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THE ASYMPTOTIC BEHAVIOR OF DENSITIES RELATED
TO THE SUPREMUM OF A STABLE PROCESS

BY R. A. DONEY AND M. S. SAVOV

University of Manchester and Université Pierre et Marie Curie

If X is a stable process of index α ∈ (0,2) whose Lévy measure has
density cx−α−1 on (0,∞), and S1 = sup0<t≤1 Xt , it is known that P(S1 >

x) � Aα−1x−α as x → ∞ and P(S1 ≤ x) � Bα−1ρ−1xαρ as x ↓ 0. [Here
ρ = P(X1 > 0) and A and B are known constants.] It is also known that S1
has a continuous density, m say. The main point of this note is to show that
m(x) � Ax−(α+1) as x → ∞ and m(x) � Bxαρ−1 as x ↓ 0. Similar results
are obtained for related densities.

1. Introduction and results. This paper was motivated by the following
question which arises in connection with some problems in optimal stopping. Let
X be a strictly stable process of index α ∈ (0,2) which has positive jumps so that
its Lévy measure has density

ν(x) =
{

c+x−(α+1), x > 0,
c−|x|−(α+1), x < 0,

(1)

where c+ > 0, c− ≥ 0. Assume also that X is not a subordinator. Let τx , for x > 0,
denote the first passage time of X above level x, namely,

τx = inf{t :Xt > x}.
Then does τx have a density function? If so, how does it behave at zero and infinity?

We prefer to rephrase this in terms of the maximum process defined by St =
sups≤t Xs which we can do because of the obvious identity

P(τx > t) = P(St ≤ x) = P(S1 ≤ xt−η),

where η = 1/α, and we have used the scaling property. It is easy to check that
St has a continuous density function, mt say, and by scaling we have mt(x) =
t−ηm(x/tη) where m stands for m1, so we conclude that τx has a continuous den-
sity function hx(t) given by

hx(t) = ηxt−η−1m(xt−η).(2)

Moreover, we can read off the asymptotic behavior of hx at infinity and zero from
the asymptotic behavior of m at zero and infinity, respectively. It is not difficult to
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make a conjecture about what this behavior is since it is known from [7], Theo-
rem 4A (see also [5], Proposition 4, page 221) that

P(S1 > x) � P(X1 > x) � A

α
x−α as x → ∞,(3)

and from [7], Theorem 3A (see also Proposition 2, page 219 in [5]) that

P(S1 ≤ x) � B

αρ
xαρ as x ↓ 0.(4)

Here ρ = P(X1 > 0), and A and B are explicitly known constants which can
be expressed in terms of α,ρ, c+ and c−, and the result (4) is also valid in the
spectrally negative case when c+ = 0 < c−, α ∈ (1,2) and αρ = 1. [Recall that (3)
does not hold in this case since P(X1 > x) is exponentially small at ∞.] So the
obvious conjecture is that, in these cases,

m(x) � Ax−(α+1) as x → ∞(5)

and

m(x) � Bxαρ−1 as x ↓ 0.(6)

This question turns out to be closely related to a similar question about the density
function p̃(x), say of θ

(1)
1 where (θ

(t)
s ,0 ≤ s ≤ t) denotes the stable meander of

length t ; informally, this is the stable process conditioned to stay positive up to
time t . The following, which is the main result in this paper, confirms that these
conjectures are true.

THEOREM 1. For any strictly stable process X which is such that |X| is not a
subordinator, (6) holds and there is a constant C ∈ (0,∞) such that

p̃(x) � Cxαρ as x ↓ 0.(7)

If X also has positive jumps, (5) holds and also

p̃(x) � Aρ−1x−(α+1) as x → ∞.(8)

REMARK 2. Let f (x) = f1(x) where ft (x) denotes the density function
of Xt ; this exists, and is continuous and bounded on R because the characteris-
tic function of Xt is in L1. A great deal is known about f (see, e.g., [13], pages
87–90). In particular, it is known that f has exactly the same behavior as x → ∞
as that stated for m in (5) which is similar also to that of p̃ in (8). However, its
behavior as x ↓ 0 is quite different to those of m and p̃, and, in fact,

lim
x↓0

f (x) = D ∈ (0,∞),(9)

where the explicit value of D can be read off from (14.30) and (14.33) in [13].



318 R. A. DONEY AND M. S. SAVOV

REMARK 3. It should be noted that some of our results are already known
in the special case that α ∈ (1,2) and c− = 0, that is, the spectrally positive case.
Here in [6] the semi-explicit form of the Wiener–Hopf factorization was exploited
to show that m(x) = ∑∞

1 anx
αn−2 where the an are given explicitly; since ρ =

1−1/α, this confirms (6) in this case. Another result in [6] is an expression for the
Fourier transform of m, and this is used in [11] to show that in this case (5) also
holds.

REMARK 4. If we knew in advance that m was ultimately monotone, as x →
∞ or as x → 0, (5) and (6) would follow immediately from (3) and (4), but as we
do not have this information, we have to use a different method. Also, in contrast
to the case of X, we have no explicit knowledge of the characteristic function of S,
so our method has to be rather indirect.

REMARK 5. We can read off from these results that the asymptotic behavior
of the density of τx is given, for each fixed x ∈ (0,∞), by

hx(t) � ηBxαρt−(ρ+1) as t → ∞ and
(10)

hx(t) → Aη/xα as t ↓ 0.

2. Preliminaries on Lévy processes. In our proofs we will use several iden-
tities for stable processes, all of which are in fact special cases of results valid
for general Lévy processes. It seems worthwhile to state these results in the gen-
eral case. Therefore in this section alone, X will denote a generic Lévy process
which is not compound Poisson. S and I will be the associated supremum and in-
fimum processes, we will write L and L∗ for the local times at zero of the reflected
processes S − X and X − I , respectively, and n and n∗ will denote the character-
istic measures of the excursions away from 0 of these processes. We write ε for a
typical excursion, ζ for its lifetime and π∗(t) = n∗(ζ > t). Then

P̃t (dx) := n∗(εt ∈ dx|ζ > t) = n∗(εt ∈ dx, ζ > t)

π∗(t)
is a probability distribution which, in the stable case, coincides with that of θ

(t)
t , the

stable meander of length t , at time t . (See [5], page 234.) Our first result connects
these quantities to the distribution of St .

LEMMA 6. There is a constant, 0 < k < ∞, which depends only on the nor-
malization of L and L∗, such that, for t, x > 0,

kP (St > x) =
∫ t

0
n∗(εt−s > x, ζ > t − s)

(
b + π(s)

)
ds

(11)
+ �n∗(εt > x, ζ > t),

where � denotes the drift, b the killing rate and π(s) = n(ζ > s) the tail of the
Lévy measure of the increasing ladder time process T .



STABLE DENSITIES 319

PROOF. First we note that P(St > x) = P(Xt − It > x) by duality. Next, if
ε(r) denotes the excursion of X − I starting at time r ∈ G := {r : (X − I )r = 0},
we see that

P(Xt − It > x) = E
(
1{ε(gt )

t−gt
>x}

)
,

where gt := sup(r ≤ t : r ∈ G}. But the compensation formula gives

E
(
1{εgt

(t−gt )
>x}

) = E

(∫ t

0
dL∗(s)n∗(εt−s > x, ζ > t − s)

)

=
∫ t

0
n∗(εt−s > x, ζ > t − s)E(dL∗(s))

and we conclude by showing that

kE(dL∗(s)) = b ds + π(s) ds + �δ0(ds).(12)

To see this, note that

E

(∫ ∞
0

e−qs dL∗(s)
)

= E

(∫ ∞
0

e−qL∗−1(t) dt

)
= 1

∗(q)
,

where ∗ is the Laplace exponent of the decreasing ladder time process T ∗ =
L∗−1. But, since the Lévy measure of T is given by π(ds) = n(ζ ∈ ds),

q

∫ ∞
0

e−qs(π(s) ds + b ds + �δ0(ds)
) =

∫ ∞
0

(1 − e−qs)n(ζ ∈ ds) + b + �q

= (q),

the Laplace exponent of T . Then (12) follows by Laplace inversion and the identity
∗(q)(q) = kq (see, e.g., [5], page 166). �

We also need two renewal-type equations which involve n∗, but first we recall
that if we write

G(dt, dx) =
∫ ∞

0
P(Ts ∈ dt,Hs ∈ dx)ds

for the renewal measure in the increasing bivariate ladder process (T ,H) of X, we
have, for t > 0, x > 0,

G(dt, dx) = k′n∗(εt ∈ dx, ζ > t) dt = k′π∗(t)P̃t (dx) dt,(13)

where k′ is a constant which depends only on the choice of the normalization of the
local time L∗ of X−I . This fact comes from Theorem 5 of Alili and Chaumont [2],
and the following result is also due to Alili and Chaumont.



320 R. A. DONEY AND M. S. SAVOV

LEMMA 7. For t, x > 0 we have

tG(dt, dx) =
∫ t

u=0

∫ x

z=0
G(du,dz)Pz(Xt−u ∈ dx)(14)

and

xG(dt, dx) =
∫ t

u=0

∫ x

z=0
G(du,dz)

x − z

t − u
Pz(Xt−u ∈ dx).(15)

The first of these statements is the obvious analogue of a result for random walks
in [4], and, in fact, (14) is stated and proved in [1], the preliminary version of [2].
However it does not appear in [2] which does, however, contain (15) as (4.9).
Unfortunately no proof is given there, but a proof can be found in [3].

3. Proof of the small time results. Throughout this section, X will be a stable
process, so that the ladder time processes T and T ∗ are stable subordinators of
index ρ and (1 − ρ), respectively, and we will choose a normalization of the local
times so that their exponents are given by (q) = qρ and ∗(q) = q1−ρ ; this
choice entails that n(ζ > t) = π(t) = t−ρ/�(1 − ρ) and n∗(ζ > t) = π∗(t) =
tρ−1/�(ρ). Note also that � = b = 0, and the constant k in Lemma 6 is equal
to 1. Recall that η = 1/α, and that the density ft of Xt is bounded and continuous
on R, and has the scaling property

ft (x) = t−ηf (xt−η) where f = f1.(16)

LEMMA 8. θ
(t)
t has a continuous and bounded density, p̃t (x) say, G(dt, dx)

has a continuous bivariate density g(t, x), and these are related by

g(t, x) = k′′tρ−1p̃t (x) for t > 0, x > 0.(17)

Furthermore, m satisfies

m(x) = sinρπ

π

∫ 1

0

p̃s(x)

s1−ρ(1 − s)ρ
ds = sinρπ

π

∫ 1

0

s−ηp̃(xs−η)

s1−ρ(1 − s)ρ
ds,(18)

where we have written p̃ for p̃1.

PROOF. Note first that if we write σ0 = inf{t :Xt < 0} and introduce the
measure, Qy(Xt ∈ dx) := Py(Xt ∈ dx, It > 0) = Py(Xt ∈ dx,σ0 > t), then, for
x, y > 0,

Py(Xt ∈ dx,σ0 ≤ t) =
∫ t

0

∫ 0

−∞
Py(σ0 ∈ ds,Xσ0 ∈ dz)Pz(Xt−s ∈ dx)

and we see that Qy(Xt ∈ ·) has a continuous and bounded density function given
by

qt (y, x) = ft (x − y) − f̃t (y, x),
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where

f̃t (y, x) =
∫ t

0

∫ 0

−∞
Py(σ0 ∈ ds,Xσ0 ∈ dz)ft−s(x − z).

Then using the Markov property of the meander and the fact that, given εt = y,
εt+s has law Qy(Xs ∈ ·), we see that

n∗(εt ∈ dx, ζ > t) =
∫ ∞

0
n∗(εt/2 ∈ dy, ζ > t/2)qt/2(y, x) dx(19)

and the existence, continuity and boundedness of p̃t (·) follows. (This fact is also
contained in [12], Theorem 6.) Then (17) follows from (13). Of course p̃ also has
the scaling property (16), so specializing Lemma 6 to the stable context and using
the identity �(ρ)�(1 − ρ) = π/ sinρπ gives (18). �

REMARK 9. Alternatively, (18) could be deduced from [5], Proposition 16,
page 234.

We start by showing that we can deduce the behavior of p̃ at zero from the fact
that it is bounded.

PROPOSITION 10. (7) holds, viz. p̃(x) � Cxαρ as x ↓ 0.

PROOF. First we write κ(x) for κ1(x) with κt (x) = π∗(t)p̃t (x) the density of
n∗(εt ∈ dx, ζ > t), and note that it suffices to show that

lim
x↓0

x−αρκ(x) ∈ (0,∞).(20)

Next, we have seen that Qy(Xt ∈ dx) = Py(Xt ∈ dx, It > 0) = qt (y, x) dx for
x, y > 0, and by duality (specifically, [5], Theorem 5, page 47), we deduce that
qt (y, x) = q∗

t (x, y) where

q∗
t (x, y) dy = P−x(−Xt ∈ dy,St < 0).

Using this in the obvious identity

κ2(x) =
∫ ∞

0
κ(y)q1(y, x) dy

gives

κ2(x) =
∫ ∞

0
κ(y)q∗

1 (x, y) dy ≤ c

∫ ∞
0

q∗
1 (x, y) dy

= cP−x(S1 < 0) = cP0(S1 < x) � cxαρ.

(Here, and later, c denotes a generic positive constant whose value can change from
line to line.) Then, for example, from [8], we recall that the law of “−X starting at
x > 0 and conditioned to stay positive” has, at time 1, density

p
∗↑
1 (x, y) := q∗

1 (x, y)
yαρ

xαρ
.
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Thus if we write g(y) = κ(y)y−αρ which, by the previous result and scaling, is
bounded, we see that in the obvious notation,

κ2(x)x−αρ =
∫ ∞

0
y−αρκ(y)yαρq∗

1 (x, y)x−αρ dy

=
∫ ∞

0
g(y)p

∗↑
1 (x, y) dy

→
∫ ∞

0
g(y)p

∗↑
1 (y) dy ∈ (0,∞),

where p
∗↑
1 (·) denotes the density of 11 “−X starting at 0 and conditioned to stay

positive at time 1,” and the convergence follows from a result which is stated in [9]
and proved in [10]. By scaling, we deduce (20) and then (7). �

REMARK 11. Theorem 6 of [12] gives a completely different proof of Propo-
sition 10, essentially using random walk approximation.

REMARK 12. Since it is known that the density function of X, starting from 0
and conditioned to stay positive, is given at time 1 by p↑(x) = cxα(1−ρ)κ(x) (see,
e.g., [8]), we deduce from this, and later from Proposition 17, that

p
↑
1 (x) � cxα as x ↓ 0 and p

↑
1 (x) � cx−(αρ+1) as x → ∞.(21)

In particular we note that p
↑
1 and p

∗↑
1 have the same asymptotic behavior at 0, up

to multiplication by a constant.

PROPOSITION 13. (6) holds, viz. m(x) � Bxαρ−1 as x ↓ 0.

PROOF. Write s−η = z in (18) and then zx = y to get

m(x) = α sinρπ

π

∫ ∞
1

p̃(xz)

(zα − 1)ρ
dz = αxαρ−1 sinρπ

π

∫ ∞
x

p̃(y)

(yα − xα)ρ
dy.(22)

Since we have seen that p̃ is bounded,

lim
δ↓0

∫ (1+δ)x

x

p̃(y) dy

(yα − xα)ρ
≤ c lim

δ↓0

∫ (1+δ)x

x

dy

(yα − xα)ρ

= cx1−αρ lim
δ↓0

∫ 1+δ

1

dz

(zα − 1)ρ
= 0,

as the integral is finite because ρ < 1. Moreover on ((1 + δ)x,∞), (yα − xα)−ρ ≤
y−αρ(1 − (1 + δ)−α)−ρ , and, since we know y−αρp̃(y) is integrable on (0,∞) by
Proposition 10, for any δ > 0, dominated convergence gives∫ ∞

(1+δ)x

p̃(y)

(yα − xα)ρ
dy →

∫ ∞
0

y−αρp̃(y) dy < ∞.

Thus limx↓0 x1−αρm(x) ∈ (0,∞), and since (4) holds, the limit must be B . �



STABLE DENSITIES 323

REMARK 14. It is surprising that the result of Proposition 10 only plays a rôle
in our proof of Proposition 13 in the case αρ = 1. However it is clear from (18) that
the asymptotic behavior of m and p̃ at infinity are closely linked, and we exploit
this in the next section.

4. Proof of the large time results. The first step uses the following obvious
result:

LEMMA 15. Put τ = inf{t : εt > 1}; then for x > 1

κ(x) =
∫ 1

u=0

∫ ∞
y=1

n∗(τ ∈ du, ετ ∈ dy)q1−u(y, x)(23)

≤
∫ 1

u=0

∫ ∞
y=1

n∗(τ ∈ du, ετ ∈ dy)f1−u(x − y).(24)

It does not seem possible to deduce the asymptotic behavior of κ from (23), but
from (24) we can get a useful upper bound.

PROPOSITION 16. We have

lim
x→∞ supxα+1κ(x) < ∞.(25)

PROOF. Recall that

lim
x→∞xα+1f (x) = A.(26)

Write the integral in (24) as I1 + I2, and note that

xα+1I1 =
∫ 1

u=0

∫
|y−x|>x/2,y>1

(1 − u)n∗(τ ∈ du, ετ ∈ dy)

×
(

x

(1 − u)η

)α+1

f

(
(x − y)

(1 − u)η

)

→ A

∫ 1

u=0

∫
y>1

(1 − u)n∗(τ ∈ du, ετ ∈ dy)

= A

∫ 1

u=0
(1 − u)n∗(τ ∈ du) < ∞,

where we have used (26) and dominated convergence. Also when x is sufficiently
large,

xα+1I2 =
∫ 1

u=0

∫ 3x/2

x/2
(1 − u)−ηxα+1n∗(τ ∈ du, ετ ∈ dy)f

(
(x − y)

(1 − u)η

)

=
∫ 1

u=0

∫ x/2

−x/2
(1 − u)−ηxα+1n∗(τ ∈ du, ετ ∈ x − dz)f

(
z

(1 − u)η

)
.
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But if we put ν(y) = ∫ ∞
y ν(z) dz, then for all sufficiently large x,

xα+1 sup
0<w<1,−x/2<z<x/2

n∗(ετ ∈ x − dz|ετ− = w,τ = u)

= xα+1 sup
0<w<1,−x/2<z<x/2

ν(x − z − w)dz

ν(1 − w)
≤ c dz.

So it follows that

lim sup
x→∞

xα+1I2 ≤ c

∫ 1

u=0

∫ ∞
−∞

(1 − u)−ηn∗(τ ∈ du)f

(
z

(1 − u)η

)
dz

= c

∫ 1

u=0

∫ ∞
−∞

n∗(τ ∈ du)f (y) dy = cn∗(τ ≤ 1) < ∞
and (25) holds. �

To exploit this we specialize (15) to get the following integral equation for g:

xg(t, x) =
∫ t

u=0

∫ x

z=0
g(u, z)

x − z

t − u
ft−u(x − z) dudz.(27)

We are now in a position to establish the behavior of m(x) for large x.

PROPOSITION 17. If X is any strictly stable process which has positive jumps
and is not a subordinator, then (5) and (8) hold, viz. m(x) � ρp̃(x) � Ax−(α+1)

as x → ∞.

PROOF. Using (17) we can rewrite (27) with t = 1 as

xα+1p̃(x) = xα+1
∫ 1

u=0

∫ x

z=0
uρ−1p̃u(z)

x − z

x(1 − u)
f1−u(x − z) dudz

(28)
:= J1 + J2,

where, by scaling,

J1 =
∫ 1

u=0

∫ x/2

z=0
uρ−1p̃u(z)

(
1 − z

x

)[
x

(1 − u)η

]α+1

f
(
(x − z)(1 − u)−η)

dudz.

Using (26) and dominated convergence gives

lim
x→∞J1 = A

∫ 1

u=0

∫ ∞
z=0

uρ−1p̃u(z) dudz = A/ρ.

Using the scaling property of p̃ and a change of variable, we can write

J2 = 1

x

∫ 1

u=0

∫ x/2

y=0
uρ

[
x

uη

]α+1

p

(
x − y

uη

)
(1 − u)−1−ηyf

(
y(1 − u)−η)

dudy.
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Now it follows from (25) and the identity, κ(x) = π∗(1)p̃(x), that the expression
[ x
uη ]α+1p̃(

x−y
uη ) is bounded above on the range of integration by a constant for all

sufficiently large x, so that for such x,

J2 ≤ c

x

∫ 1

u=0

∫ x/2

y=0
uρ(1 − u)−1−ηyf

(
y(1 − u)−η)

dudy

= c

x

∫ 1

u=0

∫ x/2(1−u)η

z=0
uρ(1 − u)η−1zf (z) dudz.

Since
∫ x

0 zf (z) dz is O(1),O(logx), or O(x1−α) according as α > 1, α = 1, or
α < 1, we check easily that limx→∞ J2 = 0, and hence that limx→∞ xα+1p̃(x) =
A/ρ. Putting this into (18) we get

lim
x→∞xα+1m(x) = A

ρ

sinρπ

π

∫ 1

0

sρds

(1 − s)ρ
= A. �

REMARK 18. The reader might like to check that the proof above fails if we
use the density version of the more obvious identity (14) rather than (15).

5. Derivatives. It is not difficult to deduce from the known properties of f

that p̃ and m are differentiable k times and that these derivatives satisfy analogues
of (18) and (28); it is also known that

f (k)(x) � Akx
−(α+k+1) as x → ∞,(29)

where

Ak = (−)k�(α + 1 + k)A

�(α + 1)
.(30)

This suggests that the derivatives of m and p̃ have asymptotic behaviors which are
consistent with the results of Theorem 1. In fact, we have been able to prove such
results for large x, but have not been able to settle the question for small x. (Details
of these results can be supplied by the authors on request.)
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