orien-

tation occurred in 1997 and 1998, i.e. during the early



R. Schwenn et al.: The association of coronal mass ejections 1039

3

 

Fig. 3. The events associated with the interplanetary shock wave of 19 July 1980, as observed by the Helios 1 spaceprobe from a position at

0.53 AU distance to the Sun and at 92◦ west of the Earth-Sun line, i.e. right above the Sun’s west limb as seen from the Earth. The 6 bottom

panels show (from top) the IMF north-south (θB ) and east-west (φB ) direction, the field magnitude, and the solar wind speed, temperature

and density. The upper panel shows the azimuthal flow angle φE of suprathermal electrons (221 eV), with the anti-Sun direction at 0◦. This

is one of the cases for which Sheeley et al. (1985) could find a uniquely correlated CME. Figure courtesy of Kevin Ivory, MPS.

rising phase of solar activity. Since orientation and he-

licity of filaments before eruption is often reflected in

the topology of the resulting magnetic clouds (Both-

mer and Schwenn, 1998; Yurchyshyn et al., 2001), we

can use this knowledge for optimizing the prediction of

geomagnetic effects (Zhao and Hoeksema, 1997, 1998;

McAllister et al., 2001; Zhao et al., 2001).

Every CME launched with a speed exceeding 400 km/s was

found to eventually drive a shock wave, which can be ob-

served in-situ, provided that the observer is located within

the angular span of the CME (Schwenn, 1983; Sheeley et al.,

1983, 1985). In reverse, every shock wave observed in space

(except the corotating ones) can uniquely be associated with

an appropriately pointed CME at the Sun. This implies that

there is a causal chain linking CMEs to geomagnetic effects.

No similar statement can be made for flares. Indeed, there are

many CMEs (with geoeffects) without associated flares, and

there are flares without associated CMEs (and without geoef-

fects). The long-standing “flare myth” was finally abolished

(see Gosling, 1993). However, for the very big and most

dangerous events like the one Carrington happened to wit-

ness, strong X-ray flares and large CMEs usually occur in a

close timely context (Švestka, 2001). It is now commonly

thought that both flares and CMEs are just the symptoms of

a common underlying “magnetic disease” of the Sun (Harri-

son, 2003).
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Zhang et al. (2001, 2004) described the initiation of CMEs

in a three-phase scenario: the initiation phase, the impulsive

acceleration phase and the propagation phase. The initiation

phase (taking some tens of minutes) always occurs before

the onset of an associated flare, and the impulsive phase coin-

cides well with the flare’s rise phase. The acceleration ceases

with the peak of soft X-ray flares. Right at the launch time of

several CMEs, Kaufmann et al. (2003) discovered rapid solar

spikes at submillimeter wavelengths that might be represen-

tative of an early signature of CME onset. In order to disen-

tangle the various processes around CME initiation new ob-

servations with significantly better resolution, both spatially

and in time, and even supported by spectroscopic diagnos-

tics, are needed, as was demonstrated by Innes et al. (2001)

and Balmaceda et al. (2003). It is interesting to notice that

some of the theoretical CME models begin to postulate dif-

ferent phases of acceleration (see, e.g. Chen and Krall, 2003).

Some authors claim that there are two kinds of coronal

mass ejections (e.g. Sheeley et al., 1999; Srivastava et al.,

2000, see also Švestka, 2001; Moon et al., 2002): 1) grad-

ual CMEs, with balloon-like shapes, accelerating slowly and

over large distances to speeds in the range 300 to 600 km/s,

and 2) Impulsive CMEs, often associated with flares, accel-

erated already low down to extreme speeds (sometimes more

than 2000 km/s). It is not yet clear whether these are re-

ally fundamentally different processes or whether they rep-

resent just the extrema of an otherwise continuous spectrum

of CME properties. These differences will be reflected in the

properties of the related ICMEs and their effects. Tsurutani

et al. (2004a) analyzed particularly slow magnetic clouds and

found them to be surprisingly geoeffective. A good exam-

ple is the famous event on 6 January 1997: A comparatively

slow, unsuspiciously looking, faint partial halo CME caused

a “problem storm” at the Earth 85 h later, with enormous ef-

fects, as described in a series of papers (Zhao and Hoeksema,

1997; Burlaga et al., 1998; Webb et al., 1998). On the other

hand, the very fast ICMEs are often found to be responsi-

ble for the most intense geomagnetic storms (Srivastava and

Venkatakrishnan, 2002; Gonzalez et al., 2004; Yurchyshyn

et al., 2004), apparently because they build up extreme ram

pressure on the Earth’s magnetosphere.

The number of CMEs observed at the Sun is about 3 per

day at maximum solar activity (St.Cyr et al., 2000). Note

though that Gopalswamy (2004) found a higher rate since

their count included the extremely faint, narrow and slow

CMEs that become visible due to the very high sensitivity

and the enormous dynamic range of the LASCO instruments.

The number of shocks passing an observer located, say, in

front of the Earth, is about 0.3 per day (Webb and Howard,

1994). In other words, an observer sees only one out of ten

shocks released at the Sun. The average shock shell covers

about one-tenth of the full solid angle 4 Pi. Thus, the aver-

age shock cone angle as seen from the Sun’s center amounts

to about 100◦. This is significantly larger than the average

angular size of the CMEs of about 45◦ (Howard et al., 1985;

Hundhausen, 1993; St.Cyr et al., 2000). The conclusion is

that shock fronts extend much further out in space than their

drivers, the ejecta clouds, as had been suggested earlier by

Borrini et al. (1982). This explains why a large fraction of

shocks hitting the Earth are exhibiting just sheath plasma,

with no ejecta following them. In any case, major geomag-

netic storms may be driven.

These are all fairly empirical descriptions of the observed

facts. However, the initiation and evolution of CMEs and

the resulting propagation of the ejecta clouds through the he-

liosphere have also been a key subject for theoreticians and

modelers ever since. There is vast literature on various mod-

els, some of them being quite controversial. The statement by

Riley and Crooker (2004) describes the present status quite

well: “These models include a rich variety of physics and

have been quite successful in reproducing a wide range of

observational signatures. However, as the level of sophis-

tication increases, so does the difficulty in interpreting the

results”. In fact, it is fair to say that at present there is not yet

a unified understanding of all processes involved, and we are

still searching for the decisive observational facts. For the

response of the Earth’s system to those interplanetary pro-

cesses the situation is not better. While the details of their in-

teraction with the magnetosphere are still under study, some

empirical relationships continue to be of great use, for ex-

ample, the famous “Burton formula” (Burton et al., 1975,

see also Lindsay et al., 1999a) that seems to be capable of

predicting geomagnetic response from the sole knowledge of

interplanetary parameters in front of the Earth.

3 Radial propagation of CMEs and travel time to 1 AU

In this section, we investigate how well the travel time of an

ICME to an in-situ observer is related to the head-on CME

speed near the Sun in the ideal case where both quantities can

be precisely determined, for example, by a coronagraph near

the Earth and an in-situ observer located at about 90◦ offset

in longitude relative to the Sun-Earth line.

Such favorable orbital constellations occurred in the later

years of the Helios mission. The two Helios probes happened

to cruise for substantial time periods near the plane of the

sky (as seen from the Earth) at variables distances to the Sun

(0.29 to 1 AU). Simultaneously, the SOLWIND coronagraph

on the Earth-orbiting P78-1 satellite was watching many limb

CMEs. Several of them were apparently aimed directly at

Helios (see Schwenn, 1983; Sheeley et al., 1983). In 49

cases a unique association between SOLWIND limb CMEs

and Helios in-situ ICMEs could be established (Fig. 3 shows

one of these cases). The combined observations led to the

conclusion that there is always a unique association between

fast CMEs (faster than about 400 km/s) and in-situ shocks,

provided the observer is located within the angular span of

the CME (Schwenn, 1983; Sheeley et al., 1983, 1985). Fur-

ther, every interplanetary shock (unless it is a corotating CIR

shock) is the product of a CME. Sheeley et al. (1985) found

only one shock without a discernible CME source. Note

further that 2 of their 49 “safe” and 6 out of their 18 “pos-

sible” associations involved CME and shock observations
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above opposite limbs. This confirms that in extreme cases

shock fronts can reach far around the Sun and thus disturb

major parts of the whole heliosphere. For several of these

events, Woo et al. (1985), using Doppler scintillation obser-

vations, could show that substantial deceleration of shocks

(with v>1000 km/s) takes place near the Sun and that the

amount of deceleration increases with shock speed.

We have now revisited and extended these studies and cor-

related the measured CME front speeds with the travel times

of the associated shock waves to the Helios probe. Using the

data listed in Table 1 of Sheeley et al. (1985), we derived the

plot shown in Fig. 4 (unfortunately, expansion speeds were

not measured at the time). For determining a “normalized”

projected travel time to 1 AU we simply assumed that the

shocks would travel from the Sun through Helios, all the way

to 1 AU at the same average speed. The expected trend is

clearly visible: the faster the CME, the shorter the travel time

to Helios 1. But there is substantial scatter around the “ideal

line”. While the fastest shocks arrive about as expected, the

large group of very slow starters (<500 km/s) arrive substan-

tially earlier than expected, and the majority of CMEs in the

group 750 to 1000 km/s arrives later than expected. This con-

firms generally what has been stated above (Gopalswamy,

2000, 2001c; González-Esparza et al., 2003a,b), that slow

CMEs are post-accelerated by the ambient solar wind, and

the fast ones are decelerated.

However, the large scatter in Fig. 4 comes as a surprise,

and we cannot yet offer a unique explanation. The options

are:

1. The CME speeds may not have been measured suffi-

ciently well. This could be due to the low sensitivity

of SOLWIND, its limited field-of-view (up to 10 Rs)

and to bad time cadence. In particular, the slow CMEs

might be underestimated. We think that some of the

data points in the slowest group should be shifted to-

wards higher values of CME speeds.

2. Helios 1 was certainly not always hit by the fastest

parts of the ICMEs. As shock fronts are large curved

structures they will arrive later at observers situated in

the ICME flanks, compared to the more frontal cases.

For half of all interplanetary shocks no ejecta signa-

tures were found by Helios, thus indicating flank passes

through the ICMEs. Thus, some travel time values

ought to be corrected towards smaller numbers.

3. The shock travel time must not be confused with the

ejecta travel time. The ejecta follow their shocks a few

hours later. Thus, the “real” ejecta travel times would

be longer.

4. On their way through space, ICMEs travel through very

different types of ambient solar wind. The solar wind

conditions vary dramatically on short time scales as well

as during the solar cycle. Thus, major deviations from

simple kinematic models commonly used for predic-

tions will occur.
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Fig. 4. The travel time of limb CME fronts from the Sun to the

location of Helios 1 (at about 90◦ off the Earth-Sun line) as a func-

tion of the CME radial speed Vrad obtained from the SOLWIND

coronagraph. Only those cases were selected where a unique as-

sociation could be achieved, in particular when Helios 1 was with

±30◦ near the plane of the sky, and when the angular span of the

CME included the Helios orbital plane. The travel time was derived

from the moment of first appearance in a coronagraph image and

the shock arrival time at Helios 1. The projected travel times to

1 AU, as given in the figure, were determined by simply assuming

that the shocks would travel from the Sun through Helios, all the

way to 1 AU at the same average speed . All data were adopted

from Table 1 of Sheeley et al. (1985). The dotted line denotes the

“ideal” line, i.e. where the travel time would exactly correspond to

the CME radial speed near the Sun.

Under 3) we encounter a pretty controversial issue (see

Cane et al., 2000; Cane and Richardson, 2003b; and Gopal-

swamy et al., 2003). It would of course be highly desirable

and much more consistent if we could locate and then cor-

relate identical features on both ends, i.e. in CME images

and in in-situ data. This is what Gopalswamy et al. (2003)

kept insisting on. But the driver gas often cannot be identi-

fied uniquely or just misses the observer. Further, we can-

not yet determine how the familiar three-part structure of

most CMEs (bright outer loop, dark void, bright and struc-

tured kernel (Hundhausen, 1988) is transformed into the fa-

miliar two-part structure of ICMEs (sheath behind the shock

wave, followed by driver gas/magnetic cloud) as illustrated

in Fig. 3. Which is which? Before future work will solve this

problem, we decided to put our present study on a purely em-

pirical basis: we take the most uniquely observable quantities

on both ends and look for correlations between them. Near

the Sun, we take the first appearance in SOLWIND/LASCO-

C2 images of the bright outer CME loop as reference time,

and in space we look for any signs (including shocks) indi-

cating approaching ICMEs. Note, by the way, that shocks are

easily and uniquely detectable, in great contrast to the ejecta

clouds.

If argument 4) is in fact a cause for the large scatter in

Fig. 4, then we can already see that determining the radial
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Fig. 5. Self-similarity of CMEs: the limb CME of 19 October 1997

is a typical example showing how well the opening cone angle and

the general shape of a CME are maintained, at least up to 32 Rs .

The term “cone angle” denotes the angle between the outer edges of

opposing flanks of limb CMEs. It would amount to 65◦ in this case.

The images are running differences between LASCO-C3 images.

6
6

Fig. 6. The drawings illustrate how the expansion speed Vexp is

defined. It can be determined uniquely for all types of CMEs, be

it limb, partial halo or full halo CMEs, while the apparent plane of

the sky speed VPS often contains an unknown speed component

towards the observer.

CME speed near the Sun alone will not guarantee good pre-

dictions. The propagation conditions have to be taken into

account as well.

As a conclusion of this section we note:

– There is indeed a correlation between the radial front

speed Vrad of limb CMEs and the travel time towards

an in-situ observer.

– Slow CMEs are post-accelerated, fast ones are deceler-

ated.

– The scatter is surprisingly high.
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Fig. 7. The correlation between radial CME speed Vrad and the

lateral expansion speed Vexp for limb CMEs observed by LASCO

between January 1997 and 15 April 2001.

4 The expansion speed serves as proxy for the radial

propagation speed of CMEs

Now we will study a number of limb CMEs observed by

LASCO where the radial speed Vrad (which in these is iden-

tical to VPS) and the expansion speed Vexp could both be

measured, in order to check the value of the latter one as

proxy data for the other one. Upon inspecting many hun-

dreds of CMEs observed from SOHO we confirmed the ob-

servation by Plunkett et al. (1998) that for limb events the

cone angles of expansion and, more generally, the shapes of

the expanding CMEs were strikingly maintained (by the term

“cone angle” we mean the angle between the outer edges of

opposing flanks of limb CMEs). The CME shapes remained

“self-similar” throughout the LASCO field-of-view. In other

words, the ratio between lateral expansion and radial prop-

agation appears to be constant for most CMEs. A typical

example is shown in Fig. 5.

The way of determining the radial speed Vrad and the ex-

pansion Vexp speed of a CME is illustrated in Fig. 6 (from

Dal Lago et al., 2003a). We selected a representative sub-

set of limb CMEs (57 in total), where EIT images showed a

uniquely associated erupting feature within 30◦ in longitude

to the solar limb and within a reasonable time window of a

few hours. Further, sufficient coverage in C3 images was re-

quired. For those events we determined both the radial speed

Vrad (of the fastest feature projected onto the plane of the

sky) and the expansion speed Vexp (measured across the full

CME in the direction perpendicular to Vrad). We measured

them when they had reached constant values, i.e. usually at

around 10 Rs .

Figure 7 shows the result: There is indeed a fairly good

correlation between the two quantities. A linear fit through

the data yields

Vrad=0.88×Vexp, (1)
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with a correlation coefficient of 0.86. Apparently, the corre-

lation shown in Fig. 7 holds for the slow CMEs as well as

for the fast ones, for the narrow ones as well as for the wide

ones. The correlation even holds in the extreme cases where

a cloud expands faster than it moves as a whole; the front

motion would then mainly be due to the expansion alone,

where the cone angle amounts to 180◦ and Vrad would be

about equal to Vexp , in fairly good agreement with Eq. (1).

As an example the limb CME of 20 April 1998, shown

in Fig. 8, can be considered: This was an extremely fast

event right behind the west limb with Vrad=1944 km/s and

Vexp=1930 km/s and a cone angle of 170◦. In fact, the ef-

fects from this extraordinary limb event even hit the Earth

79.1 h later and caused a moderate geomagnetic storm (Dst

−59 nT).

In order to understand this remarkable correlation we tried

some modeling of CME evolution. We assumed various

plausible geometries based on the “ice cream cone model”,

as first described by Fisher and Munro (1984) and applied

again, e.g. by Zhao et al. (2002) and Michalek et al. (2003).

We modeled the CME front surface as a section of an expand-

ing sphere and calculated the ratio Vexp/Vrad as a function

of the cone angle α. Figure 9 (upper panels) illustrates the 3

geometries we used: the front sphere could either be a sphere

section with the Sun in the center (Model A), or a half sphere

sitting on top of a cone (Model B), or a sphere dropped into

a cone (like a real ice cream ball, such that the ball surface

touches the sphere tangentially, Model C). We assumed the

cone angle to be constant and the sphere surface to remain

self-similar throughout the expansion. It turns out that in the

cone angle range from 40◦ to 80◦, where most CMEs belong,

model A yields Vexp/Vrad from 1.2 to 0.85, compared to the

experimental value of 0.88. The other models give slightly

higher values. On the other hand, for a cone angle near 180◦

Model C works best. One can easily verify that for this ge-

ometry model C yields Vexp=Vrad (see also the example of

Fig. 8). In view of the rather crude assumptions about CMEs’

shape and evolution this is not a bad agreement between our

finding and the models.

We further extended these models to cases where the

CMEs are pointed away from the plane of the sky by an angle

φ (see Fig. 9, lower panels). We calculated the values for the

apparent VPS which now no longer equals Vrad as it does for

limb CMEs. However, unless φ becomes larger than the cone

angle α, VPS and Vrad remain equal or almost equal, in any

model. When φ approaches 90◦, i.e. for the central halo con-

stellation, all 3 models converge to VPS=Vexp /2, regardless

of the cone angle, as expected. In other words, for a given

CME the apparent VPS value varies substantially with the

viewing angle φ, while the Vexp value does not. This is why

Vexp is superior to VPS for inferring the radial speed Vrad

of halo CMEs.

After all we can state:

– For limb CMEs the radial front speed Vrad is almost the

same as the expansion speed Vexp.

8

Fig. 8. The extremely fast partial halo limb CME of 20 April 1998

(E58) was associated with a M1.6 flare not far behind the west limb.

The images are running differences between LASCO C3 images.

The expansion angle was about 180◦. The expansion speed was

1930 km/s; the plane of the sky speed was 1944 km/s. A shock ar-

rived at the Earth 79.1 h later, i.e. about 24 h later than we predicted.

A moderate magnetic storm (Dst −59 nT) peaked 13 h after shock

arrival.

9

Fig. 9. Three plausible models of CME geometries used for study-

ing the ratio between Vexp and Vrad and their relation to the plane

of the sky speed VPS . The front surface is assumed to be a sphere

section, either with the Sun in the center (A), or a half sphere sitting

on top of a cone (B), or a sphere dropped into a cone (like a real

ice cream ball, such that the ball surface touches the sphere tangen-

tially, C). The cone angle α (i.e. the full angle between between the

outer edges of opposing flanks of CMEs) and the radial speed Vrad

are assumed to be constant with time. Thus, the linear dimensions

are proportional to the speeds Vexp and Vrad . The upper panels

apply to limb CMEs, viewed from the top or from the side. For the

lower panels, the CMEs are off-pointed by an angle φ with respect

to the plane of the sky.

– The plane of the sky speed VPS can differ from Vexp

and the wanted Vrad value by a factor of 2, depending

on the CME direction.

– The expansion speed Vexp is a fairly reliable proxy for

the radial speed Vrad for all types of CMEs.
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5 The evaluation of halo CMEs near the Sun and

ICMEs near the Earth

We searched the LASCO data from January 1997 to 15 April

2001 for all CMEs that might be considered candidates for

producing effects near the Earth, i.e. halo and partial halos.

Independently, we searched all in-situ data obtained near the

Earth for signatures of ICMEs.

5.1 CMEs observed near the Sun

All LASCO data were searched for full or partial halo CMEs.

Visual inspection was required since automated recogni-

tion schemes that are under preparation (e.g. Robbrecht and

Berghmans, 2004) are not yet available. A CME is termed

a “full” halo if a feature (remember the CME definition) ap-

pears in at least one image all around the occultor. A “partial”

halo has an angular span of at least 120◦. The distinction be-

tween full and partial halos often suffers from the fact that the

CME brightness and structure vary strongly with the position

angle. The features we see might be the ejecta themselves, or

the compressed and deflected material related to a shock out

ahead of the CME, or the superposition of 2 or more separate

CMEs.

We included all these events in the study since they might

have a significant speed component along the Sun-Earth-line

and may thus be relevant for space weather issues. In the

remainder of this paper, the term “halo” will always mean

both: full and partial halos. Typical examples for the CME

types are shown in Fig. 6. For the search, we inspected the

reports issued by the LASCO operations team at GSFC un-

der ftp://ares.nrl.navy.mil/pub/lasco/halo. They helped us to

avoid overlooking some of the fainter CMEs, and they gave

us important information on the halos’ first appearance in

C2 images, apparent direction, plane-of-the-sky speed, and

correlations with disk events as seen by EIT. This latter in-

formation, in particular, allowed us to earmark off-pointed

(backside) CMEs early on. Further, we studied the CME cat-

alog under http://cdaw.gsfc.nasa.gov/CME list/. In order to

clarify differences between the catalogs and to derive unique

and consistent evaluations, we inspected ourselves every sin-

gle CME image sequence. This explains why in some cases

we arrived at different interpretations.

Table 1 gives the numbers of front side halos (F), backside

halos (B), limb CMEs (L) and unclear cases (U) where we

could not decide about the source location. The limb events

are those with an apparent eruption within 30◦ of the limb

of the front side disk. The unclear cases are those where we

could not uniquely determine whether the halos were front-

or backside events. Note that the numbers of backside ha-

los is not representative anyway, since more such events oc-

curred but were not registered and evaluated in the context of

this paper. We skipped some of the events listed as halos

in the http://cdaw.gsfc.nasa.gov/CME list/ catalog because

they were so faint that we could not confirm them ourselves,

even when we applied our most sophisticated technique as

described by Dal Lago et al. (2003b). The column “Other”

Table 1. Summary of all halo CME observations by LASCO from

January 1997 to 15 April 2001.

Total Full Partial Other

Front side (F) 154 87 49 14+4**

Backside (B)* 41 25 12 4

Limb (L) 27 3 20 4

Unclear (U) 26 8 9 9

Total 248 123 90 35

* The numbers for backside events are not representative.

* For those 4 cases the CME identification was done with instru-

ments other than SOHO, e.g. the Nançay radioheliograph, or the

GOES satellites.

events addresses CMEs that we considered relevant although

their angular width was less than 120◦. Their importance in

context with this work showed up later. Further, there are 4

more “other” cases were SOHO data were not available, but

there are other good reasons to classify them as full front side

halo CMEs.

For each event we determined the characteristic data and

noted them in our data bank (interested readers are referred to

the webpage http://star.mpae.gwdg.de/cme effects/). After

all, we recorded a total of 248 relevant CME events that oc-

curred in the time period between January 1997 and 15 April

2001. Neglecting the 41 backside and 26 unclear events, we

ended up with a total of 181 CME candidates for further anal-

ysis. The list of 181 relevant CMEs includes 18 non-halo

CMEs, i.e. CMEs with an extension of less than 120◦ and

the 4 front side CMEs for which there exist no SOHO data.

The actual relevance of these events for this study was dis-

covered from other sources.

For each CME event we evaluated and listed in the data

bank the following entries:

– The time of first appearance in C2 is taken as refer-

ence onset time, for practical reasons: the actual on-

set is not always uniquely discernible in data from EIT

or Yohkoh, because there is often too much activity

around. Experience tells us that only those events that

make it into the C2 field-of-view become relevant for

our study. The time difference between the CME onset

in EIT and its appearance in C2 is of the order of one

hour, i.e. small compared to the travel times to 1 AU of

some 80 h.

– The position angle and angular extent values we copied

(after inspection) from the catalog http://cdaw.gsfc.

nasa.gov/CME list/.

– The plane of the sky speed VPS values were also copied

from the same catalog (the linear fit speed values). Note

that they were derived for the fastest feature in the im-

ages sequences (St.Cyr et al., 2000). The time-height

diagrams usually show an increasing speed in the C2

field-of-view, but in the C3 field the speeds appear to be

ftp://ares.nrl.navy.mil/pub/lasco/halo
http://cdaw.gsfc.nasa.gov/CME_list/
http://cdaw.gsfc.nasa.gov/CME_list/
http://star.mpae.gwdg.de/cme_effects/
http://cdaw.gsfc.nasa.gov/CME_list/
http://cdaw.gsfc.nasa.gov/CME_list/
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constant from about 10 Rs on. In cases where a linear fit

obviously does not work, we chose the second order fit

at 20 Rs . If C3 data were not available, we inserted the

C2 value with a minus sign added as an earmark.

– The expansion speed Vexp was determined according to

Fig. 6. Usually, halos appear with more or less ellip-

tical cross sections. Even a CME with a perfectly cir-

cular cross section would exhibit an elliptical shape if

it is not pointed exactly along the Earth-Sun line. This

is why Vexp has to be determined from the expansion

of the brightest and fastest features perpendicular to the

projected propagation direction. We plotted the lateral

expansion as a function of time (similar to a height time

plot) and derived a value for Vexp when it had reached

a constant value, i.e. for halo widths of some 15 Rs .

5.2 ICMEs recorded by spacecraft in front of the Earth

In order to study the potential correlations between CMEs

and their effects on the Earth, we searched for the arrival

signatures of ICMEs at the location in front of the Earth’s

bow shock, i.e. at the SOHO, WIND or ACE spacecraft, all

cruising around the L1 point.

What is the optimum ICME signature? In about half of

all cases, the ejecta themselves do not hit the Earth, although

their associated shocks may drive substantial geomagnetic

storms (Gosling et al., 1991), and even if so, the ejecta are

often not uniquely discernible. Some authors (e.g. Gopal-

swamy et al., 2000) used magnetic cloud signatures and low

plasma beta as markers. These signatures appear not to be

unique, and many events will probably be missed. In other

studies, the onset times of geomagnetic storms or the Dst

peak times were taken as further markers (e.g. Brueckner et

al., 1998; Zhang et al., 2003). We do not consider this to be a

very appropriate method, since a storm may be caused either

by the sheath plasma ahead of the ejecta or hours later by the

ejecta themselves, or by a combination of both, or even not

at all. For those cases where it could be determined, the de-

lay time between ICME arrival and Dst peak time was found

to vary between 3 and 40 h, with an average value of 18 h

(Russell and Mulligan, 2002; Zhang et al., 2003).

What suffers least from such shortcomings is the shock

signature as seen in plasma and IMF data taken outside the

Earth’s bow shock. This signature sticks out so clearly that it

can hardly be overlooked or misinterpreted. Even a computer

can be taught to identify shocks (e.g. http://umtof.umd.edu/

pm/shockspotter.html).

Of course are we aware of the fact that transient shocks are

NOT parts of the ICMEs themselves. It is true that shocks

are driven by ICMEs, but they move within the ambient solar

wind, which determines their propagation properties. These

properties vary dramatically from event to event, due to the

3-D structure of the solar wind streams and the IMF. On

the other hand, as shown above, the correlation between fast

CMEs and the occurrence of interplanetary shocks is safely

established (Schwenn, 1983; Sheeley et al., 1985).

Our intention here is to derive an empirical tool based on

the most unique available signatures on both ends: the CMEs

observed early on by coronagraphs, and the ICME signa-

tures observed in front of the Earth. Therefore, we searched

through all in-situ plasma and field data that are available

on the Web. They are provided by the SWE and MFI in-

struments on the WIND spacecraft, by the SWEPAM and

MAG instruments on the ACE spacecraft, and by the MTOF-

CELIAS proton monitor on SOHO. This way, a 100% com-

plete data coverage over the study interval from January 1997

to 15 April 2001 could be achieved.

The occurrence of a shock wave can be recognized in in-

situ plasma data by a noticeable, abrupt, and simultaneous

increase of speed, density, temperature, and magnetic field

magnitude (see Fig. 3). “Abrupt” means between adjacent

data points, usually taken a few seconds or minutes apart.

The knowledge of the magnetic field increase is considered

mandatory.

By visual inspection using these criteria a total of 147

shocks were identified, (plus 4 CIR shocks in front of coro-

tating high-speed streams).

For each shock we made these entries in a shock catalog:

– the time of arrival, preferentially from ACE data,

– the solar wind speed and density values on both sides of

the shock that allowed calculating a rough local shock

speed Vsh according to Eq. (6.6) in Hundhausen (1972).

Recognizing ejecta not accompanied by shocks is not

uniquely possible. The signatures are too hard to discern.

Occasionally, a trained eye may discover a candidate event

by chance, or triggered by a halo alarm issued, for exam-

ple, by the LASCO operations team (see http://lasco-www.

nrl.navy.mil/halocme.html). Huttunen et al. (2002) show a

good example (our case E7) in their Fig. 2. We inserted 40

such events into our catalog: 22 of them we regard as prob-

able magnetic clouds (M events) and 18 others as suspicious

density blobs (B events) without magnetic cloud signature.

We do not consider that list complete or in any sense rep-

resentative, since no systematic search could be performed

because of the severe ambiguities.

During this search, we noted other quantities for future

use, for example, certain ICME signatures, and the Kp and

Dst values of associated geomagnetic storms, if applicable.

This lead us to include all at least moderate geomagnetic

storm events, i.e. when Dst fell below −50 nT, regardless

of shock occurrence (as one of the referees pointed out, one

should use the change of Dst relative to pre-storm levels for

storm strength definition rather than the absolute values. We

will do that in succeeding papers when the storm effects will

be primarily studied). This way, the major geoefficient mag-

netic clouds were located, plus another 4 geoeffective CIRs

without corotating shocks.

We compared our list with the various lists compiled by

other authors and found ourselves in a big mess. To illus-

trate the problem, let us mention only one example: Cane and

Richardson (2003a) studied an overlapping time period (May

http://umtof.umd.edu/pm/shockspotter.html
http://umtof.umd.edu/pm/shockspotter.html
http://lasco-www.nrl.navy.mil/halocme.html
http://lasco-www.nrl.navy.mil/halocme.html
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Table 2. Association of CME events (back side events excluded)

with ICME observations at 1 AU.

Total Unique Possible No

ICME ICME ICME

assoc. assoc. assoc.

Front side Full 91 52 (+2)* 29 (+2)* 6

154 cases Partial 49 23 12 14

<120◦ 14 4 5

Limb Full 3 1 1 1

27 cases Partial 20 9 8 3

<120◦ 4 0 4 0

Total 181 91 61 29

* For those 4 cases the CME identification was done with instru-

ments other than SOHO, e.g. the Nançay radioheliograph, or the

GOES satellites.

1996 to November 2002). They searched for ICMEs using

the following criteria: 1) abnormal proton temperatures, 2)

unusual magnetic field deflections, 3) occurrence of shocks,

4) solar energetic particle increases and galactic cosmic ray

decreases, 5) bi-directional solar wind electron strahls. We

note that several of “our” unique ICME events are missing in

the Cane and Richardson list: e.g. on 27 February 1997 (our

event E3), 28 March, 1997 (E4), 20 May 1997 (E10), and

many others. Some cases in their list we could not confirm

as ICMEs in our definition, e.g. on 16 February 1997 and on

17 September, 1997. For many others the “disturbance time”

does not agree with ours. We double-checked our own find-

ings and confirmed or corrected them, respectively. Major

discrepancies remain, also with the studies of other authors,

for reasons we cannot explain. We find the confirmation of

old wisdom, i.e. that one has to be very careful in performing

statistical evaluations of large databases

For the present study each single case was at least double-

checked by more than one person, and with great certainty

we can state:

– On the one end, we registered in the study interval a

total of 181 CME events that appeared to be relevant for

our correlation study.

– On the other end, we registered 147 shock waves near

1 AU (4 CIR shocks not included), plus 40 ejecta clouds

not accompanied by a shock.

6 Correlations between observations of CMEs and

ICMEs

The most complicated part of this study was to associate the

events from the two catalogs with each other. We went both

ways:

1. For any front side halo CME we searched for a response

in in-situ plasma data.

2. For any observed shock/ICME we searched for a poten-

tial solar source.

6.1 From halo CMEs to ICMEs

From the given onset times of all 181 relevant CMEs in Ta-

ble 1 we searched the plasma data of the following 120 h for

shock entries in our shock catalog or for other ICME signa-

tures in the original plasma data sets. The size of the time

window was chosen somewhat arbitrarily. It corresponds to

an average travel speed of 350 km/s, a value near the lower

limit for the speed of shocks and ICMEs. Further, with

increasing travel time associations become more and more

questionable. The slowest ICME that we could uniquely as-

sociate took 107 h from the Sun to the Earth.

A detailed classification and summary evaluation is given

in Table 2. Our classification criteria need some explana-

tions:

– A “unique ICME association” is given if the time win-

dow following an isolated CME contained one single

shock or ICME signature.

– Cases with multiple events on either end were treated

with special attention. There were several time periods

where CMEs followed each other in such a cadence that

the later ones were sufficiently faster to probably over-

take the earlier ones. Such “cannibalism”, as Gopal-

swamy et al. (2001a) called it, caused increased plasma

turbulence at the interaction sites, notable by increased

levels of continuum-like radio wave emission and in-

creased acceleration of solar energetic particles (Gopal-

swamy et al., 2002a,b). Further, in-situ data at 1 AU

show a mix-up of structures: shocks, discontinuities,

clouds, etc., that cannot uniquely be disentangled and

associated with individual CMEs (e.g. for the periods

15 and 16 September 2000 or 23 to 25 November 2000,

for details see Burlaga et al., 2002). We put such events

into the “possible IP” category. We will discuss this

topic in more detail in Sect. 8.1.

– For the cases of “no ICME association” we double-

checked the data sets and made sure that within the

120 h time window following the CME in question there

was actually no shock/ICME sign discernible.

We split the 181 cases into the categories “front side cases”

and “limb cases”, and each of them into the subcategories

“full”, “partial” or “<120◦” cases.

From inspecting Table 2 we conclude:

– A unique association between CMEs on the Sun and

subsequent ICMEs observed near the Earth was found

in 50.3% (91) out of all 181 cases. If we exclude the

non-halo events, we find a unique association for 53.4%

(87) of 163 front side or limb halo CMEs.

– In 59.3% (54) out of the 91 unique cases the CMEs were

full halos, in a further 35.2% (32) of the cases the CMEs

were partial halos.
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Table 3. Association of ICME events with their potential CME

sources.

Total Unique Possible No

association association association

with CME with CME

Shocks 151 80 61 6

Clouds 40 11 29 0

or blobs

Total 187 91 90 6

– Among the 152 uniquely or possibly associated cases,

there were 13 non-halo CMEs involved (9 front and 4

limb CMEs, respectively), i.e. a total of 8.6%. Forecast-

ers focused on halo CMEs would have ignored these

CMEs: missing alarms.

– For 85.3% (139) cases of all 163 halos a unique or pos-

sible association with shock/ICMEs at 1 AU could be

established.

– 14.7% (24) of all 163 halo CMEs did NOT cause any

notable effect near the Earth. They simply missed the

Earth. Forecasters focused on halo CMEs would have

issued false alarms for every sixth halo CME.

– 7.4% (7) out all 94 full halo CMEs (6 out of 20 front

side and 1 out of 3 limb events) went by without any

effects. The most relevant CMEs are the full front side

halos, suggesting that 6.5% (6) would lead to a false

alarm.

– Out of all 69 partial front side CMEs a fraction of 24.8%

(17) missed the Earth. Out of 23 limb halo CMEs a

fraction of 17.3% (4) missed the Earth.

The last 3 points should make forecasters rather cautious.

Taking full or partial halo CMEs as indicators, they would

have issued 163 warnings. In 139 cases they would have been

right, probably. The remaining 24 alarms (14.7%) would

have been 24 false alarms, resulting from halos (7 full and

17 partial) that did not reach the Earth. We will inspect this

issue further in Sect. 8.

6.2 From ICMEs at 1 AU back to CMEs

From each of the 147 listed shocks and the 40 cloud or

blob events observed in-situ near the Earth we inspected the

halo CME list, and further the CME catalog in http://cdaw.

gsfc.nasa.gov/CME list/, and in case of doubt the complete

LASCO/EIT data set. A time window of 120 h ahead of each

single ICME was selected. On applying the same criteria as

for generating Table 2, we identified a total of 191 relevant

event pairs.

In Table 3 we show the results:

– There were 80 event pairs where a halo CME was

uniquely associated with a shock near the Earth, for

11 more halo CMEs ICME signatures without shocks

could be found.

– Of course, these 91 cases of clear association are iden-

tical to those in Table 2.

– 61 more shock and 29 ICME events are possi-

bly/probably also caused by CMEs, but unique associ-

ation was not possible. This could be due to the oc-

currence of multiple CMEs or multiple/unclear ICME

signatures in the respective time windows. For an-

other 33 cases (not listed in Table 3 but in the data

bank http://star.mpae.gwdg.de/cme effects/), we could

not even name an ICME candidate, due to missing or

just unclear data. And yet, a CME/ICME association

cannot be ruled out and, consequently, must be consid-

ered as “possible”.

– The numbers of unique and possible associations are

comparable. This leads to serious constraints on pre-

diction reliability. We will inspect this aspect in more

detail in Sect. 8.

– 54.44% (80) of all 147 ICME shocks had definitely a

known CME source on the front side of the Sun, another

41.5% (61) probably as well. This means that 95.9% of

all transient shocks can be associated with a certain or

at least possible CME source.

– This also means that 4.1% (6) of all 147 transient shocks

did NOT have a front side CME source. These events

hit the Earth completely unpredicted: missing alarms.

One out of the 6 unpredicted ICME shocks, the one on 28

October 2000, 09:01 (E251) led even to a major geomag-

netic storm. It is true that on 25 October, 08:20, a full front

side halo CME had occurred. This CME, in our interpreta-

tion, caused a shock early on 28 October 05:32 (with a suc-

ceeding storm, Dst −127 nT). For the second shock and its

associated storm (Dst−119 nT) there is no source found. The

other 5 events caused only mild disturbances (Dst>−50 nT).

Not included in any of the tables are the two moderate storms

that occurred completely out of the blue, without any signa-

tures of a CME at the Sun, nor of an ICME near the Earth,

nor a CIR: 9 June 1997 (Dst −84 nT, E13) and 24 April 2000

(Dst−65 nT, E201). The only features these events have in

common with other storm events are extended periods of

southward pointing Bz. We can only speculate about the po-

tential source of such events. One might think of non-halo

CMEs, or ICMEs starting from behind the limb and with

travel times much longer than 120 h, and overlooked ICME

signatures.

For comparison, in the Sheeley et al. (1985) study there

were 2% of shocks (i.e. 1 case out of 47) lacking a CME

source. For the recent period from 1996 to 2000, Zhang et

al. (2003) mentioned 4 major storm events with unknown

source regions. We agree with their conclusion, that there

http://cdaw.gsfc.nasa.gov/CME_list/
http://cdaw.gsfc.nasa.gov/CME_list/
http://star.mpae.gwdg.de/cme_effects/
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Table 4. The 6 shock and 2 storm events definitely not associated with any CME on the front side or near the limbs within a 120-h time

window. The meaning of the columns: (A) number of events in catalog at http://star.mpae.gwdg.de/cme effects/, (B) S stands for shock

occurrence, n stands for definite absence of shock or ICME, (C) time of shock arrival, (D) local shock speed, in km/s, (E) Kp maximum in

succeeding storm, (F) time of Kp maximum, (G) Dst minimum in succeeding storm, in nT, (H) time of Dst minimum.

A B C D E F G H

13 n 6 09.06.1997 00:00 −84 09.06.1997 04:00

46 S 31.01.1998 15:57 374 4 31.01.1998 18:00 −26 31.01.1998 20:00

56 S 07.04.1998 16:58 364 3 07.04.1998 15:00 −13 08.04.1998 00:00

111 S 17.05.1999 23:53 491 5 18.05.1999 06:00 −22 18.05.1999 08:00

125 S 27.06.1999 22:30 669 6 28.06.1999 03:00 −41 28.06.1999 11:00

156 S 12.09.1999 03:16 646 6 12.09.1999 09:00 −40 12.09.1999 12:00

201 n 5 24.04.2000 12:00 −61 24.04.2000 15:00

251 S 28.10.2000 09:01 802 5 28.10.2000 21:00 −127 28.10.2000 09:00

may have been very slow and gradual CMEs emerging from

the east limb or behind, but we think that “their” events

should go into the category “possible CME source”. In fact,

we found a total of 29 such cases within the group of 90

“possible associations with CMEs” from Table 3. We did

not differentiate between those with too few and those with

too many faint or remote CME candidates. The cases with

too few candidate CMEs are hard to differentiate from those

with definitely no CME source, simply because there is al-

most always “something” going on, and there is hardly ever

a 120-h time window where the occurrence of a CME can

definitely be negated.

We show a list of the 6 non-associated shocks (from Ta-

ble 2) and the 2 storms without CME sources in Table 4,

because we think they deserve future attention. These are ex-

amples of really unpredictable geomagnetic disturbances, i.e.

missing alarms. Note further, that for the other 29 “possible”

cases just mentioned (i.e. those with an unclear though pos-

sible CME source) no positive prediction would have been

issued either, since out of the many ordinary, small, slow,

narrow CMEs going on most of the time, none was attracting

attention as a potential threat to Earth. They were all found

after the fact, i.e. when an unexpected impact at Earth had

already occurred. Thus, we must conclude that 37 (19.6%)

out of the 187 shock or ICMEs and the 2 storm events near

Earth would not have been predicted.

6.3 The unique associations

The 91 uniquely associated event pairs mentioned in Tables 2

and 3 are listed with their characteristic data in a table to

be found in http://star.mpae.gwdg.de/cme effects/, in order

to allow other authors to compare and cross-check their data

with ours. The 91 unique cases include 80 shock events (for

72 front side and 8 limb CMEs). Four of these 91 CMEs had

an angular width of less than 120◦ and would not be consid-

ered halo CMEs. For 11 safe associations, no shocks were

observed but othe ICME signatures (magnetic cloud topolo-

gies (M), extreme density enhancements (B) etc.).

For 75 of the 80 halo/shock pairs consistent data pairs for

Vexp/shock travel time could be determined. We will use

them in Sect. 7.

In summary, we state:

– In about 85% of full or partial front side halo CMEs an

ICME effect at the Earth can be expected.

– The remaining 15% of full or partial front side halo

CME events would miss the Earth: false alarms.

– 4.1% of all transient shocks do not have a front side

CME source: missing alarms.

– In total, 19.6% out of 189 ICME or storm events near

Earth would not have been predicted: missing alarms.

7 Travel times of uniquely associated CME/shock event

pairs

In order to derive a sound empirical correlation between halo

CME expansion speeds and the travel times of their asso-

ciated shocks, we selected those 75 cases where we had

found not only unique CME-shock correlations but could

also measure all required quantities. In Fig. 10 we show the

travel times plotted vs. the halo expansion speed Vexp. The

open circle symbols denote the 10 limb events among the 75

unique cases. The dashed line indicates the expected travel

time, calculated by assuming a constant radial propagation

speed (kinematic approach) inferred from the observed ex-

pansion speed according to Eq. (1).

The solid line in Fig. 10 is a least-square fit curve to the

75 main data points. The functional form of this fit curve

is based on a straight forward deceleration model assuming

viscous drag (see, e.g. Vršnak, 2001a). Here the local decel-

eration is proportional to the speed difference to the ambient

medium. Such a model leads to an asymptotic convergence

of the CME speed to the ambient solar wind as described,

http://star.mpae.gwdg.de/cme_effects/
http://star.mpae.gwdg.de/cme_effects/


R. Schwenn et al.: The association of coronal mass ejections 1049

e.g. by Vršnak (2001a,b), Vršnak and Gopalswamy (2002)

and Nakagawa and Matsuoka (2003). With that assumption,

we find the optimum fit function for the travel time Ttr to be

Ttr = 203 − 20.77 ∗ ln(Vexp), (2)

with Ttr in hours and Vexp in km/s.

In Fig. 10 we note:

– The functional form of our fit curve meets the measured

data points fairly well, despite the large scatter.

– The scatter is indeed substantial. The standard deviation

from the fit curve is 14 h. For defining a 95% safety mar-

gin we assume 2 standard deviations, i.e. a little more

than one day.

– With respect to the functional dependence and the

amount of scatter, Fig. 10 looks very similar to Fig. 4

where we had compared radial speeds of limb CMEs

with the shock travel times towards the Helios probes.

– All shocks from halos with expansion speeds above

1000 km/s are arriving hours later than expected from

the kinematic approach, indicating substantial decelera-

tion.

– The shocks and ICMEs from slowly expanding ha-

los (Vexp<500 km/s, equivalent to Vrad<450 km/s) ar-

rive earlier than expected. They must have been post-

accelerated.

– The 10 uniquely associated limb CMEs (denoted by

open circles) show a basically similar behavior.

– The 11 non-shock ICME cases (denoted by green bul-

lets) fall very close to the kinematic approach curve.

For the sake of obtaining a simple relation such as Eq. (2),

we had assumed the ambient speed to be zero. For non-zero

values of the ambient speed, the situation for the fast CMEs

does not change much, but for the slow events the effective

travel time would increase to some extent. Thus, the fit func-

tion would become somewhat steeper, but considering the

large scatter of the data points we disregarded this refine-

ment.

There has been a lot of discussion in the literature about

the optimum CME acceleration/deceleration model. Some

authors, on the basis of coronagraph observations, had as-

sumed an “effective” acceleration to be constant over the

Sun-Earth distance (Gopalswamy et al., 2000). To gener-

alize this model, Gopalswamy et al. (2001c) and Michalek

et al. (2002) assumed that the effective acceleration ceases

at some distance about half way between the Sun and the

Earth. Such a model appears to be supported by Reiner et

al. (2003a), who measured the frequency drifts of radio emis-

sions from ICME shock fronts and determined radial speed

profiles out to and beyond 1 AU. In contrast, the models by

González-Esparza et al. (2003a,b) predict that a fast CME

moves initially in the inner heliosphere with a quasi-constant

10

seen by the ACE spacecraft near Earth. The 2 full front side halo CMEs had originated from the 

same region on the Sun within 2.5 hours. The two CMEs had interacted with each other already 

close to the Sun. At Earth arrived only one shock (7 hours later than we had predicted). Almost 

a day later arrived a magnetic feature that might be considered a magnetic cloud, although some 

typical signatures are missing. Bz turned south for about 12 hours, thus causing a moderate 
magnetic storm with Dst – 62 nT. 

Fig. 10. The ICME travel times plotted vs. the halo expansion

speed Vexp for the 75 usable cases of unique CME-shock correla-

tions. The travel time Ttr is defined by the CME’s first appearance

in C2 images and the shock arrival at 1 AU. The solid blue line is a

least-square fit curve to the 75 data points, with the fit function be-

ing Ttr=203–20.77* ln (Vexp). The standard deviation from the fit

curve is 14 h. The two dotted lines denote a 95% certainty margin

of 2 standard deviations. The thin dashed line marks the calculated

travel time for a constant radial propagation speed (kinematic ap-

proach) inferred from the observed expansion speed according to

Eq. (1). The green dots denote ICMEs without shock signatures,

i.e. magnetic clouds (M) and plasma blobs (B). These points were

not used for the fit.

velocity until a “critical distance” is reached at which the

CME velocity begins to decrease, approaching the speed of

the ambient solar wind. This ongoing discussion has led

Cargill (2004) to investigate the aerodynamic force acting on

ICMEs by applying appropriate MHD simulations. He “as-

sumes a drag force proportional to the square of the relative

velocity, as has been used in hydrodynamic”. In that he dif-

fers from Vršnak, 2001a who assumed a viscous drag force

proportional to the relative velocity. However, as Owens and

Cargill (2004) pointed out, “that this leads to little differ-

ence”. The models of Cargill (2004) show that the effective

deceleration depends largely on the ICME density relative to

the ambient solar wind density. These quantities vary dra-

matically from event to event, and that may be the main rea-

son for the large scatter of our data points and those of other

authors.

We should not assign too much meaning to the empirical

models unless we know better the actual propagation envi-

ronment of the individual CMEs. Note that even a simple

linear fit would not do much worse than any other, more so-

phisticated fit (see, e.g. Fig. 5 in Michalek et al., 2002). This

is what Zhang et al. (2003) did when they correlated the halo

CME front speeds with the ICME travel time (for those 26

cases where they could discern an ICME at all) and simply

fitted a straight line through the data. For the time being, we

would like to join in with Reiner et al. (2003a), who, in the



1050 R. Schwenn et al.: The association of coronal mass ejections

spirit of Galileo Galilei, proposed “that a number of CMEs

be dropped from La Torre di Pisa and their drag force be di-

rectly measured”.

Previous studies had always been based on the plane of the

sky speed VPS of the fastest CME features. We applied this

method to our 75 safe associations and found significantly

more scatter. The reason is of course that the plane of the sky

speed is not representative of the real radial speed because of

projection effects.

In our Fig. 10 we had added the 11 correlated CME events

without shocks (the magnetic clouds or plasma “blobs”). We

determined their travel time and added them as green dots.

As the figure shows, these points are surprisingly well lined

up with the dashed expectation curve: For comparison, we

measured as well the travel times of all other identified ejecta

that were driving a shock. Then, the result shows slightly

less scatter than in Fig. 10 and is very similar to that shown

by Gopalswamy et al. (2001c), who calculated a represen-

tative prediction curve (assuming a constant deceleration to

0.67 AU) to the 47 data points in their Fig. 8. As a “mean er-

ror” they find a value of 10.7 h. Similar to Cane and Richard-

son (2003b), we consider this value quite misleading since

7 points (15%) lie outside a ±18 h margin. The 95% safety

margin would be at more than 24 h, i.e. very similar to ours.

Note though that their evaluation is based on “real” ejecta

and their travel times only. Gopalswamy et al. (2001c) tried

a correction of the VPS values to account for the projection

effect. They made use of the ejection source location, but

they state that there was no real improvement.

Michalek et al. (2002, 2003) developed a method for cor-

recting VPS in which they determined the moments of the

first appearance of the CME above opposite limbs above the

occultor. As a result, they derived “space velocities” of halo

CMEs and correlated them with ICME travel times. They

claim that they “reduced the average prediction error from

∼10 to ∼5 h”. Unfortunately, the data shown by Michalek et

al. (2002) do not support their claim. Note further, that this

method can only be applied to non-symmetric halos.

When putting our results and conclusions in context with

those of other authors, we often note major differences, even

when the same data where used. When putting event lists

side by side, it turns out that there are always major discrep-

ancies in both definitions and interpretations. There are sev-

eral “mixed bags” being used, as Gopalswamy et al. (2003)

phrased it when criticizing Cane et al. (2000), (see also re-

ply by Cane and Richardson, 2003b). Some authors look for

identifiable ejecta, others concentrate on “disturbances” as-

sociated with CMEs, others search for geomagnetic response

(even using different indices: Kp or Dst ), others do statis-

tics. Accordingly, the results and conclusions are differing

as well. We leave it to the reader to study the vast literature

on the subject. In addition to the papers already quoted, we

mention only a few recent ones: Berdichevsky et al. (2002);

Vilmer et al. (2003); Wang et al. (2002b); Webb et al. (2000);

Yermolaev and Yermolaev (2002, 2003); Zhang et al. (2003),

Zhao and Webb (2003); Huttunen et al. (2004).

Based on our own study, we consider the following sum-

mary statement of this section as “safe”, hoping that future

forecasters can benefit:

– For an isolated, undisturbed front side halo CME the

shock/ICME arrival time at the Earth can be derived us-

ing the empirical Eq. (2). There is a 95% probability

that the shock will arrive within one day around that

predicted time.

8 Remaining uncertainties for reliable predictions

For practical applications as a prediction tool Eq. (2) based

on the expansion speed, was found to work rather success-

fully, as was confirmed for several events that occurred after

our analysis interval, i.e. 15 after April 2001. However, there

is still an embarrassing number of cases of complete failure:

missing alarms and false alarms.

The 91 uniquely associated event pairs were selected with

great care, in order to lead us to safe conclusions and to pro-

vide a sound prediction tool. However, our complete list

of 304 entries includes another 124 “possibly associated”

shock/ICME events, i.e. cases of CMEs where an ICME sig-

nature could not be ruled out, and the other way round.

In 37 cases, an ICME signature could not be uniquely

identified. It might be hidden in turbulent plasma data, or

there were missing or just confused CME data. Anyway, a

CME/ICME correlation could not be ruled out. For deriving

our tool, these cases of uncertain “backward associations”

had to be excluded. In practice, this ambiguity should not

worry a forecaster who is usually interested in finding “for-

ward associations”, i.e. he wants to uniquely predict the ar-

rival of an ICME once a proper CME has actually occurred.

In the other 87 cases (61 front side or limb halos, 50 of

them being full or partial halos, 5 backside halos, 21 of un-

known type) a CME/ICME association may also exist. We

just cannot tell for sure which one out of several potential

CMEs had been the actual cause.

A forecaster would deal preferentially with the 50 partial

and full halos. They were classified as “possibly associated”

since:

1. For 13 cases among them, we could or did not measure

the halo expansion speed (too faint, missing or confus-

ing data, no relevance etc.), a general problem every

forecaster has to cope with as well. We would advise

him to issue only a cautious general warning. There is

no doubt that this type of CME causes, in practice, the

number of missing alarms increase.

2. In 12 cases we could not claim a safe association; the

signatures on both ends seemed to be too vague. How-

ever, we were probably too conservative. A brave fore-

caster using Eq. (2) would in fact have done a pretty

good job: his predictions would have been fulfilled

rather well, and only one further false alarm would have

been issued.
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3. Twenty-seven of the 50 halo CMEs were multiple

events, i.e. they came in too rapidly. This hinders unique

associations, or makes them even impossible, when in-

teractions between the ICMEs occur. In the following

Sect. 9 we will look a bit closer into this issue.

8.1 Multiple CMEs

Around the maximum of solar activity, there occur several

CMEs per day (St.Cyr et al., 2000; Gopalswamy, 2004).

Sometimes they even emerge from the same region on the

Sun within hours. Thus, mutual interactions between CMEs

can be expected to happen rather often such that their propa-

gation is substantially disturbed. We give a few examples:

– From 23 to 26 November in 2000 there occurred a series

of 8 full and 2 partial halos (E258 to E267), with expan-

sion speeds between 590 and about 3000 km/s. Within

reasonable time windows, no more than 3 shocks hit

the Earth, and only 2 moderate and 1 severe geomag-

netic storm were caused. Even the extremely fast halo

of 25 November, 01:31 (E264), went by almost unno-

ticed, probably because the ejecta ran into a rather tur-

bulent ambient medium that had been mixed up by the

previous 5 CMEs. Note, though, that a shock prediction

using our tool based on the first CME alone would not

have been off by more than 3 h! This series of events

was studied by Wang et al. (2002b), who tried to ap-

ply a simple magnetic flux rope model to this multiple

magnetic cloud situation.

– We found 9 more pairs of halo CMEs following each

other within less than 22 h. In 3 cases there occurred

2 shocks, and in one single case no shock or ICME at

all reached the Earth. In 5 cases of double CMEs just

one single shock reached the Earth. A typical case of

two full front side halo CMEs occurred on 20 January

2001 at 19:31 UT (E276) and 21:54 UT (E277), both

from the same region at S07 E40. These events had

been studied in much detail by Reiner et al., 2003b. The

second one was substantially faster (Vexp=1930 km/s)

than the first one (1363 km/s), such that the two CMEs

merged already within the C3 field-of-view. At Earth,

one single shock wave arrived 63 h later. Almost a day

later a magnetic feature arrived that might be considered

a magnetic cloud, although some typical signatures are

missing. Bz turned south for about 12 h, thus causing

a moderate magnetic storm with Dst −62 nT. Interest-

ingly enough, the mentioned shock had arrived only 7 h

later than what we would have predicted for the first

halo alone. Such an agreement was found in several

more cases of double or multiple events. Therefore, we

state that a prediction based on the first CME alone can

be pretty good.

– On 15 and 16 September 2000 there occurred 3 full and

1 partial halo within 18 h (E238 to E241). The last one

was particularly fast (Vexp=1509 km/s). Nevertheless,

nothing but 2 plasma clouds (definitively no shocks!)

arrived near the Earth, causing 1 severe and 1 moder-

ate storm. Apparently, the 4 ICMEs had cannibalized

each other in such a way that no shock survived, just

turbulent clouds.

The analysis of these multiple events allows us to give some

advice to the brave forecaster. He would of course be alerted

by the first halo CME and make his prediction, not knowing

what might follow. If a second halo actually occurs within

24 h, the prediction for the first one would still remain valid,

unless the second CME is at least twice as fast as the first

one. In this case, he should revise his prediction, based on

the expansion speed of the second CME, but with a warn-

ing sign attached. For the second and any subsequent CME

running into the aftermaths of the other ones, no quantitative

prediction can be trusted.

8.2 Partial and limb halo CMEs

In Table 2 we found that 93.4% (85) out of 91 full front side

halo CMEs produced a definite or possible ICME that hit the

Earth. This means, as well, that 6.6% were missing the Earth.

For partial and limb halos the situation is more complicated.

Their main propagation direction is not pointing toward the

Earth, and yet the Earth may be hit by the CMEs’ flanks.

According to Sheeley et al. (1985) the main requirement for

a CME to hit the Earth is that its envelope includes the Sun-

Earth line. Usually, limb CMEs with their mean cone angles

of some 50◦ do not fulfill this condition. However, there are

also a few CMEs with cone angles of about 180◦, and even

a slight propagation component towards the Earth lets them

appear as full halos, On the other hand, there are CMEs with

comparatively narrow cone angles that emerge from the front

side and are off-pointed from the Sun-Earth line. If their

apparent (i.e. projected) cone angle includes the Sun-Earth

line then the chances are high that they will also hit the Earth.

This is generally true for CMEs with apparent cone angles

of more than 120◦ that we define as “partial” halo CMEs.

Note, though, that we had found unique associations in four

cases with even smaller cone angles (see Table 2 at http://star.

mpae.gwdg.de/cme effects/, E92, E196, E219, E222). We

wonder which predictions were issued at the time!

Inspecting the 49 cases of front side partial halos (limb

events not included), we found that 14 of them (29%) had

definitely no effect near Earth. For the remaining 35 cases

we found 23 certain and 12 potential associations. Inspect-

ing now the 23 limb events (partial and full), we find 4 cases

(17.4%) without association, plus 10 certain and 9 possibly

associated events. In Fig. 10 we had circled the 10 well-

associated limb events, clearly showing that their travel time

to 1 AU is similarly related to the expansion speed as for

the front side halos, with a slight trend to larger travel times.

Thus, for limb CMEs the same Eq. (2) can be used for pre-

diction of the travel time to Earth, maybe with a few hours

added. We were not successful in finding signatures in the

solar observations indicating early on which one of the big

http://star.mpae.gwdg.de/cme_effects/
http://star.mpae.gwdg.de/cme_effects/
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Table 5. Limb halo CMEs without any association to ICMEs near

Earth. The meaning of the columns: (A) number of event in catalog

at http://star.mpae.gwdg.de/cme effects/, (B) time of first appear-

ance of CME front in LASCO-C2 field-of-view, (C) angular width

of CME, (D) position angle of fastest CME feature (measured coun-

terclockwise from North Pole), (E) plane of the sky speed VPS (in

km/s) of fastest CME feature, measured between 10 and 20 Rs using

C3, (F) expansion speed Vexp (in km/s).

A B C D E F

32 6 November 1997, 12:10 180 262 1473 2006

202 5 May 2000, 15:50 200 265 1594 1925

249 16 October 2000, 07:27 360 270 1356 1404

280 3 February 2001, 00:30 203 81 639 560

limb CMEs would hit or miss the Earth. In fact, on compar-

ing the event types we were surprised by their similarity.

The four limb halos listed in Table 5 did not show any

effect at 1 AU.

The famous case E32 (on 6 November 1997) is particu-

larly interesting. It was associated with an X9.4 flare at about

S18◦ W 60◦. This event had been studied in much detail by

Maia et al. (1999). The CME was considered partial at first,

but in the catalog it appears as full halo. It was very fast and

produced high fluxes of energetic particles penetrating the

SOHO cameras. However, no associated ICME ever arrived

at the Earth. The cases E201 and E248 probably occurred

closely behind the west limb, with E279 slightly in front of

the east limb.

For comparison, Table 6 shows the list of 10 well-

associated limb halo CMEs. Most of these events occurred

on the visible disk though very close to the east or west

limb. Upon comparing the events in the Tables 5 and 6, one

hardly notices a difference that might explain why one group

of events was clearly hitting the Earth, while the other one

missed it. In both groups there are both rather fast and slow

events, with similar angular spans and with sources near the

limb. In further studies we will have to investigate more de-

tails, for example, the history and magnetic topology of the

source regions, in order to solve this intriguing puzzle.

9 Summary

This study makes use of all available observations concern-

ing CMEs near the Sun and their potential interplanetary sig-

natures near the Earth. Data were taken over more than 4

years around the past solar activity maximum, without major

data gaps. We went both ways: For each of the 181 rel-

evant CME events observed by LASCO we looked for po-

tential ICME signatures as obtained by several in-situ space-

craft in front of the Earth’s bow shock, and for each of the

147 transient shock waves near 1 AU plus 40 ejecta clouds

not accompanied by a shock we searched for potential CME

sources. A data set with 304 entries covering each single

event or event pair was created (http://star.mpae.gwdg.de/

cme effects/).

The total number of cases appears to be sufficient for

obtaining statistically meaningful correlative results. In 91

cases a unique association between both types of events

could be established; in a further 124 cases a possible as-

sociation cannot be excluded.

The main results are:

– From coronagraph observations of limb CMEs and si-

multaneous in-situ observations from the Helios probes

traveling above the respective limbs we learned that

there is a good correlation between the radial front

speed Vrad of limb CMEs and their travel time towards

an in-situ observer.

– However, even for that ideal constellation the scatter

is surprisingly high, which is probably due to the ac-

tion of the highly structured and variable interplanetary

medium.

– The expansion speed Vexp is a fairly reliable proxy for

the radial speed Vrad for all types of CMEs. This was

found from a correlative study of many limb CMEs ob-

served by LASCO for which both quantities could eas-

ily be determined.

– On correlating 181 CMEs, on the one side, and 187

ICMEs, on the other side, we found in about 85% of

front side halo CMEs, an ICME effect at the Earth can

be expected.

– 15% of front side halo CME events (7.4% of all front

side full halo CMEs) miss the Earth: false alarms.

– Every fourth partial halo CME and every sixth limb halo

CME does not hit the Earth.

– In 8.6% of all unique or possible associations non-

halo CMEs were involved. Forecasters focused on

halo CMEs would have ignored these CMEs: missing

alarms.

– 6 of the 147 transient shocks do not have a front side

CME source and would not have been predicted. In

total, almost 20% of ICME or storm events would not

have been predicted: missing alarms.

– At times of high solar activity, CMEs often occur

shortly one after the other such that they interact and

merge with each other. Their effects at the Earth be-

come highly unpredictable.

– For 75 out of 91 safe associations between CMEs and

ICMEs we could determine both the expansion speed

Vexp near the Sun and the travel time of the associated

shock towards the Earth. An empirical Eq. (2) was de-

rived which now allows one to predict (for an isolated,

http://star.mpae.gwdg.de/cme_effects/
http://star.mpae.gwdg.de/cme_effects/
http://star.mpae.gwdg.de/cme_effects/
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Table 6. Well-associated limb halo CMEs. The meaning of the columns: (A) number of events in catalog at http://star.mpae.gwdg.de/

cme effects/, (B) time of first appearance of CME front in LASCO-C2 field-of-view, (C) angular width of CME, (D) position angle of

fastest CME feature (measured counterclockwise from North Pole), (E) plane of the sky speed VPS (in km/s) of fastest CME feature,

measured between 10 and 20 Rs using C3, (F) expansion speed Vexp(in km/s), (G) detection of shock (S), plasma blob (B), (H) arrival time

of shock or ICME at 1 AU (in ACE, Wind or SOHO data), (I) local shock speed (in km/s). No entry in case of no shock, (J) travel time (in

hours) between Sun and 1 AU, determined from columns B and H.

A B C D E F G H I J

58 20 April 1998, 10:07 165 278 1944 1930 S 23 April 1998, 17:15 427 79.1

133 3 July 1999, 19:54 139 303 560 521 S 6 July 1999, 14:23 434 66.5

213 23 June 2000, 14:54 180 293 761 1028 B 26 June 2000, 00:00 57.1

230 25 August 2000, 14:54 180 49 501 432 B 28 August 2000, 06:00 63.1

256 08 November 2000, 23:06 271 299 2023 3165 S 10 November 2000, 06:01 985 30.9

274 14 January 2001, 06:30 134 356 1055 1270 S 17 January 2001, 15:46 468 81.3

278 28 January 2001, 15:54 250 254 932 1513 S 31 January 2001, 07:36 430 63.7

283 11 February 2001, 01:31 360 335 1179 1613 S 12 February 2001, 20:40 512 43.1

297 2. April 2001, 22:06 244 293 2634 1867 S 04 April 2001, 14:21 725 40.3

304 15 April 2001, 14:06 167 268 1064 1300 S 17 April 2001, 23:57 597 57.8

undisturbed front side halo CME) the shock/ICME ar-

rival time at the Earth. There is a 95% probability that

the shock will arrive within one day around that pre-

dicted time, unless it is one of the 15% of ICMEs that

never hit the Earth.

We should keep in mind that these are all statistical results,

all evaluated after the fact. We are afraid to admit that they

are of limited value for the lonely space weather forecaster

on duty who is watching near-real-time solar disk and coron-

agraph images, aiming to issue in time reasonable warnings.

For illustration, we mention only McAllister et al. (2001),

who put themselves into that position and describe in de-

tail their “mixed level of success”. At the end of a lengthy

and very careful analysis of all available information on lo-

cation, orientation and surrounding magnetic field configura-

tion around a particular halo CME they find substantial dif-

ferences of their predictions to the actual events near Earth.

They frankly admit their “inability to predict whether an en-

counter will be head-on with the apex of a flux rope loop or,

as deduced in this case, a passage through one of its legs.”

This is where we are.

There is no doubt that the combined action of both space-

borne coronagraphs EUV-disk imagers and in-situ solar wind

monitors, all operating 24 h per day, has brought space

weather analysis and predictions to an unprecedented qual-

ity and precision. We think that the remaining rate of 20%

missing alarms and 15% false alarms is not bad compared to

what was available before. This is what we need for further

improving the situation:

– The present spacecraft fleet will not live forever. Re-

placement missions are urgently needed for SOHO,

ACE, and Wind, in order to maintain a continuous sur-

vey of the Sun and interplanetary space.

– Stereoscopic views of CMEs approaching Earth will al-

low for more precise predictions. We are looking for-

ward to the launch of the STEREO spacecraft. As a

complement, solar wind monitors should be stationed

in front of the Earth at various heliospheric distances,

as proposed, e.g. by Lindsay et al. (1999a,b).

– Extensive computer models should be brought into op-

eration that allow one to predict CME propagation

through the interplanetary medium in a realistic way in

near-real time. There are several promising computer

codes under development, with very encouraging re-

sults (e.g. Riley et al., 2001; Linker et al., 2003; Mozer

and Briggs, 2003; Cho et al., 2003; Fry et al., 2003;

Manchester et al., 2004; Odstrcil et al., 2004; Riley and

Crooker, 2004).

– Basic research must go on such that finally the onset

of solar transient events can be predicted (with respect

to location, onset time, strength and significance) well

before they actually occur.

One last word of caution: According to our study, space

weather forecasters can now make fairly good predictions

about whether or not a shock or ICME will hit the Earth.

However, predicting potential geoeffects still remains much

more difficult and relies mainly on empirical techniques (e.g.

Gonzalez and Tsurutani, 1987). The magnetic topology of

magnetic clouds to be expected can probably be modeled

soon on the basis of their source filament topologies. In order

to do so, continuous high quality recordings of the magnetic

topology around active regions and filaments are needed (as

pointed out by Webb et al., 2000b) that allow one to infer

magnetic features of ICMEs (leading to geoeffects) should

they be launched eventually. Note, though, that about half

http://star.mpae.gwdg.de/cme_effects/
http://star.mpae.gwdg.de/cme_effects/
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of all ICMEs do not exhibit a magnetic cloud structure when

reaching Earth. Their potential geoefficiency arises from the

magnetic field topology of the sheath plasma piled up in front

of and around the ejecta cloud. At present, we cannot yet

predict the strength and duration of Bz excursions in a shock

sheath. The detailed topology depends on the relative loca-

tions of the Earth, the ICME, and the heliospheric current

sheet. Real progress will hinge on the development of mod-

els that include the propagation of structured ICMEs through

a structured 3-D heliosphere.

Acknowledgements. This study is based on a unique set of data

from several instruments on several space probes. We thank the

whole LASCO/EIT team (PIs R. Howard, NRL and J.-P. Delabou-

dinière, IAS) for their superb efforts in managing and building

fine telescopes, for keeping the mission going and producing these

unprecedented image collections (see http://lasco-www.nrl.navy.

mil/lasco.html, http://umbra.nascom.nasa.gov/eit/, http://star.mpae.

gwdg.de/) . We thank the LASCO mission scientists (C. St.Cyr, S.

Paswaters, S. Stezelberger, S. Plunkett, G. Lawrence, and presently

G. Stenborg (stenborg@kreutz.nascom.nasa.gov) for analyzing the

relevant halo CMEs and mailing out their findings (archived in part

in http://lasco-www.nrl.navy.mil/halocme.html) and for keeping all

data publicly available at ftp://ares.nrl.navy.mil/pub/lasco/halo. The

CME catalog at is generated and maintained by NASA and The

Catholic University of America in cooperation with the Naval Re-

search Laboratory. For that tremendous work we thank S. Yashiro

and G. Michalek who work under the guidance of N. Gopal-

swamy. We thank the ACE team for maintaining the solar wind

and magnetic field data at http://sec.noaa.gov/ace/ACErtsw home.

html (PIs D. McComas for SWEPAM and N. Ness for MAG).

We thank the CELIAS team (PI P. Bochsler) for the real-time

plasma data and to Shockspotter for barking at any of his shock

identifications (http://umtof.umd.edu/pm). We also benefited from

the WIND plasma and field data sets made available via http:

//web.mit.edu/space/www/wind/wind data.html (PI K. W. Ogilvie,

NASA GSFC), http://lepmfi.gsfc.nasa.gov/mfi/windmfi.html (PI R.

Lepping, NASA GSFC). Most of these data could be readily in-

spected using NASA’s Coordinated Data Analysis Web at http:

//cdaweb.gsfc.nasa.gov/cdaweb/istp public/. We thank the SEC at

NOAA, Boulder, for providing real-time and retrospective space

weather information through http://www.sec.noaa.gov/today.html

to customer scientists at no cost, and further to the WDC-C2 in

Kyoto for maintaining their Dst -Index catalog. We thank J. Alves-

tadt whose most precise Solar Terrestrial Activity Reports through

http://dxlc.com/solar/ have been useful over the years. We grate-

fully acknowledge the work done by the data analysts, in particular

to B. Podlipnik at MPAe and D. Wang at NRL. We are also grateful
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Interplanetary origin of geomagnetic storms, Space Sci. Rev., 88,

529–562, 1999.

Gonzalez, W. D., Dal Lago, A., Clúa de Gonzalez A. L., Vieira,
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A statistical study of CMEs associated with metric type II bursts,

Geophys. Res. Lett., 30, 8016, doi:10.1029/2002GL016481,

2003.

Leblanc, Y., Dulk, G. A., Vourlidas, A. and Bougeret, J.-L.: Type

II radio emission and relationship with CMEs , J. Geophys. Res.

106, 25 301–25 312, 2001.

Lepping, R. P., Berdichevsky, D., Szabo, A., Lazarus, A. J., and

Thompson, B. J.: Upstream shocks and interplanetary magnetic

could speed and expansion, Proc. of the COSPAR Colloquium

held in Pacific Green Bay, Wanli, Taipei, Taiwan, Ling-Hsiao, L.

(Ed.), Pergamon Press, 87–96, 2002.

Lepri, S. T., Zurbuchen, T. H., Fisk, L. A., Richardson, I. G., Cane,

H. V., and Gloeckler, G.: Iron charge distribution as an identifier

on interplanetary coronal mass ejections, J. Geophys. Res., 106,

29 231–29 238, 2001.

Lindsay, G. M., Russell, C. T., and Luhmann, J. G.: Predictability

of Dst index based upon solar wind conditions monitored inside

1 AU, J. Geophys. Res., 104, 10 335–10 344, 1999a.

Lindsay, G. M., Luhmann, J. G., Russell, C. T., and Gosling, J.

T.: Relationships between coronal mass ejection speeds from

coronagraph images and interplanetary characteristics of asso-

ciated interplanetary coronal mass ejections, J. Geophys. Res.,

104, 12 515–12 524, 1999b.
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Schwenn, R., Mühlhäuser, K. H., and Rosenbauer, H.: Associa-

tions between coronal mass ejections and interplanetary shocks,

in Solar Wind Five, Neugebauer, M., 693-702, NASA Confer-

ence Publication 2280, Pasadena, California, USA, 1983.

Sheeley Jr., N.R., Howard, R.A., Michels, D.J., Koomen, M.J.,
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Vršnak, B.: Dynamics of solar coronal eruptions, J. Geophys. Res.,

106, 25 249–25 259, 2001b.
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