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Abstract The cognitive deficits seen in schizophrenia
patients are likely related to abnormal glutamatergic and
cholinergic neurotransmission in the prefrontal cortex. We
hypothesized that these impairments may be secondary to
increased levels of the astrocyte-derived metabolite kynurenic
acid (KYNA), which inhibits α7 nicotinic acetylcholine
receptors (α7AChR) and may thereby reduce glutamate
release. Using in vivo microdialysis in unanesthetized rats,
we show here that nanomolar concentrations of KYNA,
infused directly or produced in situ from its bioprecursor
kynurenine, significantly decrease extracellular glutamate
levels in the prefrontal cortex. This effect was prevented by
the systemic administration of galantamine (3 mg/kg) but not
by donepezil (2 mg/kg), indicating that KYNA blocks the
allosteric potentiating site of the α7AChR, which recognizes

galantamine but not donepezil as an agonist. In separate rats,
reduction of prefrontal KYNA formation by (S)-4-
ethylsulfonyl benzoylalanine, a specific inhibitor of KYNA
synthesis, caused a significant elevation in extracellular
glutamate levels. Jointly, our results demonstrate that
fluctuations in endogenous KYNA formation bidirectionally
influence cortical glutamate concentrations. These findings
suggest that selective attenuation of cerebral KYNA produc-
tion, by increasing glutamatergic tone, might improve
cognitive function in individuals with schizophrenia.
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Introduction

The cognitive deficits seen in individuals with schizophrenia
(SZ) are now recognized as a core domain of the disease
(Keefe et al. 2007). Several of these impairments affect
executive functions (i.e., attention, cognitive flexibility), are
mediated by the prefrontal cortex (PFC; Kerns et al. 2008;
Moghaddam and Homayoun 2008), and may be causally
related to abnormal glutamatergic and cholinergic neuro-
transmission within the PFC (Sarter et al. 2005; Lewis and
Moghaddam 2006).

Dysregulation of prefrontal α7 nicotinic acetylcholine
receptors (α7nAChRs) might be central to these behavioral
and chemical abnormalities. Thus, α7nAChR protein levels
are reduced in the PFC of individuals with SZ (Guan et al.
1999), and the α7nAChR gene and a SZ endophenotype
(disrupted P50 evoked response to repeated auditory
stimuli) are linked to the same locus and associated with
disease transmission (Leonard and Freedman 2006). More-
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over, specific cognitive improvements in SZ patients can be
achieved by galantamine (Schubert et al. 2006; Buchanan et
al. 2008), probably by activating the allosteric potentiating
ligand (APL) site of the α7nAChR (Samochocki et al.
2003). Notably, α7nAChRs in the mammalian brain are
frequently localized presynaptically on glutamatergic nerve
terminals, where they regulate the release of glutamate
(Albuquerque et al. 2009).

The endogenous metabolite kynurenic acid (KYNA)
may play a substantive role in these prefrontal mechanisms
and deficits. Initially described as a broad spectrum
antagonist of ionotropic glutamate receptors (Perkins and
Stone 1982), KYNA was later shown to block the glycine
co-agonist (“glycineB”) site of the N-methyl-D-aspartate
receptor with much higher potency (IC50 in the absence of
glycine, ∼10 μM; Kessler et al. 1989). However, KYNA is
unlikely to inhibit this site under physiological conditions
(IC50 in the presence of glycine, ∼230 μM; Hilmas et al.
2001). Rather, endogenous KYNA appears to function as a
preferential α7nAChR antagonist (Hilmas et al. 2001),
targeting a site which closely resembles the APL site that is
activated by galantamine (Lopes et al. 2007). Interestingly
and unrelated to antipsychotic medication, KYNA levels
are abnormally high in the brain and cerebrospinal fluid of
SZ patients (Erhardt et al. 2001; Schwarcz et al. 2001).

The de novo synthesis of KYNA in the mammalian
brain is catalyzed by the irreversible transamination of its
bioprecursor kynurenine in astrocytes. Of two distinct
astrocytic kynurenine aminotransferases (KAT I and KAT II),
KAT II is the dominant isozyme in the rat brain (Guidetti
et al. 1997). Newly formed KYNA is rapidly released into
the extracellular milieu and eventually removed from the
brain by probenecid-sensitive, passive efflux (Moroni et al.
1988; Turski et al. 1989). Recently, we reported the synthesis
and biological characterization of (S)-4-ethylsulfonyl ben-
zoylalanine (S-ESBA), the first potent and selective KAT II
inhibitor (Pellicciari et al. 2006). Using locally administered
KYNA, kynurenine or S-ESBA as tools, we now investigat-
ed the effects of fluctuations in brain KYNA levels on the
extracellular concentrations of glutamate in the rat PFC.
These studies, which were conducted using in vivo micro-
dialysis in unanesthetized rats, also examined if α7nAChRs
serve as functional targets of KYNA in the brain.

Materials and Methods

Animals

A total of 22 adult, male Sprague–Dawley rats (220–260 g)
were used in the experiments. The animals were maintained
on a 12:12-h light/dark cycle in a temperature- and
humidity-controlled, Association for Assessment and

Accreditation of Laboratory Animal Care-approved ani-
mal care facility and had free access to food and water.
All procedures were approved by the Institutional
Animal Care and Use Committee of the University of
Maryland in accordance with the National Institutes of
Health Guide for the Care and Use of Laboratory
Animals.

Microdialysis

Rats were anesthetized with chloral hydrate (360 mg/kg,
i.p.) and unilaterally implanted with a microdialysis guide
cannula (0.38 mm o.d.; 3.0 mm membrane tip) into the
medial PFC (A=3.2 mm in front of bregma, L=0.6 mm
from the midline, V=1.0 mm below dura). The guide was
fixed to the skull using stainless steel screws and dental
acrylic, and the surgical site was swabbed with lidocaine
(5%).

On the next day, a microdialysis probe (CMA/10,
membrane length 3 mm, Carnegie Medicin, Stockholm,
Sweden) was inserted through the guide cannula and
connected to a microperfusion pump set to a speed of
1 μl/min. The freely moving animals were continuously
perfused with Ringer solution, pH 6.7, containing
(in millimolar): NaCl, 144; KCl, 4.8; MgSO4, 1.2; and
CaCl2, 1.7. After the establishment of a stable baseline,
KYNA (100 nM), kynurenine (2.5 μM) or S-ESBA
(3 mM) was applied by reverse dialysis for 2 h. Subse-
quently, perfusion with Ringer solution continued for 4 h.
Data were not adjusted for recovery from the micro-
dialysis probe.

Analysis of KYNA and Glutamate

KYNA and glutamate were determined in the same micro-
dialysate by high-performance liquid chromatography
(HPLC) with fluorescence detection. To measure KYNA,
10 μL of the microdialysate were diluted with 5 μL of
0.1 M HCl, and 10 μL of the mixture was injected onto a
3-μm C18 reverse phase column (80×4.6 mm, ESA,
Bedford, MA, USA). KYNA was isocratically eluted at a
flow rate of 1 mL/min, using a mobile phase containing
200 mM zinc acetate and 5% acetonitrile, pH 6.2. In the
eluate, KYNA was detected fluorometrically, using an
excitation wavelength of 344 nm and an emission
wavelength of 398 nm (fluorescence detector, Perkin-
Elmer Series 200). The retention time of KYNA was
approximately 5.0 min (Swartz et al. 1990).

Glutamate was measured in 8 μL of the micro-
dialysate, as described by Shank et al. (1993). Briefly,
o-phthalaldehyde/β-mercaptoethanol was added to each
sample (2:1, v/v) to yield a fluorescent derivative. The
mixture was applied to a reverse phase HPLC column
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(C18, 5 μm; 250×4.6 mm; Thermo Electron Corporation,
Waltham, MA, USA) and eluted with a gradient composed
of two mobile phases ((a) 20 mM sodium acetate, 7.5%
acetonitrile, pH 6.1; (b) 30% acetonitrile, 30% methanol)
set at a gradient elution program of 15 min at a flow rate
of 1 mL/min. In the eluate, glutamate was detected
fluorometrically (excitation wavelength 390 nm; emission
wavelength 460 nm; Perkin-Elmer Series 200). The
retention time of glutamate was approximately 4.0 min.

Chemicals

L-Kynurenine (sulfate) and galantamine were purchased
from Sigma (St. Louis, MO, USA). All other biochemicals
were of the highest purity available and were obtained from
various commercial suppliers. Donepezil (hydrochloride)
was purchased from A & A Pharmachem Inc. (Ottawa,
Ontario, Canada).

Results

The basal extracellular levels of KYNA and glutamate in
the PFC were 2.5±0.2 nM and 1.9±0.1 μM (n=18 and 22,
respectively). Local perfusion of KYNA (100 nM) by
reverse dialysis caused a significant 26% decrease in
extracellular glutamate levels (n=4). This reduction was
transient, and glutamate levels promptly reverted to
baseline values following the removal of KYNA from the
perfusion solution (Fig. 1).

Reverse dialysis of kynurenine (2.5 μM) resulted in an
increase in extracellular KYNA, reaching a maximum of
220% of baseline values. In the same microdialysates,
extracellular levels of glutamate were reduced, reaching a

nadir of −28% compared to baseline levels. Both KYNA
and glutamate levels gradually reverted to control values
after kynurenine was removed from the perfusion solution
(n=4; Fig. 2).

As illustrated in Fig. 3a, systemic administration of
galantamine (3 mg/kg, i.p.) prevented the kynurenine-
induced decrease in extracellular glutamate without, how-
ever, affecting the de novo production of KYNA (n=4). In
contrast, a peripheral injection of donepezil (2 mg/kg, i.p.)
did not affect either the increase in extracellular KYNA or
the reduction in extracellular glutamate caused by the
intracortical perfusion of kynurenine (n=6; Fig. 3b).

Intracortical perfusion of S-ESBA (3 mM) resulted in a
significant 35% reduction in extracellular KYNA, which
was accompanied by a 244% elevation of extracellular
glutamate levels. The levels of both analytes gradually
reverted to control values after the KAT II inhibitor was
removed from the perfusion solution (n=4; Fig. 4).

Discussion

The present results demonstrate that nanomolar (i.e.,
endogenous) concentrations of KYNA exert bidirectional
control over extracellular glutamate levels in the rat PFC
and that these in vivo effects are mediated by α7nAChRs.
More specifically, our experiments indicate that astrocytes,
by generating and releasing KYNA, play a pivotal role in
the modulation of extracellular glutamate via the allosteric
potentiating site of the α7nAChR. Since both glutamate
and α7nAChRs are linked to normal and impaired
cognition involving the PFC (Hashimoto et al. 2008; Zahr
et al. 2008), our study implies that fluctuations in endoge-
nous KYNA may play a significant role in prefrontally
mediated cognitive processes.

In subcortical regions, KYNA inhibition of α7nAChRs
leads to a reduction in extracellular glutamate levels
(Carpenedo et al. 2001; Rassoulpour et al. 2005; Grilli et
al. 2006). We show here that KYNA, applied directly into
the parenchyma or produced locally by perfusing physio-
logical concentrations of kynurenine, also decreases gluta-
mate levels in the PFC. Throughout the forebrain, this
effect is presumably initiated mainly by the blockade of
presynaptic α7nAChRs on glutamatergic nerve terminals
(Gioanni et al. 1999; Marchi et al. 2002; Rousseau et al.
2005; Dickinson et al. 2008). However, α7nAChRs are also
situated on postsynaptic, somatodendritic structures and on
nonglutamatergic nerve endings (Csillik et al. 1998;
Alkondon et al. 2000; Krenz et al. 2001; Albuquerque et
al. 2009), so that it is conceivable that the inhibition of
α7nAChRs receptors by KYNA reduces glutamate levels
indirectly—either locally or through a distributed system
involving brain areas with reciprocal links to the PFC (Del
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Figure 1 Effect of KYNA, applied by reverse dialysis (bar), on
extracellular levels of glutamate in the PFC. Data are the mean ±
standard error of the mean (n=4). *p<0.05 vs. the baseline (one-way
ANOVA)
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Arco and Mora 2005, 2008; Biton et al. 2007; Couey et al.
2007). Jointly, these mechanisms, which clearly need to be
elaborated in greater detail, probably account for the fact
that even modest increases in cortical KYNA levels also
influence extracellular dopamine and acetylcholine levels in
the PFC (Wu et al. 2006; Zmarowski et al. 2009).

Regardless of the precise cellular or regional localization
of the targeted receptors, our experiments with galantamine
and donepezil demonstrated unambiguously that the
KYNA-induced reduction in extracellular glutamate in the
PFC is indeed α7nAChR dependent. Thus, systemic
administration of galantamine, which acts as an agonist at
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Figure 2 Effect of a local
perfusion of kynurenine
(2.5 μM; bar) on extracellular
levels of KYNA and glutamate
in the PFC. The two analytes
were measured in the same
microdialysates. Data are the
mean ± standard error of the
mean of four animals. a, b
p<0.05 compared to the
respective baseline values
(one-way ANOVA)
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Figure 3 Galantamine
(3 mg/kg; a) but not donepezil
(2 mg/kg; b) blocks the
reduction in extracellular
glutamate caused by the local
perfusion of kynurenine
(2.5 μM; bar) in the PFC.
Neither of the two drugs,
injected i.p. (arrows), affected
the de novo formation of KYNA
from kynurenine. KYNA and
glutamate were measured in the
same microdialysates. Data are
the mean ± standard error of the
mean of four (a) and six (b)
animals, respectively. a, b
p<0.05 compared to the
respective baseline values
(one-way ANOVA)
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a site that is very similar or identical to the APL site of the
α7nAChR that is inhibited by KYNA (Samochocki et al.
2003; Lopes et al. 2007), totally prevented the effect of
KYNA. In contrast, no such neutralizing effect was
observed after the peripheral application of a similar dose
of donepezil, which is a substantially more potent
acetylcholinesterase inhibitor than galantamine (Geerts et
al. 2005). Moreover, donepezil does not function as an
APL site agonist either in vitro (Samochocki et al. 2003)
or in vivo (Schilström et al. 2007). These results, together
with pharmacokinetic considerations (Geerts et al. 2005),
suggest that the effect of galantamine shown here was in
all likelihood due to selective α7nAChR stimulation rather
than a nonspecific activation of cholinergic receptors by
elevated acetylcholine levels.

As expected, intracortical perfusion of the KAT II
inhibitor S-ESBA for 2 h transiently decreased the
extracellular levels of KYNA, confirming that astrocytes,
which contain KAT II almost exclusively (Guidetti et al.
2007), continuously produce KYNA from its endogenous
bioprecursor kynurenine in vivo and steadily release newly
formed KYNA into the extracellular milieu. In the same
microdialysates, glutamate levels were elevated compared
to baseline values, indicating a causal relationship between
a reduction in KYNA synthesis and increased glutamate
release. These results were the inverse of the effects of
KYNA or kynurenine (see above and also Konradsson-
Geuken et al. 2009), suggesting that astrocyte-derived
KYNA, probably primarily by controlling the activation
of presynaptic α7nAChRs, tonically modulates the release
of glutamate in the PFC. Notably, as in the case of KYNA
elevations, the effects of KYNA synthesis inhibition are not
limited to the glutamatergic system since intracortical
perfusion of S-ESBA also causes significant increases in
extracellular dopamine and acetylcholine concentrations
(Wu et al. 2006; Zmarowski et al. 2009). Moreover, similar
bidirectional consequences of fluctuations in KYNA pro-
duction are seen in subcortical brain areas such the striatum

(Amori et al. 2009) and the hippocampus (Wu et al. 2007)
and may therefore represent a more general, novel
mechanism by which astrocytes influence neurotransmis-
sion in the mammalian brain.

The functional consequences of KYNA’s neurochemical
effects in the PFC are especially interesting in light of the
fact that prefrontal KYNA levels are abnormally high in SZ
(Schwarcz et al. 2001) and that debilitating polymorphisms
in the regulatory region of the α7nAChR gene are associated
with the disease (Stephens et al. 2009). Thus, enhanced
inhibition of already dysfunctional α7nAChRs by KYNA
and subsequent impairment of glutamatergic (and/or cholin-
ergic and dopaminergic) neurotransmission within the PFC
may be causally related to several of the cognitive deficits
seen in individuals with SZ. This concept is supported by
pharmacological studies in experimental model systems,
where manipulations of α7nAChRs have been shown to
predictably influence—exacerbate or ameliorate—disease-
relevant, prefrontally mediated phenomena such as working
memory (Chan et al. 2007; Chess et al. 2007), selective
attention (Pichat et al. 2007), and cognitive flexibility
(Zmarowski et al. 2008). Together, these data encouraged
clinical investigators to use nicotinic agents such as galant-
amine or the partial α7nAChR agonist DMXB-A as
adjunctive treatments in SZ, and first studies have revealed
promising, selective cognitive improvements in patients
(Olincy et al. 2006; Schubert et al. 2006; Buchanan et al.
2008). Based on our present results, it is tempting to
speculate that these beneficial effects of α7nAChR stimula-
tion are related to a secondary normalization of glutamatergic
function, which is suspected to correct cognitive deficits in
individuals with SZ (Buchanan et al. 2007). Notably, these
considerations are also remarkably compatible with the
increasingly propagated hypothesis that an activated immune
system, resulting in impaired α7nAChR function and in-
creased KYNA formation, plays a role in the pathophysiology
of SZ (Wang et al. 2003; Müller and Schwarz 2007; Schwarcz
and Hunter 2007; Holtze et al. 2008).
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Figure 4 Effect of a local
perfusion of S-ESBA (3 mM;
bar) on extracellular levels of
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Establishment of a functional link between enhanced
KYNA levels in the PFC and cognitive defects would support
the hypothesis that attenuation of cerebral KYNA formation,
for example by selective inhibition of KAT II, might improve
cognitive abilities in patients afflicted with SZ (Schwarcz and
Pellicciari 2002). Ongoing studies in our laboratories are
therefore designed to investigate if experimental manipula-
tions of KYNA levels in the PFC and beyond produce salient
behavioral effects, which may provide insights into the
pathophysiology and treatment of cognitive deficits in SZ.
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