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Manoel P Araujo1, Silvânia A Carvalho2 and Stefano De Leo2

1 Gleb Wataghin Physics Institute, State University of Campinas, Brazil
2 Department of Applied Mathematics, State University of Campinas, Brazil

E-mail: deleo@ime.unicamp.br

Received 24 September 2013, accepted for publication 24 October 2013
Published 18 November 2013

Abstract
We show under which conditions optical Gaussian beams, propagating throughout an
homogeneous dielectric right angle prism, present an asymmetric Goos–Hänchen (GH) effect.
This asymmetric behavior is seen for incidence at critical angles and happens in the
propagation direction of the outgoing beam. The asymmetric GH effect can also be seen as an
amplification of the standard GH shift. Due to the fact that it only depends on the ratio
between the wavelength and the minimal waist size of the incoming Gaussian beam, it can
also be used to determine one of these parameters. Multiple-peak interference is an additional
phenomenon seen in the presence of such asymmetric effects.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The behavior of laser Gaussian beams in the presence of
symmetric and asymmetric wavenumber distributions is the
subject matter of this paper. The importance of the difference
among such kinds of distributions can be understood if one
takes into account the analogy between optics [1, 2] and
non-relativistic quantum mechanics [3, 4] and discusses the
behavior between stationary and dynamical maxima.

A non-relativistic free (Gaussian) particle in its rest frame
is described by the following wavepacket:
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where

G (α, β) = exp
[
−

α2

1+ 2iβ

]/√
1+ 2iβ.

This wave convolution is the solution of the two-dimensional
Schrödinger equation [3][

∂xx + ∂yy + 2i
m

h̄
∂t

]
9(x, y, t) = 0. (2)

The Gaussian probability density, |9(x, y, t)|
2
, grows with the

beam diameter as a function of time. Its maximum, which
decreases for increasing values of time, is always located at
x = y = 0. It represents a stationary maximum. It is obvious
that the previous analysis is a consequence of the choice of a
symmetric momentum distribution centered at kx = ky = 0.

To illustrate the idea behind our study, let us consider
a Gaussian momentum distribution with only positive
momentum values for ky, i.e.
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The maximum of this distribution can be estimated by using
a basic principle of asymptotic analysis [5]. For oscillatory
integrals, the rapid oscillation over the range of integration
means that the integrand averages to zero. To avoid this
cancelation rule, the phase has to be calculated when it is
stationary, i.e.
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The breaking of symmetry in the Gaussian momentum
distribution implies now an expected value of ky different from
zero:
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and, consequently, a dynamical maximum at

ymax =
2h̄

md
√
π

t. (5)

For non-relativistic quantum particles, the difference between
stationary and dynamical maxima can be roughly represented
as the difference between symmetric and asymmetric
wavenumber distributions. The aim of this paper is to
investigate under which conditions we can reproduce
dynamical maxima for laser Gaussian beams propagating
throughout a homogeneous dielectric right angle prism.

The Maxwell equations[
∇

2
−
∂tt

c2

]
E(r, t) = 0, (6)

for time harmonic electric fields (exp[−iωt]) and for plane
waves, modulated by a complex amplitude A(r), which travel
along the z-direction (exp[ikz] with k = ω/c = 2π/λ),

E(r, t) = E0ei(kz−ωt)A(r),

reduce to [6]
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A(r). (7)

In the paraxial approximation [1], A(r) is a slowly varying
function of z and the previous equation becomes[

∂xx + ∂yy + 2ik∂z
]

A(x, y, z) = 0. (8)

The analogy between the paraxial approximation of the
Maxwell equations, equation (8), and the non-relativistic
Schrödinger equation, equation (2), is then clear if we
consider the following correspondence rules [7, 8]:

z←→ t and k←→ m/h̄.

It is interesting to ask in which circumstances, by using
optical paraxial beams, it is possible to have an asymmetrical
wavenumber distribution and, consequently, produce a
dynamical shift. The study presented in this paper aims to give
a satisfactory answer to this intriguing question.

Gaussian beams are the simplest kinds of paraxial beams
provided by a laser source. The electric field amplitude of the
incident paraxial Gaussian beam is given by [9, 10]
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where w0 is the minimal waist size of the beam. After
performing the kx and ky integrations, we obtain
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The density probability distribution of the Gaussian electric
field,

|E(r, t)|
2
= |E0|
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]
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grows with the beam diameter as a function of the z-distance
from the beam waist w0:

w(z) = w0

√
1+

(
2z

kw0

)2

.

The maximum, which decreases for increasing values of z, is
always located at x = y = 0. This maximum plays the role
of the stationary maximum for the quantum non-relativistic
particle in its rest frame.

In this paper, we investigate the behavior of optical
Gaussian beams which propagate through a right angle prism;
see figure 1. For incidence angle θ > θc, the beam is
totally reflected at the second interface, and its wavenumber
distribution is symmetric and centered at kx = ky = 0.
Consequently, the Goos–Hänchen shift [11] is stationary
in the direction of the beam propagation. The optical
phenomenon in which linearly polarized light undergoes a
small phase shift, δ ≈ λ, when totally internally reflected is
widely investigated in the literature [12–19]. For incidence
at and near critical angles [20–22], we find a frequency
crossover in the GH shift which leads to an amplification
effect, δc ≈

√
kw0λ. In this paper, we shall present a new

effect for incidence at critical angles. Depending on the
magnitude of kw0, only the positive values of ky, in the
wavenumber distribution, contribute to reflection and this
asymmetry produces a dynamical Goos–Hänchen shift. It
is thus the breaking of the symmetry in the wavenumber
distribution which opens the door to a dynamical maximum.
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Figure 1. Geometric layout of the dielectric structure analyzed in
this paper.

A detailed analysis of this new phenomenon will be discussed
in section 3. Before of our numerical study, in section 2,
we introduce our notation and the geometry of the dielectric
system used in this paper. In this section, we also give, for
s- and p-polarized waves, the reflection and transmission
coefficients at each interface. Our final considerations and
proposals are given in section 4.

2. The dielectric system geometry and outgoing
beam

The incident Gaussian beam (9) propagates along the z-axis
and forms an angle θ with zin , normal to the first air/dielectric
interface (see figure 1(a)):(

yin

zin

)
=

(
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− sin θ cos θ

)(
y

z

)
= R(θ)

(
y

z

)
. (12)

Observing that the spatial phase of the incoming beam is

kin · r
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= k · r, (13)

with kz = k−(k
2

x+k
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y)/2k, we obtain, for the beam propagating
within the dielectric after the first air/dielectric interface, the
following phase:
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In order to follow the beam motion within the dielectric,
we have to introduce two new rotations of the axes (see
figure 1(a)):(
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with z
∗

and zout respectively normal to the second and third
dielectric/air interfaces. The spatial phase of the beam moving
within the dielectric in the direction of the last dielectric/air
discontinuity can be given in terms of the outgoing axes:

qout · r
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Observe that the spatial phase of the reflected beam at the
second dielectric/air interface is obtained replacing qz∗ by
−qz∗ . Finally,
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As expected from the Snell law [1, 2],

[∇(kout · rout)](kx=0,ky=0) = [0, k cos(2θ), k sin(2θ)]. (18)

The amplitude of the outgoing beam is given by [9, 10]
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transmission coefficients at each interface. For s-polarized
waves, this means that
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By using the geometry of the dielectric system (see figure 1(a)
and equations (16) and (17)), we obtain

a
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√
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.
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Figure 2. Contour plots of the transmitted wavenumber distribution, gT(kx, ky), at the critical angle for increasing values of kw0. The
numerical data show that the symmetry, which is broken for kw0 = 10, is recovered by increasing the value of kw0 (total internal reflection).

Consequently, the transmission coefficient becomes

T
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θ
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4kzin
qzin
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+ qzin

)
2
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For p-polarized waves, we find
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Due to the fact that the motion is on the y–z plane, only
second-order kx-contributions appear in the transmission
coefficient, T

[s,p]

θ
(kx, ky). Thus, without loss of generality, to

calculate the complex amplitude A
[s,p]
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the following approximation: T
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Consequently,
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The detailed analysis of F [s,p]
θ
(y, z) will be the subject matter

of section 3.

3. The asymmetric GH effect and multiple-peak
interference

Let us consider the momentum distribution

g
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T
(kx, ky) = T
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θ
(0, ky) exp

[
−
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2

x + k
2

y)w
2
0

4
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(23)

responsible for the shape of the transmitted beam. The contour
plots of gT(kx, ky)

[s,p]
clearly show that for decreasing value

of kw0, see figure 2, and for incidence angles approaching
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Figure 3. Contour plots of the transmitted wavenumber distribution, gT(kx, ky), for kw0 = 10 and for increasing values of the incidence
angle. The numerical data show that the symmetry, which is broken for θ = 0, is recovered by increasing the value of θ (total internal
reflection).

the critical angle (see figure 3), the symmetry between
kx and ky in the wavenumber distribution is broken. As
anticipated in section 1, this symmetry breaking is responsible
for the creation of a dynamical maximum. To examine this
phenomenon in detail, let us first consider incidence at θ =
π/4:

F
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π
4
(y, z) =
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2
√
π
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4
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]
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To estimate the maximum, we can apply the stationary phase
method [5]:
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T
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4
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]
− kyy−

k
2

y

2k
z

]}
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.

Due to the fact that the phase of the transmission coefficient
T
[s,p]

θ
(0, ky) is not dependent on the spatial coordinates, we can

immediately find an analytical expression for the shift in y

between two maxima, i.e.

1y = −
〈ky〉

k
1z. (25)

For θ = π/4, n =
√

2, and kw0 ≥ 10, the wavenumber
distribution is a symmetric distribution centered at ky = 0.
Consequently, 〈ky〉 = 0 and the maximum does not change
its position. We thus recognize a stationary maximum. The
numerical analysis confirms this theoretical prediction; see
figure 4.

Let us now consider incidence at the critical angle:

sin θc +

√
n2 − sin2θc =

√
2.

For n =
√

2 the critical angle is θc = 0 and the transverse y–z
profile is determined by

F
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0
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2
√
π
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]
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Figure 4. Transverse view of the transmitted beam for s- and
p-polarized waves, F [s,p]π

4
(y, z). Due to the symmetry of the

transmitted wavenumber distribution, we find stationary maxima.

In this case, the z-shift of the maximum in terms of the
y-location of the detector is given by

1z =
〈ky〉

k
1y. (27)

For kw0 = 10
3
, the wavenumber distribution is not completely

symmetric in ky and this produces the first modifications of
the transmitted beam; see figure 5. So small a modification
is more evident for p-polarized waves. On decreasing the
value of kw0 up to 10, we lose the symmetry (see figure 2)
and we clearly find a dynamical maximum. To estimate this
dynamical shift, we observe that, as seen in section 1, for
kw0 = 10 only positive values of ky contribute to the mean
value; this implies

〈ky〉 =
2

w0
√
π

(28)

and, consequently, the shift in z of the transmitted optical
beam is given by

1z =
2

kw0
√
π
1y. (29)

The numerical analysis, shown in figure 6, confirms this
prediction. In such a plot, the asymmetric interference which
appears in the presence of dynamical maxima is also clear.

4. Conclusions

The field of optics is certainly very stimulating as regards
reproducing quantum mechanical phenomena. For example,

Figure 5. Transverse view of the transmitted beam for s- and
p-polarized waves at the critical angle, F [s,p]

0
(y, z), for kw0 = 10

3
.

Due to the partial breaking of symmetry of the transmitted
wavenumber distribution, we see the first modifications of the
transmitted beam.

Figure 6. Transverse view of the transmitted beam for s- and
p-polarized waves at the critical angle, F [s,p]

0
(y, z), for kw0 = 10.

Due to the total breaking of symmetry of the transmitted
wavenumber distribution, the phenomena of dynamical shift and
asymmetric interference appear clearly.
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the well known Goos–Hänchen shift [11] is the optical
analogy of the delay time in non-relativistic quantum
mechanics [3, 13]. These optical and quantum effects arise
due to the fact that evanescent waves exist in the classical
forbidden region. This intriguing shift, which is a constant
matter of scientific investigation [16–19], is, in general, a
stationary shift. In this paper, we have analyzed in which
situations this stationary shift becomes a dynamical shift.

Due to the fact that the dynamical shift is a direct
consequence of the breaking of symmetry in the wavenumber
distribution, this new optical phenomenon can also be seen
as an asymmetric GH effect. In our study, we have seen
that more convenient circumstances for reproducing this new
phenomenon are the choices of incidence at critical angles
and of beam waists of w0 ≈ 10/k ≈ 1.6λ, of the order of the
wavelength of the incoming Gaussian beam. This seems to be
too restrictive for a possible experimental implementation of
the theoretical analysis presented in this paper. Nevertheless,
this difficulty is very similar to the difficulty found in
detecting the standard Goos–Hänchen shift, which is of the
order of the wavelength of the incoming beam. Consequently,
it can be overcome with the same trick, i.e. amplifying
the shift. For example, by preparing a dielectric structure
which allows 2N + 1 internal reflections, we obtain for the
transmission coefficient the following expressions:

∣∣∣T [s,2N+1]

θ
(kx, ky)

∣∣∣ = 4kzin
qzin

(kzin
+ qzin

)
2

∣∣∣∣qz∗ − kz∗

qz∗ + kz∗

∣∣∣∣2N+1

(30)

and∣∣∣T [p,2N+1]

θ
(kx, ky)

∣∣∣ = 4n2kzin
qzin

(n2kzin
+ qzin

)
2

∣∣∣∣∣qz∗ − n2kz∗

qz∗ + n2kz∗

∣∣∣∣∣
2N+1

.

(31)

At critical angles, we have

k
2

z∗
> 0 for ky < 0

and k
2

z∗
< 0 for ky > 0.

Consequently, by increasing the number of internal re-
flections, we can select the positive ky-components in the
transmitted wavenumber distribution for values of the beam
waist, w0, greater than the wavelength, λ, of the incoming
laser beam. The symmetry breaking in the wavenumber
distribution, responsible for recovering the second-order ky-
contribution to the phase which contributes to the maximum
the term 〈ky〉y/k, can thus be optimized for experimental
proposals by using the number of internal reflection N and
the ratio w0/λ.

In a forthcoming paper, we shall analyze the asymmetric
GH effect for frustrated total internal reflection [23, 24] and
resonant photonic tunneling [25]. Another interesting future
investigation is represented by the possibility of including
the focal shift in our calculation [20]. This additional shift
represents a second-order correction to the GH shift and
consequently acts as a delay in the spreading of the outgoing
optical beam.

Acknowledgments

We gratefully thank the Capes (MPA), Fapesp (SAC), and
CNPq (SDL) for financial support and the referee for a useful
suggestion on amended the title, and for drawing our attention
to references on the GH shift and, in particular, on the
interesting second-order correction which leads to the focal
shift [20].

References

[1] Born M and Wolf E 1999 Principles of Optics (Cambridge:
Cambridge University Press)

[2] Saleh B E A and Teich M C 2007 Fundamentals of Photonics
(New York: Wiley)

[3] Tannoudji C C, Diu B and Lalöe F 1977 Quantum Mechanics
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