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THE ASYMPTOTIC BEHAVIOR OF A FINITE ENERGY PLANE

H. HOFER 1, K. WYSOCKI 2, AND E. ZEHNDER 3

Abstract. Given a compact 3-manifold M equipped with the contact form
λ we consider smooth maps u : C → R × M solving the Cauchy-Riemann
equations Tu ˚ i = J(u) ˚ Tu, for a distinguished class of almost complex
structures J on R ×M which are R-invariant and related to λ. If the map is
non constant and of finite energy, the projection into M necessarily approaches
as |z| → ∞ a periodic solution of the Reeb vector field associated with the
contact form.

Assuming the periodic solution to be non degenerate we shall describe the
asymptotic behavior of the map u. The paper is a revised version of [5] and
includes also [6].
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1. Introduction, Notations, Results

We consider a compact oriented 3-manifold M and choose a contact form λ. Its
existence is guaranteed by J. Martinet [13]. By definition, a contact form λ is a
1-form on M such that λ ∧ dλ defines a volume-form on M . We assume that the
orientation of M agrees with the orientation induced by this volume-form. Since
the functional λm : TmM → R does not vanish, with the contact-form λ there is
associated a 2-dimensional vector bundle ξ → M over M , whose fibre ξm ⊂ TmM
is defined by

ξm = ker(λm), m ∈M.

This plane bundle is a so called contact structure of M . The skew symmetric form
ω = dλ | ξ⊕ξ is nondegenerate on each fibre and hence defines a symplectic form on
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2 H. HOFER, K. WYSOCKI, AND E. ZEHNDER

the vector spaces ξm ⊂ TmM . We denote by (ξ, ω) this symplectic vector bundle.
In addition, again in view of the fact that λ ∧ dλ is a volume-form, the kernel
ker dλ ⊂ TM is 1-dimensional and defines the line-bundle l transversal to ξ having
the fibres

lm =
{
h ∈ TmM | dλ(h, k) = 0, for all k ∈ TmM

}
.

There is a unique nonvanishing vector field X = Xλ defined by

iXdλ = 0 and iXλ = 1.(1)

It is called the Reeb vector field of λ. Thus the tangent bundle TM of M splits into
the line-bundle l → M having the preferred section X and the symplectic plane
bundle ξ →M having the preferred symplectic form dλ,

TM = RX ⊕ ξ.

If ϕt denotes the flow of X satisfying by definition d
dtϕt(m) = X

(
ϕt(m)

)
and

ϕ0(m) = m ∈ M , we conclude from (1) that d
dt (ϕ

∗
tλ) = 0 and d

dt (ϕ
∗
t dλ) = 0.

Consequently, dϕt leaves ξ invariant,

dϕt(ξm) = ξϕt(m), m ∈M.

Moreover, since X is time-independent, ϕt ˚ ϕs = ϕt+s, from which we conclude

dϕtX(m) = X
(
ϕt(m)

)
.

Thus dϕt leaves the splitting RX ⊕ ξ of TM invariant. With

π : RX ⊕ ξ → ξ

we denote the projection along X. The symplectic vector bundle (ξ, dλ) → M
has a distinguished class of almost complex structures J : ξ → ξ satisfying J(m) ∈
L(ξm, ξm) and J(m)2 = − Id, which are compatible with dλ in the sense that

gJ(a, b) = dλ(a, J(m)b)(2)

defines a positive definite inner product on each fibre ξm. This space of complex
structures is contractible, as is well known, see f.e. [1, 3, 11].

Fixing an almost complex structure J compatible with dλ we are interested in
smooth maps

ũ := (a, u) : C→ R×M,

solving the equations

π
∂u

∂s
+ J(u)π

∂u

∂t
= 0

(u∗λ) ˚ i = da,
(3)

where z = s+ it ∈ C. In order to reformulate this equation we introduce the special
almost complex structure J̃ on the 4-manifold R×M as follows:

J̃(a, m)(h, k) =
(
−λm(k), J(m)πk + hX(m)

)
for (h, k) ∈ T(a,m)(R × M). It is R-invariant. One verifies immediately that
J̃2(h, k) = −(h, k). The equation (3) is equivalent to

ũs + J̃(ũ)ũt = 0.(4)
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There are plenty of solutions of (4) which are not interesting to us. For example,
if x : R→M is a solution of the Reeb field ẋ = X(x) on M , then

ũ(s + it) :=
(
s, x(t)

)
∈ R×M(5)

is a solution, as is readily verified. As was shown in Hofer [4], there is an interesting
class of solutions singled out by an “energy requirement”. Introduce the class of
functions

Σ =
{
f ∈ C∞(R, [0, 1]) | f ′ ≥ 0

}
and define for f ∈ Σ the 1-form λf on R×M by

λf (a, m)(h, k) = f(a)λm(k).

For a solution ũ = (a, u) of (4) one computes

ũ∗dλf =
1
2
[
f ′(a)

(
a2
s + a2

t + λ(us)2 + λ(ut)2
)

+ f(a)
(
|πus|2J + |πut|2J

)]
ds ∧ dt,

(6)

which is a nonnegative integrand. We used the norm |h|2J := gJ(h, h) for h ∈ ξ,
where gJ is defined in (2). Therefore, if ũ is a solution of (4), then

0 6
∫
C

ũ∗dλf 6∞,

and we define the energy E(ũ) ∈ [0,∞] of a solution by

E(ũ) = sup
f∈Σ

∫
C

ũ∗dλf .

Definition 1.1. A finite energy plane is a solution ũ = (a, u) of (4) satisfying, in
addition,

0 < E(ũ) <∞.

For the trivial solutions ũ defined in (5) we have E(ũ) = ∞. Indeed, taking a
function f ∈ Σ satisfying f ′ 6= 0 we compute∫

C
ũ∗dλf =

[
f(∞)− f(−∞)

] ∫
R

dt =∞.

The significance of the concept of “finite energy plane” lies in the following result
relating finite energy planes to periodic orbits of the Reeb vector field X.

Theorem 1.2. Assume ũ = (a, u) : C→ R×M is a finite energy plane. Then

T :=
∫
C

u∗dλ > 0

and there exists a sequence Rk → ∞ such that limk→∞ u
(
Rke

2πit
)

= x(Tt) in
C∞(R) for a T -periodic solution x(t) of the Reeb vector field ẋ(t) = X

(
x(t)

)
. If

this solution is nondegenerate, then

lim
R→∞

u
(
Re2πit

)
= x(Tt),

with convergence in C∞(R).
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The first part of Theorem 1.2 has been proved in [4]. The strengthening for a non-
degenerate asymptotic limit will be proved in the present paper. The distinguished
periodic orbit x associated to a suitable sequence Rk → ∞ will be called, in the
following, an asymptotic limit. As stated, the asymptotic limit is unique provided
there exist a non-degenerate one. In general this should not be case. However we
do not know an explicit counter example.

As for the existence question, we recall that if M has a non-vanishing π2(M)
then for every contact form λ and every compatible almost complex structure J
there exists a finite energy plane. One can also show that for the three-sphere S3

there exists a finite energy plane for every choice of contact form and compatible
J . All these results, with the exception of the case where λ is a tight contact form
on S3 have been proved in [4]. Theorem 1.2 then guarantees a periodic solution for
the associated Reeb vector fields X.

We are not concerned in the following with the existence question. Rather we
assume the existence of a finite energy plane and determine its asymptotic behavior
as |z| → ∞. We shall assume that the T -periodic solution x(t) guaranteed by the
first part of Theorem 1.2 is nondegenerate. This requires that it has only one
Floquet multiplier equal to 1, and hence is isolated in the set of periodic solutions
of the Reeb vector field having their periods close to T . We reformulate the second
part of Theorem 1.2 as follows

Theorem 1.3. Let ũ = (a, u) : C→ R×M be a nonconstant, finite energy plane as
in Theorem 1.2, with an asymptotic T -periodic orbit x(t) which is nondegenerate,
then

lim
R→∞

u
(
Re2πit

)
= x(T · t),

moreover the convergence is in C∞(R).

The theorem allows us to study, for R large, the finite energy plane in a tubular
neighborhood of its limit x(t). It is convenient to consider the holomorphic cylinder
ṽ = ũ ◦ ϕ = (a, v), with the biholomorphic map ϕ : R × S1 → C \ {0} defined by
ϕ(s, t) = e2π(s+it). Then v(s, t)→ x(Tt) as s→∞ in C∞(S1). We shall construct
local coordinates R×R2 in a tubular neighborhood of x(t). In these coordinates the
map ṽ is represented by (a, v) =

(
a(s, t), ϑ(s, t), z(s, t)

)
: [s0,∞)×R→ R×R×R2.

If T = kτ , k ≥ 1, where τ is the minimal period of the periodic solution x(t), then
ϑ(s, t+1) = ϑ(s, t)+k, while the other functions a, z are 1-periodic in t. The main
contents of this paper is the proof of the following asymptotic description of a non
degenerate finite energy plane.

Theorem 1.4. There exist constants a0, ϑ0 ∈ R and d > 0 such that∣∣∂β [a(s, t)− Ts− a0]
∣∣ 6Me−ds∣∣∂β [ϑ(s, t)− kt− ϑ0]
∣∣ 6Me−ds

for all multi-indices β, with constants M = Mβ. Moreover, we have the asymptotic
formula for the transversal approach to x(t):

z(s, t) = e
∫ s
s0
α(τ)dτ [e(t) + r̂(s, t)] ∈ R2

where ∂β r̂(s, t)→ 0 as s→∞ uniformly in t for all derivatives. Here α : [s0,∞)→
R is a smooth function satisfying α(s) → µ < 0 as s → ∞. The number µ is
an eigenvalue of a self-adjoint operator A in L2(S1,R2) related to the linearized
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Reeb vector field X along the limit orbit x(t). The operator is defined by A =
−J0

d
dt − S∞(t), with S∞(t) = S∞(t + 1) a symmetric, 1-periodic, smooth 2 × 2

matrix function defined by S∞(t) = −TJ0πmdX(m)πm, where m = (kt, 0) ∈ R×R2.
Moreover,

e(t) = e(t + 1) 6= 0,
is an eigenvector of A belonging to the eigenvalue µ < 0.

From this asymptotic description of ũ we shall deduce, using the similarity prin-
ciple, the following global consequences

Theorem 1.5. Let ũ = (a, u) : C → R ×M be a nonconstant finite energy plane
with nondegenerate asymptotic periodic orbit x(t). Let P = {x(t) | t ∈ R} ⊂ M .
Then the sets {

z ∈ C | u(z) ∈ P
}{

z ∈ C | π ◦ Tu(z) = 0
}

consist of finitely many points.

This means that the map u : C → M intersects its limit x(t) in at most finitely
many points. Moreover, the tangent map Tu has maximal rank except at finitely
many points, using that π ◦ Tu(z) : TzC → ξu(z) is complex linear, in view of the
identity π ◦ Tu ◦ i = J ◦ π ◦ Tu.

These results are important in a series of applications of holomorphic curves
methods to problems in low-dimensional topology and Hamiltonian dynamics, see
[7, 8, 9, 10]. There we use holomorphic curve methods in symplectisations to con-
struct open book decompositions for certain three-manifolds, [9], as well as global
surfaces of sections for Hamiltonian flows on three-dimensional energy surfaces, [10].
One concludes, in particular, that a Hamiltonian flow on a strictly convex energy
surface in R4 has either precisely 2 or infinitely many periodic orbits, see [10].

There are three technical ingredients to any application. The first is a complete
description of the behavior of finite energy planes at infinity, which is the same as
the behavior of a finite energy surface near a non removable singularity. This is
the contents of the present paper. The second ingredient is the study of embedding
properties of finite energy surfaces and their projections into the contact manifold.
Here methods from algebraic topology like intersection theory, Maslov indices and
winding numbers combined with the asymptotic analysis from the present paper
play a crucial role, see [7]. The third ingredient is a Fredholm theory and implicit
function type techniques in order to describe families of finite energy planes, see
[8].

2. Periodic orbits of X and local coordinates near the ends

We consider a T -periodic solution x(t) for the Reeb vector field ẋ = Xλ(x). Then
x(0) = x(T ) and for the linearization of the flow ϕt we have

dϕTX
(
x(0)

)
= X

(
ϕT (x(0)

)
= X

(
x(0)

)
.

Hence 1 is an eigenvalue of dϕT
(
x(0)

)
∈ L(Tx(0)M, Tx(0)M). The periodic solution

in called nondegenerate if this is the only eigenvalue equal to 1 of the linear map
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dϕT
(
x(0)

)
. Since dϕT

(
x(0)

)
leaves the splitting X

(
x(0)

)
⊕ ξx(0) invariant this is

equivalent to the requirement that

dϕT
(
x(0)

)
: ξx(0) → ξx(0)

has no eigenvalue equal to 1. Dynamically a nondegenerate T -periodic solution is
isolated on M in the set of periodic solutions having periods close to T . In order
to study the asymptotic behavior it is convenient in the following to consider a
cylinder instead of a plane. Let ϕ : R × S1 → C \ {0} be the biholomorphic map
defined by

ϕ(s, t) = e2π(s+it),

where S1 = R/Z. If ũ = (a, u) is a finite energy plane, we define the finite energy
cylinder

ṽ : R× S1 → R×M

by the composition

ṽ = ũ ˚ ϕ.

In what follows we will use the same letter a to denote a map C→ R and also the
map R× S1 → R obtained by composing a with ϕ. The map ṽ = (a, v) satisfies

ṽs + J̃(ṽ)ṽt = 0 on R× S1∫
R×S1

v∗dλ =
∫
C

u∗dλ > 0

0 < E(ṽ) = E(ũ) <∞.

(7)

A solution ṽ of (7) satisfies the estimate

sup
R×S1

∣∣∇ṽ(s, t)
∣∣ <∞,

from which one derives estimates for all derivatives

sup
R×S1

∣∣∂αṽ(s, t)
∣∣ <∞, |α| ≥ 1.(8)

For a proof of these estimates, based on a “bubbling off” analysis and elliptic esti-
mates, we refer to Hofer [4].

In order to prove Theorem 1.3 we start with

Proposition 2.1. Let ũ be a finite energy plane and assume there exists a sequence
Rk → ∞ such that u

(
Rke

2πit
)
→ x(Tt) in C∞(S1, M). Assume further that x is

a non-degenerate T -periodic solution of the Reeb vector field ẋ = X(x) associated
with the contact form λ. Then given any S1-invariant C∞ neighborhood W of the
loop x(T ·) in C∞(S1, M) there exists an R0 > 0 such that u

(
Re2πi·) ∈ W for all

R ≥ R0.

Proof. We view M as being embedded in some Rn and equip the Frechet space
C∞(S1,Rn) with a translation invariant and S1-invariant metric which we restrict
to the subspace C∞(S1, M). The S1-action on the loop space is the one induced
by S1 itself. Let T ⊂ C∞(S1, M) be the collection of all loops corresponding to
periodic solutions of ẋ = X(x). With xT (·) = x(T ·) ∈ T we denote the loop
corresponding to the distinguished T -periodic solution x of the proposition. Since
x is non degenerate we find two disjoint and S1-invariant open sets V1 and V2 in
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C∞(S1, M) having the properties that T ⊂ (V1 ∪ V2) and V1 ∩ T = S1 ∗ xT . In
the holomorphic polar coordinates ϕ the finite energy plane ũ becomes the finite
energy cylinder ṽ = ũ˚ϕ = (b, v) : R×S1 → R×M and by hypotheses there exists
a sequence sk →∞ such that

v(sk, ·)→ xT in C∞(S1, M).

Hence v(sk, ·) ∈ V1 for k large. Recall from the proof of Theorem 1.2 that ev-
ery sequence σk → ∞ possesses a subsequence σ′k such that v(σ′k, ·) converges
in C∞(S1, M) to an element of T . Using this remark we prove proposition 2.1
indirectly. Assuming that v(s, t) does not converge to S1 ∗ xT as s→∞ we find a
sequence σk →∞ satisfying v(σk, ·) ∈ V2 for k large, and passing to subsequences,
we may assume that sk < σk < sk+1 for all k.

Since s 7→ v(s, ·) is a continuous path in C∞(S1, M) there is a sequence s′k ∈
(sk, σk) satisfying v(s′k, ·) 6∈ V1∪V2. By theorem 2.1 again we deduce a subsequence
s′′k of s′k such that v(s′′k, ·) converges to an element y ∈ T satisfying y 6∈ V1 ∪ V2

and hence contradicting T ⊂ (V1 ∪ V2). This finishes the proof of Proposition
2.1.

We shall study the finite energy cylinder ṽ = (a, v) : R × S1 → R ×M as in-
troduced above. We know by the previous discussion that given any S1-invariant
neighborhood W of x(T ·) in C∞(S1, M) we have v(s, ·) ∈W for all s large enough.
Hence we can study the solution v : R × S1 → M for large s locally in a tubular
neighborhood of the periodic solution x. For this purpose we shall first introduce
convenient local coordinates in M near the periodic solution x(t). The coordinates
and the contact form in the coordinates will be given by

S1 × R2, f · λ0

where the periodic solution lies on S1 × {0}, f is a positive function, λ0 is the
standard contact form

λ0 = dϑ + xdy

on S1×R2. Since S1 = R/Z we work in the covering space and denote by (ϑ, x, y) ∈
R3 the coordinates, ϑ mod 1. Recall first that if a diffeomorphism ϕ : (N, µ) →
(M, λ) between two contact manifolds satisfies ϕ∗λ = µ, then the corresponding
Reeb vector fields are transformed into each other by

Xµ = (dϕ)−1 ·Xλ ˚ ϕ,

as is easily verified. Hence ϕ maps the solutions of Xµ onto the solutions of Xλ.
Indeed, for the flows we conclude ϕλt ˚ ϕ = ϕ ˚ ϕµt , for all t ∈ R. This will be used
in the proof of

Lemma 2.2. Let (M, λ) be a 3-dimensional contact manifold, and let x(t) be a
T-periodic solution of the corresponding Reeb vector field ẋ = Xλ(x) on M . Let τ
be the minimal period such that T = kτ for some positive integer k. Then there is
an open neighborhood U ⊂ S1 × R2 of S1 × {0} and an open neighborhood V ⊂M
of P = {x(t) | t ∈ R} and a diffeomorphism ϕ : U → V mapping S1 × {0} onto P
such that

ϕ∗λ = f · λ0,(9)
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with a positive smooth function f : U → R satisfying

f(ϑ, 0, 0) = τ and df(ϑ, 0, 0) = 0(10)

for all ϑ ∈ S1.

Proof. Let ϕ0 : U → V be a local diffeomorphism mapping S1 × {0} onto P such
that the contact structure ker(ϕ∗0λ) is transversal to S1×{0}. By J. Martinet [13],
we find a local diffeomorphism ϕ1 : U → U ′ in the local coordinates, where U and
U ′ are open neighborhoods of S1×{0} ⊂ S1×R2, satisfying ϕ1(S1×{0}) = S1×{0}
and

ϕ∗1(ϕ
∗
0λ) = gλ0

with a nonvanishing smooth function g : U → R. Denoting in the covering space
(ϑ, x, y) ∈ R3 the coordinates, the function g is periodic in ϑ of period 1. The Reeb
vector field Xgλ0 associated with the contact form gλ0 on S1 × R2 is computed to
be

Xgλ0(ϑ, x, y) =
(

1
g

+
x

g2
gx

)
∂

∂ϑ
+

1
g2

(gy − xgϑ)
∂

∂x
−
(

1
g2

gx

)
∂

∂y
.

By construction, in view of the remark previous to the lemma this Reeb vector
field is tangential to the periodic solution (α(t), 0, 0) = (ϕ0 ˚ ϕ1)−1

(
x(t)

)
, where

α(t + τ) = α(t) + 1. Recall that τ is the minimal period of x(t). As usual, we work
in the covering space R of S1 = R/Z. Therefore,

gx(ϑ, 0, 0) = gy(ϑ, 0, 0) = 0

Xgλ0(ϑ, 0, 0) =
1

g(ϑ, 0, 0)
∂

∂ϑ

and

α̇(t) =
1

g(α(t), 0, 0)
.(11)

Finally, we define a diffeomorphism ϕ2 : S1 × R2 → S1 × R2 leaving S1 × {0}
invariant, by

ϕ2(ϑ, x, y) = (a(ϑ), ȧ(ϑ)x, y),

where a(ϑ) = α(τϑ), so that a(ϑ + 1) = a(ϑ) + 1. Then the composition ϕ =
ϕ0 ˚ϕ1 ˚ϕ2 is a local diffeomorphism S1×R2 →M mapping the periodic solution
S1 × {0} onto x(t). It satisfies ϕ∗λ = fλ0, with the function f defined by

f(ϑ, x, y) = g
(
a(ϑ), ȧ(ϑ)x, y

)
· ȧ(ϑ).

The function f satisfies f(ϑ + 1, x, y) = f(ϑ, x, y) and a computation, using (11)
shows that f = τ and fϑ = fx = fy = 0 at every point (ϑ, 0, 0) ∈ S1 × {0} as
desired. This finishes the proof of the lemma.

From now on we shall work in the local coordinates (ϑ, x, y) ∈ R×R2, ϑ mod 1
with the contact structure

λ = f · λ0, λ0 = dϑ + xdy
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with a smooth and positive function f : R × R2 → R, defined near R × {0} and
periodic in ϑ : f(ϑ, x, y) = f(ϑ + 1, x, y) and satisfying (10). The Reeb vector field
X = Xλ(ϑ, x, y) ∈ R3 is periodic in ϑ, satisfies

X(ϑ, 0, 0) =
1
τ

(1, 0, 0),

and is given by

X(ϑ, x, y) =

 X1

X2

X3

 =
1
f2

 f + xfx
fy − xfϑ
−fx

 .

The contact plane ξm at m = (ϑ, x, y) ∈ R3, defined by ξm =
{
k ∈ R3 | λm(k) = 0

}
,

is the two dimensional plane

ξm = span
〈
e1, e2

〉
,

where

e1 = ( 0, 1, 0)

e2 = (−x, 0, 1)

at the point m = (ϑ, x, y). Since

dλ(e1, e2) = fdλ0(e1, e2) = f

we find that the symplectic structure dλ | ξm⊕ ξm is, in the basis e1, e2 of ξm given
by the skew symmetric 2× 2-matrix Ω = Ω(ϑ, x, y),

Ω = fJ0, where J0 =
(

0 −1
1 0

)
is the standard symplectic structure of R2.

Given to us is an almost complex structure jm : ξm → ξm compatible with dλ | ξm
and induced by the diffeomorphism ϕ : R3 →M constructed in Lemma 2.2 via

jm = (dϕm)−1
˚ Jϕ(m) ˚ dϕm,

where J is the almost complex structure chosen in Theorem 1.2. Since jm is com-
patible with dλ | ξm it is, in the basis e1, e2 of ξm, represented by a 2 × 2-matrix
J = J(m) depending smoothly on m and satisfying

J2 = − Id, JTΩJ = Ω, JTΩ > 0.(12)

The second condition is, in view of f > 0, equivalent to JTJ0J = J0, hence
equivalent to detJ = 1. The last condition requires the inner product g(z, z′) =〈
Ωz, Jz′

〉
=
〈
JTΩz, z′

〉
, for the coordinates z, z′ ∈ R2 of ξm, to be positive definite.

It is equivalent to ΩTJ > 0 and hence, since f > 0, equivalent to

−J0J > 0.

Finally, the projection π : R3 → ξ along the Reeb vector field X onto the contact
planes takes the form

πm(k) = k − λm(k)X(m) ∈ ξm(13)

for k ∈ R3.
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The positive energy cylinder ṽ = (a, v) : R × S1 → M of Theorem 1.2 becomes
in the local coordinates ϕ of Lemma 2.2 the map

ũ = (a, u) = (a, ϕ−1
˚ v) : [s0,∞)× S1 → R4

for some s0 > 0 large. We shall use the notations

u(s, t) =
(
u1(s, t), u2(s, t), u3(s, t)

)
=
(
ϑ(s, t), x(s, t), y(s, t)

)
.

Working, as usual, in the covering space R of S1 = R/Z, the functions a(s, t), x(s, t)
and y(s, t) are 1-periodic in the t variable. The function ϑ(s, t), however, represents
a map from S1 onto S1 and satisfies ϑ(s, t+1) = ϑ(s, t)+k. Indeed, this follows from
the fact, proved in [4], that for any sequence sn →∞ there is a constant c ∈ [0, 1)
such that u(sn, t) → ξ(Tt + c) as n → ∞. Here ξ(t) is the T-periodic solution of
ξ̇ = X(ξ) and T = kτ with the minimal period τ. In view of X(ϑ, 0, 0) = 1

τ (1, 0, 0)
we find ξ(Tt) = (Tt/τ, 0, 0) = (kt, 0, 0) and the claim follows. By construction, the
functions ũ = (a, u) : [s0,∞)× R→ R4 solve the equation

ũs + J̃(ũ)ũt = 0.(14)

At the point (a, m) ∈ R4, the almost complex structure J̃ is given by

J̃(a, m)(h, k) =
(
−λm(k), jm(πk) + hX(m)

)
,

where π = πm is the projection as in (13). More explicitly we can write the equation
(14) as follows:

as − λ(ut) = 0(15)

(λ(us) + at)X(u) = 0(16)

πus + j(πut) = 0.(17)

Note that X(u) 6= 0. Abbreviating the partial derivatives

us = (ϑs, xs, ys), ut = (ϑt, xt, yt)

we next express the equation (17) in the basis e1, e2 of the contact plane ξu. In view
of (15) and (16) and using the formula (13) we obtain for (15)-(17) the equations

as − λ(ut) = 0

at + λ(us) = 0
(18)

(
xs
ys

)
+ J

(
xt
yt

)
+ at

(
X2(u)
X3(u)

)
− asJ

(
X2(u)
X3(u)

)
= 0.(19)

Here J = J(u) is the 2×2 matrix which represents the almost complex structure ju
in the basis (e1, e2) of ξu. For the derivatives of ϑ we find the additional equations

ϑs = −atX1(u)− x(ys + at)X3(u)

ϑt = asX1(u)− x(yt − as)X3(u)

where x = x(s, t). In view of the definition λ = f · λ0 we can rewrite (18) and find

as = (ϑt + xyt)f(u)

at = −(ϑs + xys)f(u).
(20)



THE ASYMPTOTIC BEHAVIOR OF A FINITE ENERGY PLANE 11

We need the following lemma which will be a consequence of Proposition 2.1
and a standard bubbling-off argument as given in [4]. We shall use the notation
|α| = α1 + α2 for the partial derivatives α = (α1, α2).

Lemma 2.3. As s→∞
∂αx(s, t)→ 0

∂αy(s, t)→ 0,

uniformly in t, for all |α| ≥ 0. Moreover,

∂α
[
ϑ(s, t)− kt

]
→ 0

∂α
[
a(s, t)− Ts

]
→ 0,

uniformly in t, provided |α| ≥ 1.

Proof. First we recall from [4] that for a finite energy plane ṽ = (a, v) all the partial
derivatives of v, and the partial derivatives of a satisfying |α| ≥ 1 are uniformly
bounded. (Here we view M as being embedded in some Rn). In addition, we
recall from [4] that every sequence v(sk, t), with sk →∞, possesses a subsequence
converging with all its t derivatives uniformly to a T -periodic solution of X. By
Proposition 2.1 we, therefore, conclude that the statement for the functions x(s, t)
and y(s, t) hold true for all the derivatives in time, i.e. for α = (0, k), k ≥ 0. That
it holds true for all derivatives follows from the equations (19) and (20) together
with the second statement.

In order to prove the second statement, i.e. the statement for the functions a and
ϑ we argue by contradiction. If the assertion is wrong, we find a sequence (sk, tk)
with sk →∞ and tk → t0 ∈ [0, 1] satisfying∣∣∂α(a− Ts, ϑ− kt)(sk, tk)

∣∣ ≥ ε,(21)

for some ε > 0 and some multi-index α of order at least 1. We can always add a
real constant to a and an integer to ϑ so that still the equations (18) and (19) hold.
This will also not affect our assertion. Define a sequence of functions (ak, bk) by(

ak(s, t), bk(s, t)
)

=
(
a(s + sk, t)− a(sk, tk), ϑ(s + sk, t)− ϑ(sk, tk)

)
.

Eventually taking a subsequence the above sequence has a C∞loc-convergent subse-
quence, whose limit we denote by (â, b̂). The map

(
â, b̂
)

is defined on R × R, and
â is 1-periodic in t while b̂ satisfies b̂(s, t + 1) = b̂(s, t) + k. Moreover, it solves the
equation

âs = τ b̂t

ât = −τ b̂s

on R×R. Indeed, this follows from (19) and (20) taking into account that f(ϑ, 0, 0) =
τ , X2(ϑ, 0, 0) = X3(ϑ, 0, 0) = 0, and that

(
x(s, t), y(s, t)

)
→ (0, 0) as s → ∞.

Hence, the function f(s + it) = â(s, t) + iτ b̂(s, t) is holomorphic on C. Recall that
gradients of finite energy planes and finite energy cylinders are bounded (Proposi-
tion 27 and Proposition 30 in [4]). Consequently, the first derivative of f is bounded
and hence the function f is linear, and necessarily of the form

(â, b̂)(s, t) = (Ts + c, kt + d),
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with real constants c and d. Recall that T = kτ . Since |α| ≥ 1, we deduce

∂α(a− Ts, ϑ− kt)(sk, tk)→ ∂α(â− Ts, b̂− kt)(0, t0) = (0, 0).(22)

Clearly (22) contradicts (21). This completes the proof of the lemma.

If X = (X1, X2, X3) is the Reeb vector field, we next introduce

Y (t, x, y) =
(

X2(t, x, y)
X3(t, x, y)

)
∈ R2.

Since X(t, 0, 0) = (1/τ, 0, 0) we have Y (t, 0, 0) = 0 and, therefore, by the mean
value theorem

Y (t, x, y) = D(t, x, y)
(

x
y

)
,

with the matrix function

D(t, x, y) =
∫ 1

0

dY (t, τx, τy)dτ.

In particular,

D(t, 0, 0) = dY (t, 0, 0) =
1
τ2

(
fxy fyy
−fxx −fxy

)
,(23)

where the right hand side is evaluated at (t, 0, 0). Introducing

z =
(

x
y

)
so that u(s, t) =

(
ϑ(s, t), z(s, t)

)
and the matrix functions along the solution u(s, t),

J(s, t) = J
(
u(s, t)

)
= J

(
ϑ(s, t), z(s, t)

)
S(s, t) =

[
at − asJ(s, t)

]
D
(
u(s, t)

)
,

(24)

we can represent the equation (19) for z(s, t) in the form

zs + J(s, t)zt + S(s, t)z = 0.(25)

Introducing the family of loops

z(s) : S1 → R2

by z(s)(t) = z(s, t) our next aim is to show that
∥∥z(s)

∥∥
L2(S1)

converges exponen-
tially to 0 as as s→∞.

Inserting (ϑ, z) = (kt + c, 0) into the matrices J(ϑ, z) and dY (ϑ, z) we introduce
the family of matrix functions

Sc∞(t) = −TJ(kt + c, 0) · dY (kt + c, 0, 0)

for c ∈ R. The matrix Sc∞(t) is symmetric, not with respect to the Euclidean inner
product but with respect to the inner product

〈
· ,−J0J(kt + c)·

〉
on R2. To verify

this, recall that J(kt + c, 0)J0 is symmetric. Moreover, using J2
0 = − Id, we have

the formula

Sc∞(t) =
T

τ2
J(kt + c, 0)J0 ·

(
fxx fxy
fxy fyy

)
,



THE ASYMPTOTIC BEHAVIOR OF A FINITE ENERGY PLANE 13

where the last matrix is evaluated at (kt + c, 0, 0). We introduce the family of
operators Ac

∞ in L2(S1,R2) by

Ac
∞ = −Jc(t)

d

dt
− Sc∞(t) : W 1,2(S1,R2) ⊂ L2(S1)→ L2(S1).

We have abbreviated

Jc(t) := J(kt + c, 0).

Every operator Ac
∞ is self-adjoint with respect to the inner product

〈
x, y
〉
∞ =

∫ 1

0

〈
x(t),−J0J(kt + c, 0)y(t)

〉
dt.

Since the inclusion W 1,2(S1)→ L2(S1) is compact, the resolvent of Ac
∞ is compact.

Hence the spectrum σ(Ac
∞) consists of isolated eigenvalues of multiplicity at most

2, which accumulate at +∞ and −∞. The spectrum σ(Ac
∞) does not depend on the

value of c. Observe that Ac
∞ is a relatively compact perturbation of the self-adjoint

operator −J(kt + c, 0) ddt .

Lemma 2.4. The T -periodic solution x(t) = (t/τ, 0, 0) ∈ R3 of the Reeb vector
field X is nondegenerate if and only if

0 6∈ σ(Ac
∞).

Proof. Let ϕt denote the flow of X = (X1, Y ). The derivative dϕt along the solution
ϕt(0) = x(t) = (t/τ, 0, 0) leaves the splitting R3 = R×R2 = RX(m)⊕ξm, m = x(t),
invariant and satisfies dϕt(0)X(0) = X

(
ϕt(0)

)
. Hence, with dϕt(0)|R2 = R(t), it is

of the form

dϕt(0) =
(

1 0
0 R(t)

)
,

where R(t) satisfies d
dtR(t) = dY

(
x(t)

)
R(t) and R(0) = I. The T -periodic orbit

x(t) is degenerate if and only if 1 is an eigenvalue of R(T ) which is equivalent to
1 is an eigenvalue of R̃(1), where R̃(t) = R(Tt). Let e ∈ R2 be a corresponding
eigenvector of R̃(1). Then w(t) = R̃(t)e is 1-periodic and solves the equation

d

dt
w(t) = TdY

(
x(Tt)

)
w(t),(26)

or, equivalently,

−J0(t)
d

dt
w(t)− S0

∞(t)w(t) = 0(27)

and hence w ∈ ker(A0
∞). Conversely if 0 6= w ∈ ker(A0

∞) then w(t + 1) = w(t) is a
solution of (27) and (26). Hence R̃(t) w(0) and w(t) are solutions of (26) having
the same initial condition w(0) and therefore w(t) = R̃(t)w(0). Consequently,
R̃(1)w(0) = w(1) = w(0) and 1 is an eigenvalue of R̃(1) so that x(t) is degenerate.
Now the conclusion of the lemma follows from the fact that the spectrum σ(Ac

∞)
does not depend on the value of c.
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It will be convenient to introduce the following family of inner products and
corresponding norms in L2(S1,R2)〈

x, y
〉
s

: =
∫ 1

0

〈
x(t),−J0J

(
ϑ(s, t), z(s, t)

)
y(t)

〉
dt∥∥x∥∥2

s
: =

〈
x, x

〉
s

for x, y ∈ L2(S1,R2). These norms are equivalent to the standard L2(S1,R2) norm.
In fact, there exists a constant c independent of s such that

1
c

∥∥x∥∥
s
6
∥∥x∥∥

L2 6 c
∥∥x∥∥

s
(28)

for all x ∈ L2(S1,R2).

Denote by S∗(s, t) the transpose matrix of S(s, t) with respect to the scalar
product

〈
·,−J0J(s, t)·

〉
in R2. It is given by

S∗ = JJ0S
TJ0J.

where ST (s, t) means the adjoint of S(s, t) with respect to the standard inner prod-
uct in R2. Introducing the symmetric and anti-symmetric parts of S(s, t),

B(s, t) =
1
2

[S(s, t) + S∗(s, t)] ,

C(s, t) =
1
2

[S(s, t)− S∗(s, t)]

we may write the equation (25) in the form

zs + J(s, t)zt + B(s, t)z + C(s, t)z = 0.(29)

Define the operator A(s) : W 1,2(S1,R2) ⊂ L2(S1,R2)→ L2(S1,R2) by

A(s) := −J(s, t)
d

dt
−B(s, t).(30)

The operator A(s) is self-adjoint with respect to the inner product
〈
·, ·
〉
s

for every
s.

We shall use Lemma 2.4 in order to prove

Lemma 2.5. Assume the T -periodic solution x(t), with x(Tt) = (kt, 0, 0) is non
degenerate. Then there exists a constant η > 0 and s0 such that∥∥A(s)ξ

∥∥
s
≥ η

∥∥ξ∥∥
s

for all s ≥ s0 and ξ ∈W 1,2(S1).

Proof. We abbreviate the L2-norm by
∥∥·∥∥. Since (1/c)

∥∥ξ∥∥
s
6
∥∥ξ∥∥ 6 c

∥∥ξ∥∥
s

for
a constant c > 0 which is independent of s, it is sufficient to prove the estimate
in the lemma for L2-norms. Arguing by contradiction we assume the existence of
sequences sn →∞, εk → 0 and ξn ∈W 1,2(S1) satisfying∥∥ξn∥∥sn = 1 and

∥∥A(sn)ξn
∥∥
sn
6 εn(31)
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for all k. From Hofer [4] we know that there exists a subsequence denoted again by
sn and a constant c ∈ R such that the solution

(
ϑ(s, t), z(s, t)

)
satisfies(

ϑ(sn, t), z(sn, t)
)
→
(
kt + c, 0

)
(32)

as sn → ∞ uniformly in t ∈ R. This will allow us to control coefficients of the

differential operators Ã(s) = −J(s, t)
d

dt
−B(s, t). We recall the matrix

B(s, t) =
at
2
(
D + JJ0D

TJ0J
)
− as

2
(
JD + JJ0(JD)TJ0J

)
.(33)

Since at → 0 as s → ∞ uniformly in t, by Lemma 2.3, the first term in (33)
converges to 0 as s → ∞ uniformly in t. As for the second term we recall that
JTJ0J = J0 and J2

0 = − Id, so that JJ0(J0D)TJ0J = −JJ0(J0D)T and hence

JD + JJ0(JD)TJ0J = −JJ0

[
J0D + (J0D)T

]
.

Abbreviating R = J0D +(J0D)T and observing that at z = 0 the matrix J0D(ϑ, 0)
is symmetric we have the representation

R(ϑ, z) = 2J0D(ϑ, 0) +
[∫ 1

0

(∂zR)(ϑ, τz)dτ

]
· z,(34)

where ∂zR denotes the derivative of R with respect to the second variable z. In
view of Lemma 2.3, we have as(sn, t) → T and z(sn, t) → 0 as k → ∞ and we
obtain, using (32) and (34),

B(sn, t)→ TJ(kt + c, 0)D(kt + c, 0)(35)

J(sn, t)→ J(kt + c, 0)(36)

as sn →∞, uniformly in t ∈ R.

Since
∥∥J(s, ·)ξ

∥∥
s

=
∥∥ξ∥∥

s
, there exists a constant C0 > 0 such that for all ξ ∈

W 1,2(S1,R2) and all s ∥∥ξ̇∥∥ 6 C0

(∥∥A(s)ξ
∥∥+

∥∥B(s, ·)ξ
∥∥),(37)

from which we conclude that the sequence ξn in (31) is bounded in W 1,2. Since
W 1,2 is compactly embedded in L2, a subsequence converges in L2. Consequently,
in view of the assumptions (31) and using (35), (36) and (37), the subsequence (still
denoted by ξn) is a Cauchy sequence in W 1,2 so that

ξn → ξ in W 1,2(S1,R2).

From Ã(sn)ξn = −J(sn, ·)ξ̇n − B(sn, ·)ξn → 0 in L2 we derive in view of (35) and
(36) that ξ solves the equation

−J(kt + c, 0)ξ̇(t)− Sc∞(t)ξ(t) = 0.

Recalling
∥∥ξ∥∥ 6= 0 we see by Lemma 2.4 that the periodic orbit x(t) is degenerate, in

contradiction to the assumption of the lemma. The proof of Lemma 2.5 is finished.

We shall use Lemma 2.4 in order to prove



16 H. HOFER, K. WYSOCKI, AND E. ZEHNDER

Lemma 2.6. Assume the T -periodic solution x(t), with x(Tt) = (kt, 0, 0) is non
degenerate. Then the solution z(s, t) =

(
x(s, t), y(s, t)

)
converges exponentially to

zero in L2. There exist r > 0 and s1 > 0 such that∥∥z(s)
∥∥
L2 6

∥∥z(s1)
∥∥
L2e
−r(s−s1)

for s ≥ s1. Here z(s)(t) := z(s, t).

Proof. We shall consider the function

g(s) =
1
2

∥∥z(s)
∥∥2

s
=
∫ 1

0

〈
z(s, t),−J0J(s, t)z(s, t)

〉
dt.

To prove the result it suffices to show

g′′(s) ≥ 4r2g(s)(38)

for some positive constant r and for all s ≥ s1. Indeed, assuming the estimate
(38) to hold true, we consider the function f(s) = g′(s) + δg(s) where δ = 2r. If
d

ds

[
eδsg(s)

]
= eδsf(s) 6 0 for all s ≥ s1, then

g(s) 6 e−δ(s−s1)g(s1)

which shows ∥∥z(s)
∥∥
s
6 e−δ(s−s1)/2

∥∥z(s1)
∥∥
s1

= e−r(s−s1)
∥∥z(s1)

∥∥
s1

,

and so, in view of the equivalence of the s-norms and the L2-norms in (28),∥∥z(s)
∥∥
L2 6 c2e−r(s−s1)

∥∥z(s1)
∥∥
L2

as required. Assume that eδs2f(s2) > 0 for some s2. From

f ′(s) = g′′(s) + δg′(s) ≥ δ2g(s) + δg′(s) = δf(s)

we find
d

ds

[
e−δsf(s)

]
≥ 0 implying for s ≥ s2

e−δsf(s) ≥ e−δs2f(s2)

which in turn gives

d

ds

[
eδsg(s)

]
≥ eδseδ(s−s2)f(s2).

Integrating from s2 to s we obtain

g(s) ≥ e−δ(s−s2)g(s2) +
f(s2)
2δ

[
eδ(s−s2) − e−δ(s−s2)

]
→∞

as s → ∞ contradicting g(s) → 0. Hence eδsf(s) 6 0 for s ≥ s1 and it remains to
prove the estimate (38).

We shall differentiate the function g. Using the equation (29) for z(s, t) and
recalling that the matrix J0J(s, t) is symmetric with respect to the Euclidean inner
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product
〈
· , ·
〉

on R2 and the matrix C(s, t) is anti-symmetric with respect to〈
· ,−J0J(s, t)·

〉
we obtain

g′(s) =
1
2

∫ 1

0

〈
zs,−J0Jz

〉
dt +

1
2

∫ 1

0

〈
z,−J0Jzs

〉
dt +

1
2

∫ 1

0

〈
z,−J0Jsz

〉
dt

=
〈
zs, z

〉
s
+

1
2

∫ 1

0

〈
z,−J0Jsz

〉
dt

=
〈
A(s)z, z

〉
s
+

1
2

∫ 1

0

〈
z,−J0Jsz

〉
dt.

We differentiate the function g once more and use the fact that the operator A(s)
is self-adjoint with respect to the inner product

〈
· , ·
〉
s
,

g′′(s) =
〈
A(s)zs, z

〉
s
+
〈
A(s)z, zs

〉
s
+
∫ 1

0

〈
A(s)z,−J0Jsz

〉
dt +

1
2

∫ 1

0

〈
zs,−J0Jsz

〉
dt

+
1
2

∫ 1

0

〈
z,−J0Jszs

〉
dt +

1
2

∫ 1

0

〈
z,−J0DJssz

〉
dt +

∫ 1

0

〈
−Jszt −Bsz,−J0Jz

〉
dt

= 2
〈
A(s)z, zs

〉
s
+
∫ 1

0

〈
A(s)z,−J0J(−JJs)z

〉
dt +

∫ 1

0

〈
zs,−J0J(−JJs)z

〉
dt

+
1
2

∫ 1

0

〈
z,−J0J(−JJss)z

〉
dt +

∫ 1

0

〈
−Jszt −Bsz,−J0Jz

〉
dt

= 2
〈
A(s)z, zs

〉
s
−
〈
A(s)z, JJs)z

〉
s
−
〈
zs, JJsz

〉
s
− 1

2
〈
z, JJssz

〉
s

+
∫ 1

0

〈
−Jszt −Bsz,−J0DJz

〉
dt

= 2
∥∥A(s)z

∥∥2

s
−
〈
A(s)z, Cz

〉
s
− 2
〈
A(s)z, JJsz

〉
s
+
〈
Cz, JJsz

〉
s

− 1
2
〈
z, JJssz

〉
s
+
∫ 1

0

〈
−Jszt −Bsz,−J0Jz

〉
dt

Observe that〈
−Jszt,−J0Jz

〉
=
〈
−JsJ

[
−Jzt −Bz

]
,−J0Jz

〉
−
〈
JsJBz,−J0Jz

〉
=
〈
−Jzt −Bz, JTJTs J0Jz

〉
−
〈
JsJBz,−J0Jz

〉
=
〈
A(s)z, JTJTs J0Jz

〉
−
〈
JsJBz,−J0Jz

〉
=
〈
A(s)z, J0Jsz

〉
−
〈
JsJBz,−J0Jz

〉
=
〈
A(s)z,−J0J(JJs)z

〉
−
〈
JsJBz,−J0Jz

〉
.

We have used that JTs J0J = −JTJ0Js. Hence∫ 1

0

〈
−Jszt −Bsz,−J0Jz

〉
dt =

〈
A(s)z, JJsz

〉
s
−
∫ 1

0

〈[
JsJB + Bs

]
z,−J0Jz

〉
=
〈
A(s)z, JJsz

〉
s
−
〈[

JsJB + Bs

]
z, z
〉
s
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and

g′′(s) = 2
∥∥A(s)z

∥∥2

s
− 2
〈
A(s)z, Cz

〉
s
−
〈
A(s)z, JJs)z

〉
s
+
〈
Cz, JJsz

〉
s

− 1
2
〈
z, JJssz

〉
s
−
〈[

JsJB + Bs

]
z, z
〉
s

≥ 2
∥∥A(s)z

∥∥
s
·
[∥∥A(s)z

∥∥
s
−
∥∥JJs

∥∥ · ∥∥z∥∥
s
−
∥∥C∥∥ · ∥∥z∥∥

s

]
−
[∥∥C∥∥ · ∥∥JJs

∥∥+
∥∥B∥∥ · ∥∥JJs

∥∥+
∥∥Bs

∥∥+
∥∥JJss

∥∥/2
]
·
∥∥z∥∥2

s
.

Since Bs, Js and Jss contain factors converging to 0 as s → ∞ uniformly in t in
view of Lemma 2.3 we conclude, in view of Lemma 2.5,

g′′(s) ≥ 2η
[
η − r(s)−

∥∥C(s, ·)
∥∥] · ∥∥z∥∥2

s
− r(s)

∥∥z∥∥2

s
,(39)

where r(s)→ 0 as s→∞. It remains to show that
∥∥C(s, ·)

∥∥→ 0 as s→∞. Recall
that

C(s, t) =
1
2
[
S(s, t)− S(s, t)∗

]
=

at
2
[
D − JJ0D

TJ0J
]
− as

2
[
JD − JJ0D

TJ0

]
,

The first term converges to 0 since at → 0 as s → ∞ uniformly in t in view of
Lemma 2.3. To estimate the second term we note that

JD − JJ0D
TJ0 = JJ0

[
(J0D)T − (J0D)

]
.

Define R := (J0D)T − (J0D). Since J0D(ϑ, 0) is symmetric we have the represen-
tation

R(ϑ, z) =
[∫ 1

0

(∂zR)(ϑ, τz)dτ

]
· z.

Here ∂zR means the derivative of R̃ with respect to the second variable z. Now,
R̃
(
ϑ(s, t), z(s, t)

)
→ 0 uniformly in t as s → ∞ because z(s, t) → 0 as s → ∞ by

Lemma 2.3. Therefore,
∥∥C(s, ·)

∥∥→ 0 as s→∞ and, in view of (39),

g′′(s) ≥ (η/4)2g(s)

for all s ≥ s1. So the claim (38) follows with r = η/8 and the proof of Lemma 2.6
is complete.

We will now use the exponential L2-estimate of the solution z(s, t) in Lemma 2.6
in order to prove that

ϑ(s, t)− kt− ϑ0 → 0

a(s, t)− Ts− a0 → 0

as s→∞ uniformly in t.

Lemma 2.7. If the T -periodic solution x(t) = (t/τ, 0, 0) of X is non degenerate,
then there exist constants a0, ϑ0 ∈ R such that

∂α
[
a(s, t)− Ts− a0

]
→ 0(40)

∂α
[
ϑ(s, t)− kt− ϑ0

]
→ 0(41)

as s→∞, uniformly in t, for all |α| ≥ 0.
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Proof. Recall that a and ϑ: [s1,∞)× R→ R are smooth solutions of

as = (ϑt + xyt)f(ϑ, z)

at = −(ϑs + xys)f(ϑ, z).
(42)

Moreover, f(ϑ, 0) ≡ τ and we can write

f(ϑ, z) = τ +
[∫ 1

0

fz(ϑ, tz)dt

]
z ≡ τ + b(ϑ, z)z.

With the 1-periodic functions ã, ϑ̃ : [s1,∞)× S1 → R, defined by

ã(s, t) = a(s, t)− Ts

ϑ̃(s, t) = ϑ(s, t)− kt,

we know from Lemma 2.3,

∂β ã(s, t)→ 0

∂βϑ̃(s, t)→ 0,

for |β| ≥ 1 as s→∞, uniformly in t. Recalling T = kτ equation (42) becomes

ãs − τ ϑ̃t = τxyt +
(
ϑt + xyt

)
bz

ϑ̃s +
1
τ

ãt = −xys −
1
τ

(
ϑs + xys

)
bz

(43)

Abbreviating

w(s, t) =
(

ã

ϑ̃

)
,

we can write equation (43) in the form

ws + Ĵwt = h, Ĵ =
(

0 −τ
1/τ 0

)
,(44)

with the smooth function h : [s1,∞) × S1 → R defined by the right hand side of
(43) and satisfying, in view of the exponential estimate of

∥∥z(s)
∥∥, the estimate∥∥h(s)

∥∥ 6Me−rs,

for some constant M . Introducing the mean values α(s) =
∫ 1

0
w(s, t)dt we define

w̃(s, t) = w(s, t)−
∫ 1

0
w(s, t)dt = w(s, t)− α(s). Then

α′(s) =
∫ 1

0

ws(s, t)dt =
∫ 1

0

h(s, t)dt

and so,

|α′(s)| 6
∫ 1

0

|h(s, t)|dt 6
∥∥h(s)

∥∥ 6Me−rs.

Hence

|α(s2)− α(s1)| 6
2M

r

[
e−rs1 − e−rs2

]
,

for s1 < s2, showing that α(s) → c ∈ R2 as s → ∞. Since
∫ 1

0
w̃(s, t)dt = 0, it

follows from Lemma 2.3 that∣∣w̃(s, t)
∣∣ 6 sup

τ∈S1

∣∣w̃t(s, τ)
∣∣ = sup

τ∈S1

∣∣wt(s, τ)
∣∣→ 0.
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Consequently, w(s, t)→ c =: (a0, ϑ0) as s→ 0 and together with the estimates for
the derivatives |α| ≥ 1 in Lemma 2.3 the proof is finished.

Without loss of generality we shall put for convenience a0 = ϑ0 = 0.

Thus inserting (ϑ, z) = (kt, 0) into J(ϑ, z) and dY (ϑ, z) we abbreviate

J(t) = J(kt, 0)

S∞(t) = −TJ(t)dY (kt, 0)
(45)

so that

S(s, t)→ S∞(t)(46)

as s → ∞ uniformly in t. The limit operator A∞ : W 1,2(S1,R2 ⊂ L2(S1,R2) →
L2(S1,R2) is defined by

A∞ = −J(t)
d

dt
− S∞(t).(47)

Summarizing the set up and the results so far we consider a finite energy cylinder
ṽ = (a, v) : R × S1 → R ×M and assume that it is nondegenerate in the sense of
Theorem 1.2 requiring the existence of a nondegenerate T -periodic solution x(t)
of the Reeb vector field X satisfying v(s, ·) → x(T ·) as s → ∞ in C∞(S1). The
period is T = kτ , with the minimal period τ . Then there are local coordinates in
a tubular neighborhood of x

(
R
)
⊂ M in which the cylinder is represented by the

map
ũ = (a, u) : [s0,∞)× R→ R× R3

for some large s0 > 0. The functions ũ(s, t) =
(
a(s, t), ϑ(s, t), x(s, t), y(s, t)

)
are

periodic in t except the function ϑ which satisfies ϑ(s, t + 1) = ϑ(s, t) + k. The
convergence to the periodic solution x(Tt) becomes

u(s, t)→ (kt, 0, 0) ∈ R3 (s→∞)

and the map (a, u) has the asymptotic properties described in Lemma 2.3. The
functions solve the equations

as = (ϑt + xyt)f(u)

at = −(ϑs + xys)f(u)
(48)

zs + J(s, t)zt + S(s, t)z = 0,(49)

where z = (x, y). The function f = f(t, z) : R3 → R is smooth, 1-periodic in t,
satisfies f(t, 0) = τ and df(t, 0) = 0. Moreover, S(s, t) → S∞(t) as s → ∞ in
C∞. The matrix S∞ is periodic in t, symmetric with respect to the inner product〈
· ,−J0J(t)·

〉
, and satisfies 0 /∈ σ(A∞).

Our aim is to prove the following result about the asymptotic behavior of non-
degenerate finite energy planes locally near the limit periodic solution.

Theorem 2.8. (Asymptotic behavior of nondegenerate finite energy
planes) Assume the functions (a, u) : [s0,∞) × R → R4 meet the above condi-
tions. Then
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a(s, t) = Ts + a0 + â(s, t),

ϑ(s, t) = kt + ϑ0 + ϑ̂(s, t)

and either

(i) z(s, t) ≡ 0 for all (s, t) ∈ [s0,∞)× R,

or

(ii)

z(s, t) = e
∫ s
0 γ(τ)dτ

[
e(t) + r̂(s, t)

]
.

Here, a0 and ϑ0 are two real constants, and

∂αr̂(s, t)→ 0 as s→∞
uniformly in t ∈ R and for all derivatives α = (α1, α2). In addition, there are
constants Mα > 0 and d > 0 such that∣∣∂αâ(s, t)

∣∣, ∣∣∂αϑ̂(s, t)
∣∣ 6Mαe−ds

for s ≥ 0 and all derivatives α. Moreover, the smooth function γ : [0,∞) → R
converges, γ(s) → µ < 0 as s → ∞. The limit µ is an eigenvalue of a self-
adjoint operator A∞ in L2(S1,R2). The nowhere vanishing function e(t) = e(t+1)
represents an eigenvector belonging to µ.

We emphasize, that the first alternative does not occur if the data (a, u) is the
restriction of a finite energy plane. The reason is as follows. If z(s, t) ≡ 0 for s ≥ s0,
then πus(s, t) ≡ 0 for s ≥ s0 since the contact plane ξ along the periodic orbit agrees
with the z-plane in our coordinates. By means of the similarity principle as in the
proof of Theorem 5.2 below we conclude that π ˚ Tu = 0 everywhere on the plane
C. Consequently, u∗dλ = |πus|2 = 0 by (6), contradicting the statement∫

C
u∗dλ = T > 0

in Theorem 1.2.

3. Proof of the asymptotic formula (Theorem 2.8)

We shall study smooth functions (a, ϑ, z) : [s0,∞)×R→ R4 solving the equation
(48) and (49) and having the asymptotic properties described in Lemma 2.3, Lemma
2.4 and Lemma 2.7. In particular,

a(s, t)− Ts− a0 → 0

ϑ(s, t)− kt− ϑ0 → 0

z(s, t)→ 0
(50)

as s → ∞ uniformly in t with all their derivatives. The period of the limiting
periodic solution x(t) of the Reeb vector field satisfies T = kτ with the minimal
period τ . In order to simplify the notation in the proof we assume
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T = τ = k = 1
a0 = ϑ0 = 0.

Our aim is to prove the asymptotic formula for the map z(s, t) which solves the
equation, (25), namely,

zs + J(s, t)zt + S(s, t)z = 0.(51)

We claim that by the means of a coordinate transformation we can assume without
loss of generality that

J(s, t) = J0.(52)

In order to prove this claim we first recall that −J0J(m) is a positive definite and
symplectic matrix for every m.

Define the new coordinates (ϑ′, z′) ∈ R× R2 by ϑ′ = ϑ and

z = T (m)z′

T (m) =
(
−J0J(m)

)−1/2
,

m = (ϑ, x, y). Then T = T (m) is symmetric and symplectic, so that TJ0T = J0,
and we claim that

T (m)−1J(m)T (m) = J0, all m.(53)

Indeed with T also T−1 is symmetric and symplectic: T−1J0T
−1 = J0. Since, by

definition, T−2 = −J0J and J−1
0 = −J0 = JT0 , we have T−1 = J0T (−J0) and hence

T−1 = J0T (−J0J) = J0TT−2 = J0T
−1 proving the formula (53). Introduce now

T (s, t) ≡ T
(
u(s, t)

)
,

and define the map ξ by

z(s, t) = T (s, t)ξ(s, t).(54)

Then ξ(s, t) is a solution of the equation

ξs + J0ξt + Ŝ(t, s)ξ = 0,

where

Ŝ(t, s) = J0T
−1Tt + T−1Ts + T−1ST.

Moreover, from T (s, t)→ T∞(t) as s→∞ in C∞(R), where

T∞(t) =
(
−J0M(kt, 0)

)−1/2
,

we find that Ŝ(t, s)→ Ŝ∞(t) as s→∞ in C∞(R), where

Ŝ∞(t) = −J0[T−1
∞ dY T∞ − T−1

∞ Ṫ∞].

The dot denotes the derivative of T∞ in t, and dY (m) is the restriction of the
linearized Reeb vector field πmdX(m)πm along m = (kt, 0), as introduced above.
Since J0dY along the periodic solution is symmetric, one verifies that Ŝ∞(t) is
symmetric, using that T∞ is symmetric and symplectic. Hence the operator

Â∞ = −J0
d

dt
− Ŝ∞(t)



THE ASYMPTOTIC BEHAVIOR OF A FINITE ENERGY PLANE 23

is self-adjoint, and, as before, 0 /∈ σ(Â∞) if and only if the periodic solution of the
Reeb vector field X is non degenerate.

We note that the exponential decay estimates in Lemma 2.4 still holds true af-
ter the change of variables. Without loss of generality we therefore assume in the
following that J(s, t) ≡ J0. Hence, using the old notation and writing ξ = z, Ŝ = S

and Â∞ = A∞ we shall study an equation of the form

zs + J0zt + S(s, t)z = 0(55)

with the standard almost complex structure J0.

We begin with a proposition concerning the L2-convergence of (x, y). It is of
course related to our previous discussion. However the conclusion is now somewhat
stronger, since we have convergence of u(s, ·) as s→∞.

Proposition 3.1. Assume (a, ϑ, z) : [s0,∞) × R → R4 solves the equations (48)
and (55) and has the asymptotic properties of Lemma 2.3. Then

∥∥z(s)
∥∥
L2 → 0 as

s→∞. If ∥∥z(s∗)
∥∥
L2 = 0

for some s∗ ≥ s0, then

z(s, t) ≡ 0

for all s ≥ s0 and t ∈ R.

Proof. The first claim is an immediate consequence of Lemma 2.3. Assume that∥∥z(s∗)
∥∥ = 0, then z(s∗, t) = 0 for all t ∈ R and we pick a t∗ ∈ R such that

z(s∗, t∗) = 0. Since z(s, t) solves the partial differential equation (55) there is an
open neighborhood D ⊂ R2 of the zero (s∗, t∗) of z, on which z can be represented
as

z(s, t) = Φ(ζ)h(ζ), ζ = s + it ∈ C.

Here Φ: D → GL(C) is continuous and h : D ⊂ C → C is a holomorphic function.
(This is the generalized similarity principle for which we refer to [1] or [4]). Since
(s∗, t∗) is a cluster point of zeroes of z we conclude that h ≡ 0 on D and hence
z(s, t) ≡ 0 on D. Consequently, z(s, t) = 0 for all s ≥ s0 and t ∈ R. The proof of
the proposition is complete.

For the remainder of this section we shall assume that
∥∥z(s)

∥∥
L2 6= 0 for all s ≥ s0.

We know that
∥∥z(s)

∥∥
L2 → 0 as s→∞. Using the assumption 0 /∈ σ(A∞), we shall

derive an exponential formula.

Lemma 3.2. ∥∥z(s)
∥∥
L2 = e

∫ s
s0
α(τ)dτ ·

∥∥z(s0)
∥∥
L2 ,

for a smooth function α : [s0,∞) → R satisfying lims→∞ α(s) = µ < 0 and µ ∈
σ(A∞).
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Proof. We abbreviate
∥∥·∥∥ ≡ ∥∥·∥∥

L2 and assume
∥∥z(s)

∥∥ 6= 0. Introduce the smooth
function

ξ(s, t) =
z(s, t)∥∥z(s)

∥∥ , then ‖ξ(s)‖ = 1.

Differentiating in s, using that z solves the equation (55) we obtain

ξs = −Jξt − Sξ − 1
2

d
ds

∥∥z∥∥2∥∥z∥∥2 ξ,(56)

abbreviating J ≡ J0. Denoting by 〈·, ·〉 the L2(S1) scalar product we conclude from
〈ξ, ξ〉 = 1 that 〈ξs, ξ〉 = 0, and inserting the above equation we find

1
2

d
ds

∥∥z∥∥2∥∥z∥∥2 =
〈
−Jξt − Sξ, ξ

〉
≡ α(s),(57)

so that ∥∥z(s)
∥∥ = e

∫ s
s0
α(τ)dτ∥∥z(s0)

∥∥.(58)

We have to show that the smooth function α converges as s → ∞ to a negative
eigenvalue of A∞. Dropping the subscript we recall that A = A∞ = −J d

dt − S∞(t)
and write

−J
d

dt
− S(s, t) = A + ε and ε ≡ (S∞ − S).

Then, by the previous section, ε(s, t) → 0 as s → ∞ in C∞(R). Denoting by the
prime the derivative in the s-variable we can write the equation (56) for ξ and the
smooth function α in (57) as

ξ′ = (A + ε)ξ − αξ(59)

α(s) =
〈
(A + ε)ξ, ξ

〉
.(60)

We differentiate this function. Using the selfadjointnes of A and the identity〈
ξ, (A + ε)ξ − αξ

〉
= 0, we obtain

α′ = 2
∥∥ξ′∥∥2 −

〈
εξ, ξ′

〉
+
〈
ε′ξ, ξ

〉
.(61)

In view of
∥∥ξ∥∥ = 1, we have the estimates:∣∣〈εξ, ξ′〉∣∣ 6 O(s)

∥∥ξ′(s)∥∥∣∣〈ε′ξ, ξ〉∣∣ 6 O(s),

where O(s)→ 0, as s→∞. Consequently,

α′(s) ≥ 2
∥∥ξ′∥∥ [∥∥ξ′∥∥−O(s)

]
−O(s).(62)

Next we claim that α is bounded

|α(s)| 6 C, s ≥ s0(63)

for some C > 0. Arguing by contradiction we assume that α is not bounded from
above. Then there is a sequence sn →∞ such that α(sn)→∞. On the other hand
if α(s) ≥ δ > 0 for all s large, then

∥∥z(s)
∥∥→ +∞ in view of (58) which contradicts∥∥z(s)

∥∥ → 0, as s → ∞. Hence there exists another sequence s′n → ∞ such that
α(s′n) < δ and so the function α has an “oscillatory” behavior as s → ∞. Since
σ(−J d

dt ) = 2πZ it follows from Kato’s perturbation theory for isolated eigenvalues
of self-adjoint operators [12], that there is an L > 0 and an integer m, so that every



THE ASYMPTOTIC BEHAVIOR OF A FINITE ENERGY PLANE 25

interval of R having length equal to L contains at most m points of the spectrum
σ(A = −J d

dt − S∞) belonging to the perturbed operator A. Consequently, there
are spectral gaps of fixed size: there is a sequence rn → ∞ and a constant d > 0
satisfying

[rn − d, rn + d] ∩ σ(A) = ∅.(64)

Hence by the oscillatory behavior of α we find a sequence τn → ∞ satisfying
α(τn) = rn and α′(τn) 6 0. It then follows from (62) that

∥∥ξ′(τn)∥∥→ 0 as n→∞.
Since, by (59), ξ′ = Aξ − α(s)ξ + ε, we can estimate∥∥ξ′(s)∥∥ ≥ ∥∥[A− α(s)]ξ

∥∥−O(s)

≥ dist
(
α(s), σ(A)

)
−O(s).

(65)

Here we have used, that
∥∥ξ∥∥ = 1 and that for the resolvent of a self-adjoint operator∥∥(A−γ)−1

∥∥ =
[
dist

(
γ, σ(A)

)]−1. Using (65) we conclude from (64) that
∥∥ξ′(τn)∥∥ ≥

d
2 > 0 contradicting

∥∥ξ′(τn)∥∥ → 0 as m → ∞. This contradiction shows that α
is indeed bounded from above. The same argument shows that α is also bounded
from below, proving the claim (63).

There exists a sequence sn →∞ such that
∥∥ξ′(sn)∥∥→ 0. Indeed, otherwise, for

all large s,
∥∥ξ′∥∥ ≥ δ > 0, hence α′ ≥ δ2 in view of (62), and α(s) ≥ δ2(s−s0)+α(s0),

so that
∥∥z(s)

∥∥ → ∞, in view of (58). This contradicts
∥∥z(s)

∥∥ → 0. Since α is
bounded, the sequence α(sn) has a convergent subsequence, limn→∞ α(sn) = µ
and we conclude from (65) that µ ∈ σ(A). Since α is bounded, every sequence
α(τn), τn → ∞ possesses a convergent subsequence, limn→α α(τn) = γ and we
claim that γ = µ. Indeed, if f.e. γ < µ, then α has again an oscillatory behavior
and we can pick γ < ν < µ satisfying ν /∈ σ(A), and a sequence sn →∞ satisfying
α(sn) = ν and α′(sn) 6 0. Consequently, in view of (62),

∥∥ξ′(sn)∥∥ → 0 and
hence, in view of (65), ν ∈ σ(A), contradicting ν /∈ σ(A). We have proved that
lims→∞ α(s) = µ and µ ∈ σ(A). Clearly µ 6 0, since otherwise

∥∥z(s)
∥∥→ +∞. But

then µ < 0 in view of our assumption 0 /∈ σ(A). This finishes the proof of Lemma
3.2

For the solution z = z(s, t) of the equation (55) we have, in view of Lemma 3.2,
the formula

z(s, t) =
∥∥z(s0)

∥∥e∫ ss0 α(τ)dτ
ξ(s, t), ‖ξ(s)‖ = 1.(66)

The exponential decay of z as s→∞ will be concluded from the C∞ bounds of ξ
and α in the next Lemma.

Lemma 3.3. Define, as in Lemma 3.2,

ξ(s, t) =
z(s, t)∥∥z(s)

∥∥
α(s) =

〈
A∞ξ, ξ

〉
+
〈
(S∞ − S)ξ, ξ

〉
.

Then for every j ∈ N = {0, 1, 2, . . . } and every multi index β ∈ N× N

sup
s,t

∣∣∂βξ(s, t)∣∣ <∞ and sup
s

∣∣∂jα∣∣ <∞.
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Proof. The scalar product and the norm
∥∥·∥∥ above refer to the L2-space in the t

variable, 0 6 t 6 1. By (55) the smooth function ξ = ξ(s, t) : [s0,∞) × R → R2 is
1-periodic in t ∈ R and solves the equation

∂̄ξ = −S(s, t)ξ − α(s)ξ, ∂̄ :=
∂

∂s
+ J0

∂

∂t
,(67)

with smooth functions S and α having the bounds

sup
∣∣∂βS∣∣ <∞ and sup|α| <∞

for all multi indices β ∈ N× N. The supremum is taken over all s ≥ s0 and t ∈ R,
the function S is 1-periodic in t and the constant matrix J0 satisfies J2

0 = −Id.
In order to derive uniform W k,p

loc bounds for ξ we pick δ0 > 0 and s∗ > s0 and
define the sequence δj ↘ δ0/2 by δj = δ0(1 + 2−j)/2. We choose smooth bump
functions βj : R → [0, 1] vanishing outside of (s∗ − δj−1, s

∗ + δj−1) and equal to 1
on [s∗− δj , s

∗+ δj ]. Introducing the nested intervals Ij = [s∗− δj , s
∗+ δj ] ⊂ R and

Qj = Ij × [0, 1] ⊂ R2 we claim that for every N ≥ 1 and every 2 < p < ∞ there
exists a constant CN,p > 0 such that∥∥ξ∥∥

WN,p(QN )
6 CN,p∥∥α∥∥

WN,p(IN )
6 CN,p,

(68)

where the constants CN,p are independent of s∗. Lemma 3.3 is an immediate
consequence of the local uniform estimates (68) in view of the Sobolev embedding
theorem.

In order to prove (68) we proceed inductively making use of the well known
a-priori estimate for the ∂̄-operator:∥∥ξ∥∥

W j,p(Qj)
6Mp

∥∥∂̄(βjξ)
∥∥
W j−1,p(Qj−1)

,(69)

where Mp only depends on ∂̄. Starting with j = 1 we first show that ξ is uni-
formly bounded. Recalling (67) we deduce from (69), setting p = 2, the estimate∥∥ξ∥∥

W 1,2(Q1)
6 c
∥∥ξ∥∥

L2(Q0)
. The constant c > 0 depends on the C1-norm of β1, on

sup|S| and sup|α| but not on s∗. Since
∥∥ξ(s)∥∥

L2(S1)
= 1 we have

∥∥ξ∥∥2

L2(Q0)
= 2δ0

so that
∥∥ξ∥∥

W 1,2(Q1)
6 c1 for a constant c1 independent of s∗. Therefore, using the

Sobolev embedding theorem,
∥∥ξ∥∥

Lp(Q1)
6 c′p, again independent of s∗, for every

1 < p < ∞. In view of this local uniform Lp-estimate for ξ we deduce from (50)
for p > 1 the estimate

∥∥ξ∥∥
W 1,p(Q1)

6 cp, the constant being independent of s∗.
Hence choosing p > 2 we conclude sup|ξ| <∞ by means of the Sobolev embedding
theorem.

Recall now equation (61) for α, namely

α′(s) = 2
∥∥ξ′(s)∥∥2 − 〈εξ, ξ′〉+ 〈ε′ξ, ξ〉,

where prime denotes the partial derivative in the s-variable and where the smooth
function ε = ε(s, t) and all its partial derivatives are uniformly bounded. From the
above equation we deduce |α′(s)| 6 c1

∥∥ξ′(s)∥∥2 + c2. Integrating and using Hölder’s
inequality we find the local Lp-estimate

∥∥α′∥∥p
Lp(I1)

6 c3

∥∥ξ∥∥
W 1,2p(Q1)

+ c4 6 cp
independent of s∗.
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We have verified (68) for N = 1 and all p > 2. Proceeding now inductively, using
(67), (69) then (61) and the Sobolev embedding theorems, the desired estimates
(68) are verified for all N and the lemma is proved.

Recall that α(s)→ µ as s→∞ and µ < 0. We deduce from Lemma 3.3 and the
formula (66) for the map z(s, t) the following Corollary.

Corollary 3.4. Let 0 < r < |µ|, then∣∣∂βz(s, t)
∣∣ 6Me−rs,

for all derivatives β, with constants M = Mβ.

Proposition 3.5. Recall that α(s) → µ as s → ∞ with µ < 0 and µ ∈ σ(A∞).
There exists an eigenvector e(t + 1) = e(t) of A∞e = µe satisfying ‖e‖L2(S1) = 1
and

ξ(s, t)→ e(t) in C∞(R) as s→∞.

Proof. In view of the previous Lemma it is sufficient to prove the convergence in
W 1,2(S1). We start with

Lemma 3.6. Let E ⊂ L2(S1) be the eigenspace of A∞ belonging to µ ∈ σ(A∞).
Then

dist(ξ(s), E)→ 0 as s→∞,

where the distance is taken in the W 1,2(S1)-norm.

Proof of Lemma 3.6 Arguing by contradiction we assume that dist(ξ(sn), E) ≥ ε
for some ε > 0 and for a sequence sn → ∞. Since, by Lemma 3.3, the derivatives
of ξ(s, t) are uniformly bounded, there is a constant c > 0, such that

‖ξ(s)− ξ(s′)‖W 1,2 6 c|s− s′|.
Therefore, we find intervals around sn, In = [sn− d, sn + d], with some d > 0, such
that

dist(ξ(s), E) ≥ ε

2
, s ∈ In.(70)

We claim that there exists a sequence τk ∈ Ink such that

‖A∞ξ(τk)− µξ(τk)‖ → 0(71)

as k →∞. Indeed, we recall, using (65) and
∥∥ξ∥∥ = 1, that∥∥ξ′(s)∥∥ ≥ ∥∥[A− α(s)

]
ξ
∥∥−O(s) ≥

∥∥[A− µ
]
ξ
∥∥− |µ− α(s)| −O(s).

Therefore, it is sufficient to prove that ‖ξ′(τk)‖ → 0. If not, then we have ‖ξ′(s)‖ ≥ δ
for s ∈ In, all n, with some δ > 0. Hence α′(s) ≥ δ2 in view of the estimate (62),
s ∈ In and hence, by the mean value theorem |α(sn + d) − α(sn − d)| ≥ 2dδ2 > 0
for all n, which contradicts the convergence α(s) → µ as s → ∞ and proves the
claim (71).

Now, by Lemma 3.3 we know that ‖ξ(τk)‖W 2.2(S1) 6 C and hence, since W 2,2(S1)
is compactly embedded in W 1,2(S1), we find a subsequence which converges in W 1,2

such that ξ(τk) → e ∈ W 1,2(S1). It follows from
∥∥ξ(s)∥∥ = 1 that ‖e‖L2 = 1 and,

in view of (71), that A∞e = µe, so that e ∈ E. This contradicts (70) and hence
Lemma 3.6 is proved.
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Lemma 3.7. There exists e ∈ E, i.e. A∞e = µe such that ‖e‖L2(S1) = 1 and

ξ(s)→ e in W 1,2(S1) as s→∞.

Proof. Let P denote the orthogonal projection of L2(S1) onto the eigenspace E of
A∞, and define

ζ(s) = Pξ(s).

Recall that, by (59), ξ solves the equation ξ′ = A∞ξ + εξ − αξ. Using A∞(Pξ) =
PA∞ξ = µ(Pξ) we find for ζ(s) the equation

ζ ′ = [µ− α(s)]ζ + Pεξ.(72)

From Lemma 3.6 we conclude

‖ζ(s)− ξ(s)‖ → 0 and ‖ζ(s)‖ → 1(73)

as s→∞. Therefore,
∥∥ζ(s)

∥∥ ≥ 1
2 for large s and we define the smooth function η

by

η(s, t) =
ζ(s, t)∥∥ζ(s)

∥∥ , then
∥∥η(s)

∥∥ = 1.

This function satisfies the differential equation

η′ =
ζ ′∥∥ζ∥∥ − 1

2

d
ds

∥∥ζ∥∥2∥∥ζ∥∥2 · ζ∥∥ζ∥∥ .

Using that
〈
η′, η

〉
= 0 we find, inserting the equation (72) for ζ ′ that

η′ =
Pεξ∥∥ζ∥∥ −

〈
Pεξ, η

〉∥∥ζ∥∥ · η.

Since, in the L2-norms,
∥∥ξ∥∥ = ‖η‖ = 1 and

∥∥ζ∥∥ ≥ 1
2 we find the estimate∥∥η′(s)∥∥ 6 4‖ε(s)‖,

where ε(s, t) = S(s, t) − S∞(t). By definition, S(s, t) = N
(
ϑ(s, t), z(s, t)

)
and

S∞(t) = N(t, 0) for a smooth matrix function N . Therefore, we can estimate:

‖ε(s)‖ 6 C(
∥∥z(s)

∥∥+ ‖ϑ̃(s)‖L2),

with the t-periodic function ϑ̃(s, t) = ϑ(s, t) − t. We shall prove below that
‖ϑ̃(s)‖L2 6 Ce−rs for some r > 0. Consequently, we find together with the ex-
ponential estimate (66) for z, that

‖η′(s)‖ 6 Ce−rs(74)

for some r > 0. Take any sequence sn → ∞. Since ξ(sn) is, by Lemma 3.3,
bounded in W 2,2(S1) it possesses a subsequence converging in W 1,2(S1), such that
ξ(sn)→ e ∈W 1,2(S1). From Lemma 3.6 we conclude that e ∈ E and it remains to
prove the uniqueness of this limit. Assume ξ(sn)→ e and ξ(τn)→ e′ in W 1,2(S1),
then, by (73), η(sn)→ e and η(τn)→ e′ in L2(S1). Using (74) we can estimate in
L2

‖η(sn)− η(τn)‖ 6
∣∣∣∣∫ τn

sn

∥∥η′(s)∥∥ds

∣∣∣∣ 6 C

∣∣∣∣∫ τn

sn

e−rsds

∣∣∣∣→ 0

for n→∞. Hence e = e′ and the proof of Lemma 3.7 and, therefore, also the proof
of Proposition 3.5 is finished.
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As a consequence of Lemma 3.7 and the C∞ bounds of Lemma 3.6 we have
ξ(s, t) → e(t) as s → ∞ in C∞(R). Now define r(s, t) = ξ(s, t) − e(t). Using the
equation (59) for the derivative of ξ in the s-variable, the convergence α(s)→ µ, and
(A−µ)e = e, we deduce inductively that ∂βr(s, t)→ 0 as s→∞, uniformly in t, for
all derivatives. Recalling formula (66), we have established the asymptotic formula
for the function z(s, t) in Theorem 2.8. It remains to demonstrate the exponential
decay of the functions a(s, t) − Ts and ϑ(s, t) − kt. Again, for simplicity of the
notation, we assume T = k = τ = 1.

4. End of the proof

We shall now use the exponential estimate of z, Corollary 3.4, in order to derive
the desired exponential estimate for the functions a and ϑ. Recall that a and ϑ:
[s0,∞)× R→ R are smooth solutions of

as = (ϑt + xyt)f(ϑ, z)

at = −(ϑs + xys)f(ϑ, z).
(75)

Moreover f(t, 0) ≡ 1 and we can write

f(ϑ, z) = 1 +
∫ 1

0

fz(ϑ, τz)dτz ≡ 1 + k(s, t)z.

Introduce the 1-periodic functions ã, b̃ : [s0,∞)× S1 → R by

ã(s, t) = a(s, t)− s

ϑ̃(s, t) = ϑ(s, t)− t.

By Lemma 2.7,

∂β ã(s, t)→ 0 for |β| ≥ 0

∂βϑ̃(s, t)→ 0 for |β| ≥ 0.

as s→∞, uniformly in t. The equation (75) becomes

ãs = ϑ̃t + xyt + (ϑt + xyt)kz

ϑ̃s = −ãt − xys − (ϑs + xys)kz.
(76)

Hence, abbreviating

w(s, t) =
(

ã

ϑ̃

)
,

we can write the equation (76) in the form

ws + J0wt = h, J0 =
(

0 −1
1 0

)
,(77)

with a smooth function h : [s0,∞) × S1 → R satisfying, in view of Corollary 3.4,
the exponential estimates∣∣∂βh(s, t)

∣∣ 6Me−rs, |β| ≥ 0(78)

for constants M = Mβ , and 0 < r < |µ|. Our aim is to deduce similar estimates
for w. We start with a simple observation.



30 H. HOFER, K. WYSOCKI, AND E. ZEHNDER

Lemma 4.1. Assume v(s, t) and h(s, t) are smooth, 1-periodic in t and solve the
partial differential equation

vs + J0vt = h on [s0,∞]× S1.(79)

Assume, in addition, that

(i)
∫ 1

0

v(s, t)dt = 0

(ii)
∥∥∂sh(s, ·)

∥∥2 +
∥∥∂th(s, ·)

∥∥2 6 f(s)

(iii)
∥∥v(s, ·)

∥∥→ 0, f(s)→ 0 as s→∞
for a smooth function f satisfying f ′′(s) = r2f(s), with some constant r > 0. Then,
choosing 0 < ν < r and ν 6 1 we have for all s ∈ [s0,∞)

1
2

∥∥v(s)
∥∥2 6 β(s0)e−ν(s−s0),

where

β(s0) =
1
2

∥∥v(s0)
∥∥2 + bf(s0).

with a positive constant b independent of s.

Proof. In terms of the operator A, defined by

A = J0
d

dt
,

the equation (79) looks as follows,

v′ + Av = h,(80)

where during the proof prime denotes ∂s and dot denotes ∂t. Define

α(s) =
1
2

∥∥v(s)
∥∥2

.

Differentiation in s gives in view of the equation (80) for w,

α′ =
〈
w, w′

〉
=
〈
w, h−Aw

〉
,

where
〈
·, ·
〉

denotes the inner product in L2. The operator A is self-adjoint and∥∥Aw
∥∥2 =

∥∥ẇ∥∥2

since J is an isometry. Due to the assumption
∫ 1

0
w(s, t)dt = 0,∥∥ẇ∥∥2 ≥

∥∥w∥∥2
.

Together with
∥∥Ah

∥∥ =
∥∥ḣ∥∥, we obtain for the second derivative of α the estimate

α′′(s) =
∥∥h−Aw

∥∥2 +
∥∥Aw

∥∥2 +
〈
w, h′

〉
−
〈
w, Ah

〉
≥
∥∥ẇ∥∥2 −

∥∥w∥∥ · ∥∥h′∥∥− ∥∥w∥∥ · ∥∥ḣ∥∥
≥
∥∥w∥∥2 − λ

∥∥w∥∥2 − 1
2λ

{ ∥∥h′∥∥2 +
∥∥ḣ∥∥2 }

≥ (2− 2λ)
1
2

∥∥w∥∥2 − 1
2λ

{ ∥∥h′∥∥2 +
∥∥ḣ∥∥2 }
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for every λ > 0. Choosing λ = 1/2 one concludes, using assumption (ii), the
estimate

α′′(s) ≥ ν2α(s)− af(s)(81)

for every ν 6 1, with a constant a > 0. Choose 0 < ν < r and define

β(s) = α(s) + bf(s), b =
a

r2 − ν2
.(82)

Then

α(s) 6 β(s).(83)

From (81), (82) and f ′′(s) = r2f(s) we deduce

β′′(s) ≥ ν2β(s).

This leads to the desired estimate. Indeed, we consider the function g(s) = β′(s) +

νβ(s). If g(s) 6 0 for all s ≥ s0, then
d

ds
[eνsβ(s)] = eνsβ(s) 6 0 for all s ≥ s0

which implies
α(s) 6 β(s) 6 e−ν(s−s0)β(s0)

for all s ≥ s0 as required. Hence it suffices to show that g(s) 6 0 for s ≥ s0.
Arguing by contradiction assume that g(s1) > 0 for some s1 > s0. From

g′(s) = β′′(s) + νβ′(s) ≥ ν2β(s) + νβ′(s) = νg(s)

we find
d

ds
[e−νsg(s)] ≥ 0 implying for s ≥ s1

e−νsg(s) ≥ e−νs1g(s1)

which in turn gives

d

ds
[eνsβ(s)] ≥ eνseν(s−sq)g(s1).

Integrating from s1 to s we obtain

β(s) ≥ e−ν(s−s1)β(s1) +
g(s1)

ν
sinh[ν(s− s1)]→∞

as s→∞ contradicting β(s)→ 0. Hence g(s) 6 0 for s ≥ s0. The proof of Lemma
4.1 is complete.

As a consequence we have

Lemma 4.2. If w is a solution of (77) and 0 < ν < r and ν 6 1, then there exist
constants Mβ such that for all derivatives

∂β = ∂β1
t ∂β2

s , β1 ≥ 1, β2 ≥ 0

the following estimate holds ∥∥∂βw(s, ·)
∥∥ 6Me−νs,

for all s ∈ (s0,∞).
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Proof. The function w is a solution of (77). Abbreviate

v = ∂βw = ∂β1
t ∂β2

s w.

Since β1 ≥ 1, the mean values over a period vanish and v solves the equation

vs + J0vt = ∂βh =: g.

In view of Lemma 2.7, ∥∥∂sg(s, ·)
∥∥2 +

∥∥∂tg(s, ·)
∥∥2 6 Ce−rs

for some constant C. Choosing f(s) equal to the right hand side, the assumptions
of Lemma 4.1 are met. The proof of Lemma 4.2 is complete.

Having proved the estimates for the derivatives we finally turn to the estimates
of the functions. Recall from Lemma 2.7 that

|w(s, t)− c| → 0

as s → ∞, uniformly in t. Introduce w̃(s, t) = w(s, t) −
∫ 1

0
w(s, t)dt and the mean

values α(s) =
∫ 1

0
w(s, t)dt. In view of (77),

w̃s + J0w̃t = h−
∫ 1

0

h(s, t)dt =: f.

In view of (78) the function f satisfies |f(s, t)| 6Me−rs and since
∫ 1

0
w̃(s, t)dt = 0

we conclude from Lemma 4.2 that∣∣w̃(s, t)
∣∣ 6 ∥∥w̃t(s, ·)∥∥ =

∥∥wt(s, ·)∥∥ 6Me−νs.(84)

Next consider the function α(s) =
∫ 1

0
w(s, t)dt. In view of (77),

α′(s) =
∫ 1

0

ws(s, t)dt =
∫ 1

0

h(s, t)dt.

Consequently, recalling the definition of the function h(s, t),

|α(s′)− α(s)| =
∫ s′

s

α′(τ) dτ =
∫ s′

s

[∫ 1

0

h(τ, t)dt

]
dτ

6
∫ s′

s

[∫ 1

0

|h(τ, t)|2dt

]1/2

dτ 6M

∫ s′

s

∥∥z(τ)
∥∥dτ

6 M

r

(
e−rs − e−rs

′)
for s′ > s. Using α(s′)→ c, as s′ →∞, we obtain

|c− α(s)| 6 M

r
e−rs.

Together with (84) and 0 < ν < r, we see that∣∣w(s, t)− c
∣∣ 6 ∣∣w̃(s, t)

∣∣+ ∣∣α(s)− c
∣∣ 6M0e

−νs.

By means of the Sobolev embedding theorem one concludes from the above
considerations and from Lemma 4.2 the following pointwise estimates.
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Proposition 4.3. Assume (a, ϑ, z) meets the assumptions of Theorem 2.8. Then
there exist constants a0 and ϑ0 ∈ R such that for 0 < ν < r and ν 6 1,∣∣∂β(a(s, t)− Ts− a0)

∣∣ 6Me−νs∣∣∂β(ϑ(s, t)− kt− ϑ0)
∣∣ 6Me−νs,

for all |β| ≥ 0 and all (s, t) ∈ [s0,∞)× S1, with constants M = Mβ.

We should mention that during the proof we have set, in order to simplify the
notation, T = k = 1 and also a0 = 0 = ϑ0.

This completes the proof of Theorem 2.8 about the asymptotics of nondegenerate
finite energy planes. We shall use next the asymptotic formula in order to derive
some global properties of nondegenerate finite energy planes.

5. Intersections of the finite energy plane with its asymptotic limit

If (a, u) : C → R × M is a finite energy plane, which is nondegenerate as in
Theorem 1.2, then u

(
Re2πit

)
→ p(Tt) as R → ∞. Here p(t) is a periodic solution

of the Reeb vector field ẋ = X(x) associated to the contact structure λ on M .
The period T is positive and we assume that T = 1 (for notational convenience).
It turns out that outside of a large disc the energy plane does not hit the “limit”
periodic solution p. We shall abbreviate P = {p(t) | t ∈ R} ⊂M .

Theorem 5.1. If (a, u) : C → R × M is a nondegenerate finite energy plane as
described in Theorem 1.2, then there exists an R > 0, such that

(i) u(z) /∈ P if |z| ≥ R

(ii) πus(z) 6= 0 if |z| ≥ R,

where π : TmM = RX(m)⊕ ξm → ξm is the projection onto the contact plane.

Proof. We recall that the first alternative in Theorem 2.8 does not occur for finite
energy planes. The proof is an immediate application of the asymptotic formula
in Theorem 2.8. We argue by contradiction and assume, in the cylinder variables
(s, t) ∈ R × S1, that u(sn, tn) ∈ P for a sequence sn → ∞. We may assume
that tn → t∗ ∈ S1. In the local coordinates near P , we then have u(sn, tn) =(
ϑ(sn, tn), z(sn, tn)

)
∈ R3 and z(sn, tn) = 0. From

z(s, t) = e
∫ s
s0
α(τ)dτ [

e(t) + r(s, t)
]

we deduce
e(tn) + r(sn, tn) = 0.

Since r(s, t) → 0 as s → ∞ we conclude e(t∗) = 0. This contradicts the fact, that
the eigenfunction e(t) does not vanish and proves statement (i).

Similarly one proves the second statement. We assume that π
(
us(sn, tn)

)
= 0

for a sequence sn → ∞. Hence for sn large u(sn, tn) is in our local coordinate
neighborhood of the periodic solution. We can write u(t, s) = (ϑ, z) and us(s, t) =
(ϑs, zs). Since πus = us − λ(us)X(u), with the Reeb vector field X, we have

us(sn, tn) = λ(us)X(u),
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and hence, at (sn, tn), (
ϑs
zs

)
= λ(us)

(
X1(u)
X2(u)

)
∈ R3

Since X2(ϑ, 0) = 0, we can write X2(ϑ, z) = Rz, with a matrix function R =
R(ϑ, z), so that, at (sn, tn)

zs = f(u)(ϑs + xys)Rz.

Inserting the asymptotic formula from Theorem 2.8 the exponential terms cancel,
and we find

α(sn)
[
e(tn) + r(sn, tn)

]
+ rs(sn, tn) = f(u)(ϑs + xys)R

[
e(tn) + r(sn, tn)

]
.

Recall now that α(s) → µ < 0, and r(s, t), rs(s, t), ϑs(s, t), x(s, t) → 0 as s → ∞.
We conclude µe(t∗) = 0, contradicting again e(t) 6= 0. This finishes the proof of
Theorem 5.1.

Using the generalized similarity principle we shall deduce from Theorem 5.1 the

Theorem 5.2. The sets {
z ∈ C | u(z) ∈ P

}{
z ∈ C | πu(z)

(
us(z)

)
= 0
}

consist of finitely many points.

Proof. In order to prove the first statement we argue by contradiction and assume
that there is an infinite sequence zn ∈ C such that u(zn) ∈ P . By Theorem 5.1 we
can assume that zn → z∗ ∈ C and u(z∗) ∈ P . By Darboux’s theorem there is an
open neighborhood of u(z∗) ∈ M on which we find coordinates (ϑ, x, y) = (ϑ, z) ∈
R3, in which the contact form λ is represented as

λ = dϑ + xdy,

and in which u(z∗) corresponds to the origin 0 in R3. Using the cylinder coordinates
(s, t) ∈ R × S1, the map u(s, t) =

(
ϑ(s, t), z(s, t)

)
∈ R × R2 satisfies, in our local

coordinates, the equations

zs + J(s, t)zt = 0,(85)

where J(s, t)2 = −1. This is proved as in Section 3; this time f = 1 and X(ϑ, z) =
(1, 0, 0). By assumption, we know that

z(sn, tn) = z(s∗, t∗) = 0

for a sequence (sn, tn)→ (s∗, t∗). Consequently, by the generalized similarity prin-
ciple [11], there is an open neighborhood D of (s∗, t∗) on which the solution z of the
equation is represented by z(s, t) = Φ(z)h(z), where z = s + it, Φ: D → GL(R2) is
continuous, and h : D → R2 ∼= C is holomorphic. By assumption, z∗ = s∗ + it∗ is a
cluster point of zeroes of the holomorphic function h. Therefore, h ≡ 0 and hence
z ≡ 0 on D. Consequently, u(s, t) ∈ P for all (s, t) in the open set D. We have
proved, in particular, that the set of points z = (s, t) which are cluster points of
zj satisfying u(zj) ∈ P is an open set in R× S1. It is clearly also a closed set and
hence agrees with R×S1 so that u(s, t) ∈ P for all (s, t) ∈ R×S1. This contradicts
Theorem 5.1.



THE ASYMPTOTIC BEHAVIOR OF A FINITE ENERGY PLANE 35

The second statement is proved similarly. Note that in the above local coordi-
nates the Reeb vector field X is constant, X(ϑ, z) = (1, 0, 0). Hence, the condition
0 = πus = us − λ(us)X(u) becomes, in our local coordinates (u =

(
ϑ, z)

)
, zs = 0.

Introducing ζ = zs we find, by differentiating (85) in the s-variable, that ζ solves
the equations

ζs + J(s, t)ζt + A(s, t)ζ = 0.

Moreover, ζ(sn, tn) = ζ(s∗, t∗) = 0 for a sequence (sn, tn)→ (s∗, t∗). Hence, by the
generalized similarity principle [11], ζ ≡ 0 in an open neighborhood of (s∗, t∗) = 0.
Consequently, πus(z) = 0 in an open neighborhood of z∗ ∈ C.

Arguing as before this leads to a contradiction to the second statement in The-
orem 5.1. The proof of the Theorem 5.2 is complete.
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