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Abstract

Chronic kidney disease (CKD) is an important public health problem in American Indian populations.

Recent research has identified associations of polymorphisms in the myosin heavy chain type II

isoform A (MYH9) gene with hypertensive CKD in African-Americans. Whether these associations

are also present among American Indian individuals is unknown. To evaluate the role of genetic

polymorphisms in the MYH9 gene on kidney disease in American Indians, we genotyped 25 SNPs

in the MYH9 gene region in 1,119 comparatively unrelated individuals. Four SNPs failed, and one

SNP was monomorphic. We inferred haplotypes using seven SNPs within the region of the previously

described E haplotype using Phase v2.1. We studied the association between 20 MYH9 SNPs with

kidney function (estimated glomerular filtration rate, eGFR) and CKD (eGFR < 60 ml/min/1.73

m2 or renal replacement therapy or kidney transplant) using age-, sex- and center-adjusted models

and measured genotyped within the variance component models. MYH9 SNPs were not significantly

associated with kidney traits in additive or recessive genetic adjusted models. MYH9 haplotypes were

also not significantly associated with kidney outcomes. In conclusion, common variants in MYH9

polymorphisms may not confer an increased risk of CKD in American Indian populations.

Identification of the actual functional genetic variation responsible for the associations seen in

African-Americans will likely help to clarify the lack of replication of this gene in our population of

American Indians.

Introduction

Chronic kidney disease (CKD) is highly prevalent in American Indians and contributes to

increased burden of disease in this population (Narva 2003). Among American Indian and

Alaskan Native participants in the Kidney Early Evaluation Program (2000–2006), 29% had

either reduced kidney function or microalbuminuria (Jolly et al. 2009). In the Strong Heart

Study (SHS), increased urine albumin excretion was observed in 20–48% of the American

Indian participants (Robbins et al. 1996), and it was associated with older age, type 2 diabetes

(which is highly prevalent at ~53%), hypertension and percentage of Indian blood. American

Indians have twice the risk of end-stage renal disease (ESRD) compared to individuals of

European ancestry (2009; Scavini et al. 2007) with a younger median age of incident ESRD

(57.6 years) than African-American individuals (58.9 years) and Whites (67.1 years) (2009).

Recent research has linked genetic variation in the myosin heavy chain type II isoform A

(MYH9) gene to hypertensive ESRD and focal segmental glomerulosclerosis (FSGS), the most

common glomerulonephritis associated with ESRD (Kao et al. 2008; Kopp et al. 2008). These

studies used admixture models, which rely on alleles that differ in frequency across populations

of different ancestry and are suitable to the study of diseases, such as CKD, with large

disparities among racial/ethnic groups. Among individuals primarily of African descent,

several single nucleotide polymorphisms (SNPs) in the MYH9 gene were associated with FSGS

(odds ratio, OR = 5.0, 95% confidence interval, CI = 3.5–7.1 for haplotype E-1) and with non-

diabetic ESRD (OR = 2.2, 95% CI = 1.5–3.4) (Kopp et al. 2008). These findings have been

replicated in a large sample of African-Americans with ESRD attributed to hypertension

(Freedman et al. 2009b) and for albuminuria in African-American participants of the

HyperGEN study (Freedman et al. 2009c). The at risk MYH9 haplotype E-1 (comprising three

SNPs in intron 23 and rs3752462) is less often observed in individuals of European descent

(Kopp et al. 2008). Whether the MYH9 gene is also associated with CKD among American

Indian individuals is unknown.

Franceschini et al. Page 2

Hum Genet. Author manuscript; available in PMC 2011 March 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



In this study, we genotyped multiple SNPs in the MYH9 gene and studied the association of

these genetic variants with kidney function (eGFR) and albuminuria in a large sample of

American Indian participants of the Strong Heart Family Study.

Methods

Population and phenotypes

The National Heart, Lung, and Blood Institute (NHLBI) funded the Strong Heart Family Study

(SHFS) beginning in 1998 to study the genetics of cardiovascular disease among American

Indian populations (North et al. 2003). The SHFS recruited members of 94 large,

multigenerational families (mean family size 40 individuals, range 5–110) from the original

cohort of participants of the Strong Heart Study. Over 3,800 American Indians aged 14–93

years from 13 tribes located in Arizona, North and South Dakota, and Oklahoma were

examined. The SHFS protocols were approved by the Indian Health Service Institutional

Review Board, by the Institutional Review Boards of the participating Institutions, and by the

Indian tribes participating in these studies (Lee et al. 1990; North et al. 2003). All participants

gave informed consent for genetic testing. For this study, a sample of comparatively unrelated

individuals [with 753 half-sib relative pairs (kinship coefficients of 0.25) and 2,891 of first

cousin relationship or less (kinship coefficients ≤0.125) among them] were genotyped (N =

1,119).

Socio-demographic data and medical history were obtained by a personal interview during a

clinical exam. Self-reported Indian heritage was obtained by asking the percentage of Indian

blood. Forearm resting blood pressure was measured three consecutive times by a trained

person using a mercury column sphygmomanometer (WA Baum Co) and size-specific cuffs

after 5 min of resting. The first and fifth Korotkoff sounds were recorded. The average of the

last two measures was used for all analyses. Hypertension was defined by a systolic BP ≥140

or diastolic BP ≥90 or use of antihypertensive drugs (Chobanian et al. 2003). Anthropometric

measures of body weight (kg) and height (m) were used to estimate body mass index (BMI,

kg/m2). Type 2 diabetes was defined as a fasting blood glucose of 126 mg/dl or higher, history

of diabetes or use of diabetic medications (1997). Impaired glucose-tolerance was defined by

the World Health Organization criteria and was based on fasting plasma glucose and 75-g oral

glucose-tolerance test results.

Albumin and creatinine were measured in a random urine sample using nephelometric

immunochemistry and alkaline picrate methods, respectively. Urinary albumin excretion was

estimated by the albumin to creatinine ratio (ACR, mg/g). Serum creatinine was measured in

fasting samples by the picric acid method in the MedStar Research Institute (Washington, DC).

Glomerular filtration rate (eGFR) was estimated using the abbreviated Modification in Diet in

Renal Diseases (MDRD) equation: eGFR (ml/min/1.73 m2) = 186.3 × (serum

creatinine)−1.154 × (age)−0.203 × (0.742 if female) × (1.210 if African-American) (Levey et al.

1999). This equation has been previously validated in an American Indian population (Perkins

et al. 2005). eGFR values higher than 200 were set to 200 ml/min per 1.73 m2 (N = 2) and those

less than 15 ml/min per 1.73 m2 were set to 15 (N = 17). CKD was defined by an eGFR of 60

ml/min/1.73 m2 or lower, a history of dialysis or kidney transplant. Urine ACR categories were

defined by <30 mg/g versus ≥30 mg/g urine creatinine.

Genotyping

Twenty-five SNPs were selected in the MYH9 region based on polymorphisms in HapMap

Asian and Caucasian (CEU) populations and if they were available in the Illumina platform.

We used this strategy for two primary reasons. First, there is a paucity of published data on

SNP and haplotype variation in American Indians, specifically for this gene. Second, while we
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could have chosen to select tag SNPs using the Caucasian or Asian HapMap samples, a recent

study using HapMap data to capture patterns of variation in populations not represented in the

HapMap (Conrad et al. 2006) demonstrated that American Indian population, represented by

the Pima Indians, had only 60–70% tag portability with HapMap Han Chinese and Japanese

combined samples. However, the portability of these samples to American Indians represented

in our study is unknown. The SNPs were genotyped in 1,119 individuals by inclusion in an

Illumina iSelect Custom 12-Sample BeadChip using the Infinium II Assay. The assays were

performed according to the manufacturer’s protocol (Illumina, San Diego, CA, USA), and

alleles were detected and analyzed using the Illumina BeadArray Reader and Bead-Studio

software. Replica samples were included as controls. Four SNPs failed the assay (rs136187,

rs9610489, rs2413398, and rs1557540) and one SNP was monomorphic (rs735854). All

remaining SNPs had a call rate >95%.

Haplotypes

Of four SNPs that have defined the E haplotype (at risk haplotype) in African-Americans

(rs4821480, rs2032487, rs4821481, and rs3752462), only one SNP had a minor allele

frequency (MAF) >5% in HapMap Asian samples (rs3752462, MAF = 0.43) and was

genotyped in the SHFS (see also supplemental material). We then selected seven SNPs located

within the haplotype E region for haplotype analyses (chromosome 22, position 35,019,747–

35,034,683 bp). Haplotypes were inferred using Phase (version 2.1), which implements a

Bayesian statistical method for reconstructing haplotypes from population genotype data

(Stephens et al. 2001).

Statistical analysis

Quantitative traits with non-normal distribution were log-transformed for analysis. We tested

the association of SNPs (and haplotypes) of the MYH9 gene with kidney traits using measured

genotyped within the variance component models (Boerwinkle et al. 1986). Models were

adjusted for the random effects of relatedness among individuals and fixed effects of age, sex,

center and degree of Indian blood (as an estimate of ancestry). We also tested for population

stratification using the quantitative transmission disequilibrium test in SOLAR (Havill et al.

2005). We used additive genetic models, but we also performed analyses using recessive

models as these models were used in published studies in African-Americans (Kao et al.

2008; Kopp et al. 2008). In additional analysis, we excluded individuals with diabetes since

the association has been described for non-diabetic CKD (N = 59 CKD). All analyses were

performed in SOLAR using variance component models. For haplotype analyses, we used the

number of copies of the haplotype. Unadjusted P values were reported. We used Bonferoni

methods to correct for multiple testing and considered an alpha of 0.0025 (0.05/20 SNPs) for

significant findings. Three individuals with a kidney transplant were removed from the analysis

of GFR and albuminuria but contributed data for the CKD analyses.

Results

Of the 1,119 genotyped individuals, 64% were women, 48% had hypertension, 37% had type

2 diabetes, and an additional 9% had impaired fasting glucose (Table 1). The mean eGFR was

90.3 ml/min/1.73 m2, and the median urinary albumin to creatinine ratio was 10.7 mg/g. Twelve

percent of individuals (n = 139) had CKD, and 32% (n = 353) had reduced kidney function

and/or increased albuminuria. One of 1,119 individuals was excluded due to low genotyping

(missing rate >0.05). All SNPs were in Hardy–Weinberg equilibrium except for rs2239784

(Table 2).

Figure 1 shows the linkage disequilibrium (LD) of the 20 genotyped SNPs that passed quality

control. SNPs previously shown to be associated with kidney outcomes in African-Americans
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are shown in bold in Tables 2 and 3. Using additive or recessive genetic models, we did not

find significant associations among the MYH9 SNPs and kidney traits in age-, sex- and center-

adjusted models and in models adjusted for population stratification using percentage of Indian

blood (Tables 2, 3; test for stratification was also not significant). In addition, the eGFR and

ACR findings were not significant in analysis excluding individuals with type 2 diabetes (data

not shown).

Three common haplotypes were identified within the selected gene region (Fig. 2). Inferred

haplotypes were also not associated with kidney outcomes (Fig. 2).

Discussion

The MYH9 gene has been recently identified for genetic susceptibility of CKD in African-

American individuals with ESRD, FSGS, and albuminuria (Freedman et al. 2009a, b; Kao et

al. 2008; Kopp et al. 2008). Our study of American Indians was unable to replicate the

association of this gene with CKD defined by either reduced kidney function or albuminuria.

American Indians have a high prevalence of type 2 diabetes, obesity, and smoking, all risk

factors for CKD. Although the prevalence of diabetes is high among American Indians, a large

number of non-diabetic individuals have increased albuminuria (Robbins et al. 1996),

suggesting that the causal mechanisms for kidney disease may be independent of diabetes.

Albuminuria is highly associated with Indian blood quantum in this population (Robbins et al.

1996) suggesting a strong genetic susceptibility to CKD.

Although the rates of diabetic ESRD among American Indians have recently declined (27.7%

since 1995), ESRD among diabetic individuals still accounts for most of the cases in the US

in 2006 (329 per million population for a total incidence of 489 per million) (2006). MYH9

genetic susceptibility has been described mostly for non-diabetic CKD. Therefore, it is possible

that this gene is not an important genetic risk factor for CKD in American Indian populations

if most of the CKD cases are due to diabetes. However, a recent study of African-Americans

has shown significant association of MYH9 with diabetic ESRD (Freedman et al. 2009a)

suggesting a broad genetic risk effect across kidney diseases. Alternatively, it is possible that

individuals with diabetes and ESRD may have underlying kidney disease unrelated to diabetes

(Mazzucco et al. 2002). In our population of American Indians, kidney biopsy is not available,

and, therefore, we cannot exclude the possibility that other causes of kidney disease are present

in individuals with type 2 diabetes.

The lack of replication of these gene polymorphisms in American Indians is intriguing, and

may be due to differences in LD structure in this population as compared to African-Americans

and Caucasians. Although we were unable to reconstruct the at risk haplotype (E) for CKD,

four of the genotyped SNPs in our study have been previously shown to be independently

associated with CKD in African-Americans (SNPs in bold in Tables 2, 3). In addition,

haplotype analyses using seven SNPs located within the haplotype E region were not

significantly associated with kidney outcomes (Fig. 2). Given the effect size of these

associations in prior published studies and the MAF for some of the SNPs (varying from 0.05

to 0.49), it is unlikely that our findings are due to low power (see supplemental material for

power analyses). It is possible that the contribution of the gene for CKD risk is obscured by

differences in environmental exposures in this population and gene–environment interactions.

An alternative explanation is that haplotypes conferring risk in African-Americans and

haplotypes conferring a protective effect in individuals of European ancestry are less common

in American Indians. Identification of the actual functional genetic variation responsible for

the associations seen in African-Americans will likely help to clarify the lack of replication of

this gene in American Indians.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Linkage disequilibrium of genotyped SNPs of the MYH9 gene. SNPs are displayed in the left

column ordered by position in base-pair. Right column shows the correlation among SNPs

based on r2
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Fig. 2.

Location of the SNPs genotyped within the MYH9 gene and flanking regions using NCBI Build

36.1(a). The figure also shows previously published SNPs genotyped in African-Americans

(Published SNPs). Position of SNPs used to infer haplotypes (Phase v2.1) in the chromosome

22 region between 35019747 and 350334683 bp (b). The three most common haplotypes are

displayed (SNP order: rs5756129, rs5756130, rs9619601, rs2239781, rs2157256, rs3830104,

and rs3752462). P values for association of haplotype copies and kidney outcomes are also

displayed. ACR albumin to creatinine ratio; eGFR estimated glomerular filtration rate; CKD

chronic kidney disease
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Table 1

Characteristics of American Indians genotyped for MYH9 SNPs on chromosome 22

Characteristics of the sample (N = 1,119)

Age (years), mean (SD) 53.2 (14.7)

Female sex, N (%) 716 (64)

SBP, mean (SD) 127.7 (18.2)

DBP, mean (SD) 76.5 (11.0)

Hypertension, N (%) 542 (48)

Hypertension treatment, N (%) 415 (37)

Type 2 diabetes, N (%) 409 (36.6)

IFG, N (%) 99 (8.9)

Current smoking, N (%) 338 (30)

eGFR, mean (SD) 90.3 (29.3)

UACR, median (interquartiles) 10.7 (6.1, 31.3)

CKD, N (%) 139 (12)

Microalbuminuria, N (%) 201 (18.2)

Macroalbuminuria, N (%) 82 (7.4)

SD standard deviation; N number; SBP systolic blood pressure; DBP diastolic blood pressure; IFG impaired fasting glucose; UACR urine albumin to

creatinine ratio; eGFR estimated glomerular filtration rate; CKD chronic kidney disease, defined by a eGFR <60 or dialysis or kidney transplantation
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