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Abstract. ASTRÉE is an abstract interpretation-based static program
analyzer aiming at proving automatically the absence of run time errors
in programs written in the C programming language. It has been applied
with success to large embedded control-command safety critical real-
time software generated automatically from synchronous specifications,
producing a correctness proof for complex software without any false
alarm in a few hours of computation.

1 Introduction

Software development, testing, use, and evolution is nowadays a major concern
in many machine-driven human activities. Despite progress in the science of
computing and the engineering of software aiming at developing larger and more
complex systems, incorrect software is not so uncommon and sometimes quite
problematic. Hence, the design of sound and efficient formal program verifiers,
which has been a long-standing problem, is a grand challenge for the forthcoming
decades.

All automatic proof methods involve some form of approximation of program
execution, as formalized by abstract interpretation. They are sound but incom-
plete whence subject to false alarms, that is desired properties that cannot be
proved to hold, hence must be signaled as potential problems, even though they
do hold at runtime.

Although ASTRÉE addresses only part of the challenge, that of proving the
absence of runtime errors in large embedded control-command safety critical
real-time software generated automatically from synchronous specifications [1–
3], it is a promising first step, in that it was able to make the correctness proof
for large and complex software by abstract-interpretation based static analysis
[4, 5] in a few hours of computations, without any false alarm.

� This work was supported in part by the French exploratory project ASTRÉE of the
Réseau National de recherche et d’innovation en Technologies Logicielles (RNTL).
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2 Domain of Application of ASTRÉE

Synchronous C Programs. ASTRÉE can analyze C programs with pointers
(including to functions), structures and arrays, integer and floating point com-
putations, tests, loops, function calls, and branching (limited to forward goto,
switch, break, continue). It excludes union types, dynamic memory alloca-
tion, unbounded recursive function calls, backward branching, conflicting side
effects and the use of C libraries. This corresponds to a clean memory model
and semantics as recommended for safety critical embedded real-time synchro-
nous software for non-linear control of very complex control/command systems.

Semantics. The concrete operational semantics for the considered subset is
that of the international C norm (ISO/IEC 9899:1999) instanced by imple-
mentation-specific behaviors depending upon the machine and compiler (e.g.,
representation and size of integers, IEEE 754-1985 norm for floats and dou-
bles), restricted by user-defined programming guidelines (e.g., whether static
variables can or cannot be assumed to be initialized to 0) and finally restricted
by program-specific user requirements (such as static assertions). Programs may
have a volatile environment where inputs are assumed to be safe (e.g., volatile
floats cannot be NaN) and may be specified by a trusted configuration file (e.g.,
specifying physical restrictions on captor values or the maximum number of
clock ticks, i.e., of calls to a wait for clock() function specific to synchronous
systems). The collecting semantics is the set of partial traces for the concrete
operational semantics starting from initial states. The abstract semantics is an
abstraction of a trace-based refinement of the reachable states.

Specification. The absence of runtime errors is the implicit specification that
there is no violation of the C norm (e.g., array index out of bounds), no imple-
mentation-specific undefined behaviors (e.g., floating-point division by zero), no
violation of the programming guidelines (e.g., arithmetics operators on short
variables should not overflow the range [−32768, 32767] although, on the specific
platform, the result can be well-defined through modular arithmetics), and no
violation of the programmer-supplied assertions (which must all be statically
verified). It follows that the only possible interrupts are clock ticks, an essential
requirement of synchronous programs.

3 Characteristics of ASTRÉE

ASTRÉE is a program analyzer (it analyzes directly the program source and
not some external specification or program model) which is static (the verifica-
tion is performed before execution), entirely automatic (no end-user intervention
is needed after parameterization by specialists for adaptation to a category of
programs), semantic-based (unlike syntactic feature detectors in the spirit of
lint), sound (it covers the whole state space and, contrarily to mere debuggers
or bounded-trace software verifiers, never omits a potential error), terminating
(there is no possibility of non-termination of the analysis), and, in practice, has
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shown to be efficient (a few hours of computations for hundreds of thousands
lines of code).

ASTRÉE is multi-abstraction in that it does not use a canonical abstraction
but instead uses an approximate reduced cardinal product [5] of many numer-
ical and symbolic abstract domains. The analyses performed by each abstract
domain closely interact to perform mutual reductions. The abstraction is spe-
cializable in that new abstract domains can be easily included or useless ones
excluded to adapt the analysis to a given category of programs. The design of
ASTRÉE in Ocaml is modular. An instance of ASTRÉE is built by selecting
Ocaml modules from a collection, each implementing an abstract domain. Most
abstract domains are infinitary and infinite-height. We use widening/narrowing
to enforce convergence. ASTRÉE is specialized to a safe programming style but
is also domain-aware in that it knows about control/command (e.g., digital fil-
ters). Each abstract domain is parametric so that the precision/cost ratio can
be tailored to user needs by options and/or directives in the code. The auto-
matic parameterization enables the generation of parametric directives in the
code to be programmed. ASTRÉE can therefore be specialized to perform fully
automatically for each specific application domain. This design structure makes
ASTRÉE both fast and very precise: there are very few or no false alarms when
conveniently adapted to an application domain. It follows that ASTRÉE is a
formal verifier that scales up.

4 Design of ASTRÉE by Refinement

ASTRÉE was designed starting from a simple memory model (with references
to abstract variables representing either a single or multiple concrete memory
locations) and an interval abstraction (a ≤ X ≤ b where X is a variable and
a, b are constants to be determined by the analysis), which is precise enough
to express the absence of runtime errors. The widening uses thresholds [1]. This
is extremely fast (if sufficient care has been taken to use good data structures)
but quite imprecise. Then, numerous abstract domains were designed and ex-
perimented until an acceptable cost/precision ratio was obtained. Sometimes, a
more precise domain results in an improvement in both analysis precision and
time (most often because the number of iterations is reduced).

5 The ASTRÉE Fixpoint Iterator

The fixpoint computation of the invariant post-fixpoint [4] is by structural in-
duction on the program abstract syntax, keeping a minimal number of abstract
invariants. Functions are handled by semantic expansion of the body (thus ex-
cluding unbounded recursion) while convergence is accelerated by non-monotonic
widening/narrowing for loops [4, 2]. It follows that the abstract fixpoint trans-
former is non-monotonic, which is not an issue as it abstracts monotonic con-
crete fixpoints [6]. Because abstract domains are themselves implemented using
floats, possible rounding errors may produce instabilities in the post-fixpoint
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check which can be solved thanks to perturbations [2, 7, 8]. Finally, the speci-
fication checking is performed by a forward propagation of the stable abstract
post-fixpoint invariant.

6 Examples of Numerical Abstractions in ASTRÉE

The Domain of Octagons. An example of numerical abstract domain is the
weakly relational domain of octagons [9, 10, 7] (±X ± Y ≤ a where X , Y are
variables and a is a constant to be determined by the analysis).

volatile int vD, vX;

void main () {

int D, X, Y = 0, R, S;

while (1) {

X = vX; D = vD;

S = Y; R = X - S; Y = X;

if (R <= -D) { Y = S - D; }

else if (D <= R) { Y = S + D; }

}}

__ASTREE_volatile_input((vD [0,16]));

__ASTREE_volatile_input((vX [-128,128]));

Fig. 1. Rate limiter and configuration file.

For instance [7], at each loop iteration of the rate limiter of Fig. 1, a new
value for the entry X is fetched within [−128, 128] and a new maximum rate D is
chosen in [0, 16]. The program then computes an output Y that tries to follow X
but is compelled to change slowly: the difference between Y and its value in the
preceding iteration is bounded, in absolute value, by the current value of D. The
state variable S is used to remember the value of Y at the last iteration while R
is a temporary variable used to avoid computing the difference X − S twice. A
relational domain is necessary to prove that the output Y is bounded by the range
[−128, 128] of X , which requires the discovery of the invariant R = X − S. The
octagon abstract domain will discover a weaker property, R + S ∈ [−128, 128],
which is precise enough to prove that Y ∈ [−M, M ] is stable whenever M ≥ 144.
So, by widening, M will be set to the least threshold greater than 144 which is
loose but precise enough to prove the absence of runtime errors (indeed ASTRÉE
finds Y ∈ [−261, 261]). This example is out of the scope of the interval domain.

Heterogeneous Structural Abstraction. The use of the domain of octagons
in ASTRÉE is an example of heterogeneous abstraction which depends upon
the program structure and is not the same at each program point. Indeed, the
octagonal abstraction would be too costly to handle, e.g., thousands of global
variables at each program point. The domain of octagons is therefore parame-
terized by packs of variables attached to blocks/functions by way of directives.
These packs specify which variables should be candidate for octagonal analysis
in the given block/function. The determination of accurate packs would require
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a huge amount of work, if done by hand. Therefore the packing parameterization
is automatized using context-sensitive syntactic criteria. Experimentations show
that the average pack size is usually of order of 3 or 4 variables while the number
of packs grows linearly with the program size. It follows that precise abstractions
are performed only when needed, which is necessary to scale up.

Floating-Point Interval Linear Form Abstraction. A general problem
with relational numerical domains is that of floating point numbers. Considering
them as reals (as usually done with theorem provers) or fixed point numbers
(as in CBMC [11]) would not conform to the norm whence would be unsound.
Using rationals or other symbolic reals in the abstract domains would be too
costly. The general approach [7, 8] has been to define the concrete semantics
of floating point computations in the reals (taking the worst possible rounding
errors explicitly into account), to abstract with real numbers but to implement,
thanks to a further sound over-approximation, using floats. For example the float
expression (x + y) + z is evaluated as in the reals as x + y + z + ε1 + ε2 where
|ε1| ≤ εrel.|x+ y|+ εabs and |ε2| ≤ εrel.|x+ y + ε1 + z|+ εabs. The real ε1 encodes
rounding errors in the atomic computation (x + y), and the real ε2 encodes
rounding errors in the atomic computation (x + y + ε1) + z. The parameters εrel
and εabs depends on the floating-point type being used in the analyzed program.
This linearization [7, 8] of arbitrary expressions is a correct abstraction of the
floating point semantics into interval linear forms [a0, b0]+

∑n
k=1[ak, bk]Xk. This

approach separates the treatment of rounding errors from that of the numerical
abstract domains.

Fig. 2. Filter trace Ellipsoid abstraction Octagon abstraction Interval abstraction

The Simplified Filter Abstract Domains. The simplified filter abstract
domains [13] provide examples of domain-aware abstractions. A typical example
of simplified filter behavior is traced in Fig. 2 (tracing the sequence D1 in Fig. 3).
Interval and octagonal envelops are unstable because they are rotated and shrunk
a little at each iteration so that some corner always sticks out of the envelop.
However, the ellipsoid of Fig. 2 is stable. First, filter domains use dynamical linear
properties that are captured by the other domains such as the range of input
variables (x1 and y1 for the example of Fig. 3) and symbolic affine equalities
with interval coefficients (to model rounding errors) such as t1 ∈ [1 − ε1, 1 +
ε1].x1+[b1[0]−ε2, b1[0]+ε2].D1[0]− [b1[1]−ε3, b1[1]+ε3].D1[1]+[−ε, ε] for the
example of Fig. 3 (where ε1, ε2, and ε3 describe relative error contributions and ε
describes an absolute error contribution). These symbolic equalities are captured
either by linearization (see Sect. 6), or by symbolic constant propagation (see
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float A1[3] = { 1, 0.5179422053046, 1.0 };

float b1[2] = { 1.470767736573, 0.5522073405779 };

float A2[3] = { 1, 1.633101801841, 1.0 };

float b2[2] = { 1.742319554830, 0.820939679242 };

float D1[2], D2[2]; float P, X; volatile float E;

void iir4(float *x, float *y)

{ float x1, y1, t1, t2;

x1 = 0.0117749388721091* *x; t1 = x1 + b1[0]*D1[0] - b1[1]*D1[1];

y1 = A1[0]*t1 - A1[1]*D1[0] + A1[2]*D1[1]; D1[1] = D1[0]; D1[0] = t1;

t2 = y1 + b2[0]*D2[0] - b2[1]*D2[1];

*y = A2[0]*t2 - A2[1]*D2[0] + A2[2]*D2[1]; D2[1] = D2[0]; D2[0] = t2;

__ASTREE_log_vars((P,y1,x1,t2;ellipse))

}

int main () { while (1) { X = E; iir4(&X,&P); __ASTREE_log_vars((P)); }}

Fig. 3. Fourth order Infinite Impulse Response (IIR) filter [12].

Sect. 7). Then, simplified filter domains infer non linear properties and compute
bounds on the range of output variables (t1 and t2 in Fig. 2). For the example
of Fig. 3, ASTRÉE over-approximates the interval of variation of D2[0] by
[−6890.23, 6890.23], which is precise enough to prove the absence of overflow.

On the Limits of User-Provided Assertions. The filter ellipsoidal abstrac-
tion illustrates the limits of user provided assertions. Even if the user injects the
correct bounds, as an interval information, for all filter outputs, the interval
domain cannot exploit them as they are not stable. To reach zero false alarm,
the abstract domains should be able to express a loop invariant which is strong
enough to be inductive and to imply the absence of runtime errors. User asser-
tions are therefore useful only when they refer to assertions expressible in the
abstract domains of a static analyzer. They are mainly useful to provide widen-
ing/narrowing limits but techniques such as widenings with thresholds are even
more convenient.

On the Limits of Automatic Refinement. The filter ellipsoidal abstraction
shows the limits of automatic refinement strategies based on counter-examples.
From a finite series of counter-examples to the stability of intervals or octagons,
the refinement procedure would have to automatically discover the ellipsoidal
abstraction and infer the corresponding sophisticated data representations and
algorithms.

The Arithmetic-Geometric Progression Abstract Domain. In synchro-
nous programs, the arithmetic-geometric progression abstract domain [14] can
be used to estimate ranges of floating point computations that may diverge in
the long run due to rounding errors (although they may be stable in the reals)
thanks to a relation with the clock, which, for physical systems that cannot run
for ever, must be bounded. In the example of Fig. 4, the bound of B is:

|B| ≤ a ∗ ((20. + b/(a − 1)) ∗ (a)clock − b/(a− 1)) + b ≤ 30.7191369175

where a = 1.00000011921 and b = 5.87747175411e− 39.
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volatile float E,T;

float A,B,X;

int main () {

while (1) {

if (T>0){X = E;}

else {X = B;}

B = B-(((2.0*B)-A-X)*0.005);

A = X;

__ASTREE_wait_for_clock(());

}}

__ASTREE_volatile_input((T[-1.0,1.0]));

__ASTREE_volatile_input((E[-20.0,20.0]));

__ASTREE_max_clock((3600000));

Fig. 4. Geometric progression and configuration file.

Relative Precision of Abstract Domains. The arithmetic-geometric pro-
gression abstract domain provides an example of sophisticated domain that can
advantageously replace a simpler domain, specifically the clock domain [1], for-
merly used in ASTRÉE, relating each variable X to the bounded clock C (in-
cremented on clock ticks) as intervals for X −C and X + C to indirectly bound
X from the user-provided bound on the clock C.

7 Examples of Symbolic Abstractions in ASTRÉE

Memory Abstraction. A first example of symbolic domain in ASTRÉE is the
memory abstraction model shortly described in [2].

The Symbolic Constant Domain. The symbolic constant domain [7, 8] is
reminiscent of Kildall’s constant propagation abstract domain, that is the smash
product of infinitely many domains of the form ⊥ � e � �, but memorizes sym-
bolic expressions e instead of numerical constants. It keeps track of symbolic
relations between variables and performs simplifications (such as simplifying
Z=X; Y=X-Z into Z=X; Y=0, which does appear in mechanically generated pro-
grams). Such relational information is essential for the interval abstract domain
(e.g., to derive that Y = 0). Again the abstract domain is parameterized (e.g.,
by simplification strategies).

The Boolean Relation Domain. The Boolean relation domain [2] copes with
the use of booleans in the control of synchronous programs. It is a reduced
cardinal power [5] with boolean base implemented as a decision tree with sharing
(à la BDD) and exponents at the leaves. It is parametric in the maximum number
of boolean variables and in the packs of variables which are involved at the
leaves. The maximum number 3 was determined experimentally and the packing
is automatized.

The Expanded Filter Abstract Domains. The expanded filter abstract do-
mains associate recursive sequence definitions to tuples of numerical variables
automatically detected by the analysis [13]. For instance, a second order fil-
ter is encoded by a recursive definition of the form Sn+2 = a.Sn+1 + b.Sn +
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c.En+2 + d.En+1 + e.En ((En) denotes an input stream and (Sn) denotes an
output stream). The second order filter domain relates abstract values M to
the quadruples of variables (V, W, X, Y ) detected by the analysis. This symbolic
property means that there exists a positive integer p and a recursive sequence
satisfying Sn+2 = a.Sn+1 + b.Sn + c.En+2 + d.En+1 + e.En, for any positive
integer n, such that:

– V = Sp+1, W = Sp, X = Ep+1, and Y = Ep;
– the abstract value M gives an abstraction of the values S0 and S1 and of the

sequence (En).

We compute a bound on the value of V , by unfolding the recursive definition
several times (so that we describe the contribution of the last inputs very accu-
rately). The contributions of rounding errors and of previous inputs are bounded
by using a simplified filter domain (the ellipsoid domain [13] in our example).

Trace Partitioning. Trace partitioning [15] is a local parametric symbolic
abstraction of sets of traces, which is a local refinement of reachable states. By
relative completeness of Floyd’s proof method, it is useless to reason on traces
and sets of states should be precise enough. However, this greatly simplifies the
abstraction which would otherwise require to establish more relations among
variables. Examples are loop unrolling, case analysis for tests, etc.

8 Performances of ASTRÉE.

ASTRÉE has been applied with success to large embedded control-command
safety critical real-time software generated automatically from synchronous spec-
ifications, producing a correctness proof for complex software without any false
alarm in a few hours of computations (see Fig. 5).

Nb of lines 70 000 226 000 400 000

Number of iterations 32 51 88

Memory 599 Mb 1.3 Gb 2.2 Gb

Time 46mn 3h57mn 11h48mn

False alarms 0 0 0

Fig. 5. Performance of ASTRÉE (64 bits monoprocessor).

9 ASTRÉE Visualisator

According to the desired information, it is possible to serialize the invariants
and alarms attached by ASTRÉE to program points, blocks, loops or functions
and to vizualize them, per abstract domain, using a graphical vizualisator to
navigate in the program invariants as shown on Fig. 6.
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Fig. 6. Vizualisator.

10 Conclusion and Future Work

Abstract interpretation-based static analyzers have recently shown to scale-up
for different programming languages and different areas of application [16, 17].
ASTRÉE is certainly the first static analyzer able to fully prove automatically
the absence of runtime errors in real-life large industrial synchronous programs.
It is therefore a verifier (as opposed to a debugger or testing aid). In case of
erroneous source programs, an assistance to error source localization is presently
being incorporated in ASTRÉE thanks to backward analyses. By extension of
the abstract domains, ASTRÉE can be extended beyond synchronous programs.

To go beyond and generalize to more complex memory models and asyn-
chronous programs will necessitate a complete redesign of the basic memory
abstraction and fixpoint iterators. This will be the object of ASTRÉE successors.

Acknowledgements We warmly thank Bruno Blanchet for his contribution to
ASTRÉE.
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