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THE ASYMPTOTIC BEHAVIOR NEAR THE CREST 
OF WAVES OF EXTREME FORM 

J. B. McLEOD 

ABSTRACT. The angle which the free boundary of an extreme wave makes with the 
horizontal is the solution of a singular, nonlinear integral equation. It has been 
proved only recently that solutions exist and that (as Stokes suggested in 1880) these 
solutions represent waves with sharp crests of included angle t'IT. Amick and 
Fraenkel have investigated the asymptotic behavior of the free surface near the crest 
and obtained an asymptotic expansion for this behavior, but are unable to say 
whether the leading term in this expansion has a nonzero coefficient (and so whether 
it is in fact the leading term or not). The present paper shows that the coefficient is 
nonzero and determines its sign. 

1. Introduction. This note is in the nature of a postscript to the paper [1], Behavior 
near the crest of waves of extreme form, by Amick and Fraenkel. In it they discuss 
gravity waves, of permanent and extreme form, on the free surface of an ideal liquid, 
the flow being two-dimensional, irrotational and in a vertical plane. By a wave of 
extreme form is meant the "largest" member of a one-parameter family of such 
waves, and it is characterized by a sharp crest of included angle !7T. The existence of 
such waves was conjectured by Stokes in 1880 and recently proved by Amick, 
Fraenkel, and Toland [2], where a fuller account of the problem is given. (See also [3] 
for background information.) 

Amick and Fraenkel are concerned with the asymptotic behavior of the free 
surface of the wave near the crest. As is described in [1], the notation of which we 
adopt, it is a matter of discussing the behavior as ~ ~ 0 of a solution 

(1.1) l/I(n=~l°O w(lJ)sinl/l(lJ) 10gl~+lJldlJ 
37T 0 fo'1 W ( l' ) sin 1/1 Cr ) d'T ~ - lJ ' 

where 0 < ~ < 00 and 

W( lJ) = (1 + lJ 2 t12(1 + blJ2r l/2 , 

the constant b satisfying 0 ~ b ~ 1. (The value b = 0 corresponds to solitary waves, 
the values 0 < b < 1 to periodic waves of finite depth, and the value b = 1 to 
periodic waves of infinite depth.) By a solution of (1.1) is meant a function 1/1 
satisfying (1.1) pointwise and such that 0 < 1/1 < T, 1/1 is continuous on (0,00), 
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I/;(t) = 0(~-1) as ~ ~ 00 and I/;(t) ~ ~ as ~ to. The existence of such solutions is 
known (see [1] for references). 

It is standard that 

(1.2) 1 100 1 I ~ + 'I] I w - - log -- d'l] = -
3w 0 'I] ~ - 'I] 6 

and so (1.1) and (1.2) together yield 

(1.3) I/;(n- 1.w= 1..-100 
( w('I])s~nl/;('I]) - 1.)IOgl~+'I]ld'l]. 

6 3w 0 fo'1w(T)sml/;(T)dT 'I] ~-'I] 

A basic result of [1] is that 

(1.4) 

where /31 is the smallest positive root of the equation 

(1.5) V3(1 + /3) = tan wt, 
SO that 0 < /31 < 1. The authors go on to derive an asymptotic expansion for which 
(1.4) should provide the leading term, but it does remain possible in [1] that the limit 
in (1.4) is zero and that I/;(K) - ~ is of smaller order than ~f31. It is the object of the 
present note to show that this is not so, and that 

(1.6) 

where A is a strictly positive constant. The method as in [1] is to use the Mellin 
transform on equation (1.3). The final result is therefore the following: 

THEOREM. If I/; is a solution of (1.1) in the sense described, then (1.6) holds. 

2. Proof of the Theorem. We define the Mellin transform 1 of a function f in the 
usual way by setting 

l(s) = 1000 ~S-1f(n dt. 

Since from [1] we know that (1.4) holds, the transform (I/; - ~)(s) exists and 
represents an analytic function of s for -/31 < re(s) < O. For such s, we may 
multiply (1.3) by ~s-1 and integrate to obtain 
(2.1) 

( I/; - ~)(s) = 1..-100 ( w( 'I])s~n 1/;( '1]) _1.) (100 ~s-110g1 ~ + 'I] I d~) d'l] 
6 3w 0 fo'1 w(T)sml/;(T) dT 'I] 0 ~ - 'I] 

= 1..-(100 x S - 1 10g!1 +X!dx)l°O 'l]s( w('I])s~nl/;('I]) - 1.)d'l], 
3w 0 1 - x 0 fo'1 W ( T )sm I/; ( T) dT 'I] 

by setting ~ = 'l]x. The interchange of order of integration is justified since both 
integrals in (2.1) are absolutely convergent. (Note that, by the properties of 1/;, the 
'I]-integrand is 0('I]s-1) as 'I] ~ 00 and 0('I]S+f31- 1) as 'I] to.) If we now use the 
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standard result that the first integral in (2.1) is just 'TT tan ~'TTs/s, and integrate the 
second integral by parts, we obtain, for -/31 < re(s) < 0, 

(2.2) (1/;- ~'TT)(s)= -~tan~'TTs{Xl1js-110g(~f w(T)sinl/;(T)dT)d1j 

(2.3) = - ~ tan ~'TTS {.Xl 1jS-110g( ~ f sin 1/;( T) dT) du - F(s), 

where 

(2.4) F( s) = ~ tan ~ 'TTS 1000 1jS-110g( f W ( T) sin I/; ( T) dT / {' sin I/; ( T) dT) d1j. 

Since W ( T) = 1 + O( T 2) as T ! 0, we see that F( s) is an analytic function of s for 
-1 < re(s) < 0. But also, since 0 < I/; < }: and 0 < W ~ 1, we see that F(s) is 
strictly positive for -1 < s < o. If we further write the logarithm in (2.3) in the form 

log( 1 + ~ f (sin I/; ( T) - ~) dT, 

and note that 10g(1 + t) ~ t for t > -1 and sin I/; - 1: ~ ~ /3 (I/; - n for 0 < I/; < }:, 
we see that (2.3) becomes 

(2.5) (I/; - i)(s) = - ~ tan ~'TTS 1000 1js-2(f (I/;( T) - i) dT) d1j - F1(S), 

where F1(S) is a function analytic for max(-l, -2/31) < re(s) < 0 and strictly 
positive for max( -1, -2/31) < s < O. (In fact, /31 can be explicitly evaluated from 
(1.5), and 2/31 > 1.) 

If finally we perform an integration by parts on the integral in (2.5), we obtain, for 
-/31 < re(s) < 0, 

or 

(1- _1 tan~'TTs)(I/;_ '!!..)(s) = -F(s), /3 s-l 6 1 

/3(1 - S)F1(S) 
/3(1 - s) + tan ~'TTS' 

and we use the inversion theorem on this. Thus 

I/; (n - '!!.. = lim _1_ fC + iT - /3 (1 - s ) F1 ( s) K -S ds 
6 T-+oo 2'TTi c-iT /3(1 - s) + tan1:'TTs ' 

where c is any number satisfying -/31 < C < O. 
Now move the path of integration from re(s) = c to re(s) = -I, where /31 < 1 < 1. 

Since the integrand is analytic for -1 < re( s) < ° except for a simple pole at 
s = -/31' where the residue is 

/3(1 + /31)F1(/31) Kf31 = _A~f31 
- /3 + ~'TT seC21:'TT/31 ' 
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say, where A > 0, we have 

(2.6) ( W) ll'm _l_f-l+iT -/3(1 - S)Fl(S) !'-sds. 1f; - -6 (s) = - AtP1 + ~ 
T~oo 2wi -I-iT /3(1 - s) + tan1Ws 

The proof of the theorem is thus complete provided we can show 
(i) that the contribution from the horizontal portions of the transformed ~ontour, 

on im( s) = ± T, are negligible as T -+ 00, and 
(ii) that the remaining integral on the right of (2.6) is O(t l ) as t ~ O. 
To prove (i), consider F( s) as given by (2.4). Since the logarithm is O( 1)2) as 1) ~ 0 

and O(log 1) as 1) -+ 00, we see that IF(s)1 -+ 0 as im(s) -+ ± 00, by the Riemann-
Lebesgue lemma in its Mellin form, provided that -1 < re(s) < O. A similar remark 
can be made about Fl(S), and this is sufficient to prove (i). 

To prove (ii), we can integrate (2.4) by parts to obtain 

F 1 1 100 s( w(1))sin1f;(1)) sin1f;(1)))d (s)=--tan-ws 1) - 1) 
3s 20 fo'lw(T)sin1f;(T)dT fo11sin1f;(T)dT . 

With re(s) = -I, consider F(s) as a function of im(s). Since the integrand is 
O( 1)S -1) as 1) -+ 00 and O( 1)s + 1) as 1) ~ 0, Parseval's theorem in its Mellin form tells 
us that the integral is L 2(-00, 00) as a function of im(s). In view of the factor S-l in 
front of the integral, we see that FE L( -00,(0). Similar remarks can be made 
about Fl , and it is then clear that the integral in (2.6) is oct'). 

This completes the proof of the theorem. 
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