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THE ASYMPTOTIC BEHAVIOR OF GAS IN AN

/j-DIMENSIONAL POROUS MEDIUM1

BY

AVNER FRIEDMAN AND SHOSHANA KAMIN

Abstract. Consider the flow of gas in an «-dimensional porous medium with

initial density u0(x) > 0. The density u(x, l) then satisfies the nonlinear degenerate

parabolic equation u, = Awm where m > 1 is a physical constant. Assuming that

I = S "o(x)<tx < oo it is proved that u(x, t) behaves asymptotically, as Z -» oo,

like the special (explicitly given) solution V(\x\, t) which is invariant by similarity

transformations and which takes the initial values 8(x)I ($(x) = the Dirac mea-

sure) in the distribution sense.

1. Statement of the main result. Consider the Cauchy problem for u(x, t):

u,=Aum       (x E R",t >0), (1.1)

u(x, 0) = u0(x)       (x E R"). (1.2)

The function u represents the density of a gas in a porous medium and m is a

physical constant, m > 1. We assume that

u0(x) is continuous,    u0(x) > 0,     u0(x) ^ 0,    u0(x) < M,

u0 e Ll(R") n L2(7T)  (M constant), (1.3)

and set

I = f u0(x)dx. (1.4)
J R"

By a weak solution of (1.1), (1.2) we mean a function u satisfying, for any T > 0,

fT f  \(u(x,t))2+\Vxum(x,t)\2]dxdt<<*
J0       JRn<- J

and

fj iRh it ~ v-"m 'v J)dx dt+fRMx)f{x)dx=°

for any continuously differentiable function / with compact support in 7? " X [0, T).

It is well known [14], [11] that given u0 satisfying (1.3), (1.4) there exists a unique

generalized solution « of (1.1), (1.2) and

f  u(x, t)dx = 7   for all z > 0; (1.5)
JRn

Received by the editors August 27, 1979.
AMS (MOS) subject classifications (1970). Primary 35K55, 76S05; Secondary 35K15.
'This work is partially supported by National Science Foundation Grant MCS-7817204 and AFOSR

Grant 78-3602.
© 1980 American Mathematical Society

0002-9947/80/0000-0 565/$04.2 S

551

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



552 AVNER FRIEDMAN AND SHOSHANA KAMIN

a very general uniqueness theorem was recently proved by Brezis and Crandall [4].

By a recent result of Caffarelli and Friedman [5], [6] u(x, t) is Holder continuous in

(x, t) uniformly in any strip t > 8(8 > 0).

In this paper we are interested in the asymptotic behavior of u(x, t) as / —> oo. To

state the main result we first introduce the similarity solution VL of Barenblatt and

Prattle [13]. Let

G(s)=[{ß2-c2s2)+]i/(m-,)

where

, _ l(m - 1) ,_1_
/ =

2/71« m — 1 + 2/az

and ß is a positive constant such that fR* G(\x\)dx = 1. Then, for any L > 0,

1
^(r.O-L'A—>_ C?(I^),        r-M. (1.6)

vL-UYdm

is a solution of

_9_
8Z

satisfying  VL(r,0) = 8(x)Lx/im~X} (8(x) = the Dirac measure) in the sense of

distributions. As easily verified,

f   VL(r,t)dx = Lx/(m~x\ (1.7)
J Rn

We can now state the main result of the paper.

Theorem 1.1. As t -^ oo,

t<\u(x,t)-VLo(r,t)\-*0 (1.8)

uniformly with respect to x in any set \x\ < Ct'/n (C > 0), where

L0=7—'. (1.9)

For n = 1 this theorem was proved by Kamin (Kamenomostkaya) [9], [10]. The

proof for n > 1 given in this paper employs a different approach than in [9], [10]

and exploits the continuity of the solution u; both methods use similarity transfor-

mations.

For n = 1 Peletier [12] and Van Duyan and Peletier [7] studied the asymptotic

behavior in a half-plane x > 0 and in the whole space when u0(x) — A as x —» oo,

uQ(x) — B as x ^ -co; A > 0, 77 > 0. For a bounded domain ß in R", Aronson

and Peletier [1] have recently obtained the asymptotic behavior of the solution in

{(x, t) E ß X (0, oo)}; they assume that u(x, t) = 0 if x E 9ß. Both the result and

method are different from those obtained in the present work.

To facilitate the reading of the proof, which takes the rest of the paper, we have

broken it into several parts. In §2 we derive some properties of the functions VL. In

§3 we study the function L(t), where L(f) is defined as the largest value of L such

that, for some t > 0,

VL(r, t + t) < u(x, t)    (for all x E R").
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GAS IN AN «-DIMENSIONAL POROUS MEDIUM 553

In §4 we prove Theorem 1.1 in case u0(x) has compact support and, finally, in §5

we give the proof in the general case.

2. Auxiliary lemmas on VL. Notice that

Ll/ntl/n

support of the function r —» VL(r, t) is given by r <-j-¡r—. (2.1)
c / p

Lemma 2.1. For fixed L > 0, t >0,ife>0is sufficiently small then

Ll/n(l/n

VL(r, t - e)> VL(r, t)   for 0 < r < 0-
c/ß    '

jl/nA/n jl/nA/n

VL(r, t-e)< VL(r, i)   for O^JJ- < r < —^-

where

0 = ec -> 0O   as e -» 0;        0O = V (m - 1)1 . (2.2)

Observe that

0 < 0O < 1. (2.3)

Proof. We solve, for small e, the equation in r:

VL(r, t-e)= VL(r, t). (2.4)

Thus

/,-ey(m-D /       r      \ = I r \

I     t     ) \L'/"t'/") \ L'/"(t - e)'/n J

By the mean value theorem the right-hand side is equal to

\L""t"n) + TV"\(t - e)'/n ~ 1^") \L'/nt'/n>

where t — e < t < t; also

(Gm~x)'(s) = -2c2s,

I t  _   eW(m-l)    ^ ¡,m  _   1)

1 1    _        1   /.      it    \'/»\_1_   l/n

(,_ e)'/«      t'/n ti/»\       \t-t)    )~ t>/»     t   e'

Using these facts in (2.5), we get

Ll/n(l/n } L2l/nt2l/n        tt \Ll'ntl'n)

so that

,2.2
l        JR2 cV     \ 2c2/-2

(2.5)
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554 AVNER FRIEDMAN AND SHOSHANA KAMIN

It follows that the solution r of (2.4) is given by

ffÊL'/ntt/n
c

where

/  «(«z-D  y/2

E      \n(m- 1) + 2) °

and the proof of the lemma follows.

Lemma 2.2. For any x° E R " and t real,

t'\ VL(\ x - x°\,t + t) - VL(\x\,t)\ -»0   astuce, (2.6)

uniformly with respect to x E R".

The proof is immediate from (1.6).

Choose a point v° ER" such that u0(y°) > 0; then, for some 80 > 0, r/0 > 0,

u0(x) > 80   if \x - v°| <■*)(,.

But then we can find L, > 0, t, > 0 such that

u0(x) > VL¡(\x - y°\, tx)    for all x E R". (2.7)

Indeed, we simply have to choose

Lxtx = cx,       cx sufficiently small,

and then choose L, sufficiently small (depending on cx).

If we prove that

t'\u(x, t) - VLo(\x - />|,r)|_>0   asz->oo, (2.8)

uniformly in x E R" in any set |x| < Ct'/", then, in view of Lemma 2.2, the

assertion of Theorem 1.1 would follow.

For simplicity of notation we fix the origin at the point v°. Thus (2.7) becomes

u0(x) > VL¡(r, tx),        r=\x\, (2.9)

and the assertion (2.8) reduces to the assertion (1.8). From (2.9) it follows, by

comparison, that

u(x, t) > VLi(r, t + t,)        (x E R", t > 0). (2.10)

From now on, until the end of §4, we impose the restriction:

u0 has compact support. (2.11)

We can then find L2 > 0, t2 > 0 such that

"oW < VL2(r> T2)    for all x E R". (2.12)

Indeed, we simply take first L2t2 = c2 where c2 is sufficiently large and then choose

L2 to be sufficiently large, depending on c2.

From (2.12), we deduce that

u(x, t) < VLï(r, t + t2)       (x E R",t > 0). (2.13)
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Suppose for some t0 > 0, t real, t0 + t > 0,

u(x, t0) = VL(r, t0 + t). (2.14)

Then, by uniqueness,

u(x, t) = VL(r, t + t)    if t > t0.

Recalling Lemma 2.2, the assertion of Theorem 1.1 then follows. Thus, in order to

prove Theorem 1.1 (under the condition (2.11)), we may assume, without loss of

generality, that

for any L > 0,    t real,    t > 0,   t + t > 0,

u(x, t) 2É VL(r, t + t)    (x E R"). (2.15)

For any fixed / > 0, denote by 2, the set of all points (L, t) such that L > 0,

t > 0, and

u(x, t) > VL(r, t + t), (2.16)

and set

L(t) =    sup     L. (2.17)
(L.-r)ez,

3. Properties of L(t).

Lemma 3.1. There exists a point (L*, t*) E 2, such that L(t) = L* and

t* < C(t + 1); (3.1)

C is a constant independent of t.

Proof. The inequality (2.16) implies

f   VL(r, t + t)dx <   f   u(x, t)dx = 7
JRn JRn

where (1.5) was used. Recalling (1.7) we conclude that L < Im~l. From (2.10) we

also deduce that L > Lx. Thus, in seeking to find sup L in (2.17) we may restrict

the L to lie in the interval

Lx < L < 7m"'. (3.2)

In view of (2.16) and (3.2),

support of x -» u(x, t) contains the set r < Cx(t + t) '"

and in view of (2.13),

support of x —> u(x, t) is contained in the set r < C2(t + t2)''";

both constants C,, C2 are positive and independent of t. It follows that

t + t < (C2/Cx)n/'(t + t2),   i.e.,   t <C(t + 1)       (C > 0).

Thus, in computing sup L in (2.17) we may restrict ourselves to (L, t) E 2,, where

% = 2r n {L, < L < Im~x, 0 < t < C(t + 1)}.

Since 2, is a compact set, it follows that

sup L = max L = L*,
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556 AVNER FRIEDMAN AND SHOSHANA KAMIN

with (L*, t*) E 2, rendering the maximum; this completes the proof.

Lemma 3.2. L(t) is monotone decreasing in t, and there exists a sequence /,|oo such

that

L(tj) < L(tJ+x)   for all j. (3.3)

Proof. Since (2.13) for a fixed / implies the same inequality for / replaced by t',

t' > t, it follows that L(t') < L(t). To prove (3.3), we fix point t = t0 and construct

a point tx > t0 such that

L(t0) < L(tx); (3.4)

this would establish (3.3).

We have

u(x, t0) > VL(r, t0 + t)    where L = L(t0). (3.5)

We claim: there exists a £ > 0 such that

u(x, t0 + è)^ VL(r, t0 + £+t)   for r < ( ß/c)L</"(t0 + t + Ç)'/n.    (3.6)

Indeed, otherwise

u(x, t) = VL(r, t + t)   whenever / > t0, VL > 0. (3.7)

Recalling (2.15) we conclude that, for some x° E R", 8 > 0,

u(x, t0) > 0, VL(r, t0 + t) = 0    if |jc — x°\ < 8.

But then

u(x, t0) > VLj[\x - x\ t0 + t,) (3.8)

for some L+ > 0, t„ > 0.

Choose now a point (x, t) such that

\x\=(ß/c)L'/n(t+t)'/n

(i.e., x lies on the boundary of the support x —» VL(r, t + t)) and

\x-x0\<(ß/c)Ll/"(t' + tt)'/n

(i.e.,  VL (\x — x°\, t + tt) > 0). By (3.8) and comparison we then deduce that

u(x, t) > 0, whereas from (3.7) we get that u(x, t) — 0, a contradiction.

Having proved (3.6) we can now write

u(x, t0 + S) 5É VL(r, t0 + i+t)    ifr< (0ß/c)L'/"(to + t + |)'/n = rx    (3.9)

if 0 < 0 < 1, 1 - 0~ sufficiently small.

We shall compare u(x, t + Ç) with VL(r, t + t + |) for r < rx, t > t0. Notice that

VL(r, t + t) > 0    if r </-,;

hence also u is positive. We therefore have, in the classical sense,

n-A«-,     (vL), = HvL)m-

It is easily seen that the function w = u — VL then satisfies in the cylinder, r < rx,

t >t0,

wt = aàw + 2 b¡wx + cw (3.10)
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for some smooth coefficients a, b¡, c; a > 0. Since w > 0 in the cylinder, the strong

maximum principle implies that either

w(x, t) > 0   if |x| <rx,t> t0,

or else w = 0; the second possibility is ruled out by (3.9). Thus, for any 0 < 0X < 1

and for any r¡ > £ (r/ - | small enough)

u(x, t0 + y)> VL(r, t0+ t + r,)    ifr<0x- (ß/c)L'/"(t0 + t + V)'/n.

(3.11)

By Lemma 2.1,

VL(r, t0 + t + 71)> VL(r, t0 + t + r, - e)    if r > 0e ■ ( ß/c)L'/"(t0 + t + r,)'/n

where (7 -» 0O, 0 < 0O < 1. On the other hand,

I VL(r> h + t + tj) - VL(r, t0 + t + tj - e)|- o(l) ->0    if e-*0,

uniformly in r. Taking 0X > 0O and choosing e sufficiently small (depending on £, r/)

we conclude, using (3.11), that

u(x, f,, + t/) > VL(x, t0 + t + r/ - e)

in a region r < R containing the support of the function

r -» VL(r, t0 + t + T) - e).

But then, if L' > L and L' — L is sufficiently small,

u(x, i0 + tj) > KL.(/-, Z0 + t + T) - e).

It follows that

L(Z0 + 7,) > L > L = L(Z0).

Setting f, = /„ + r/, (3.4) follows.

4. Proof of Theorem 1.1 for z<0 having compact support. Consider the one-parame-

ter family of functions

uk(x, t) = k"u(kx, kn/'t),       k > 1. (4.1)

From (2.13) we deduce that

uk(x, t) < k"VL[[kx, k"/'t + t2) = VL2(r, t + t2/kn"). (4.2)

Therefore, for any 8 > 0,

uk(x, t) < Q        (x E Rn,t >8,k > 1) (4.3)

where Cs is a constant depending on 8.

Applying the continuity result of Caffarelli and Friedman [5], [6] we deduce that

the uk(k, t) are equicontinuous in (x, i)£Ä"x[S, oo),     for k > 1.     (4.4)

Hence from any sequence k*^oo we can extract a subsequence k¡ such that, for any

8 > 0,

uk(x, t) -» w(x, t) uniformly in (x, t) in compact subsets of R" X [ô, oo);    (4.5)

w, the limit function, may a priori depend on the sequence.
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By the energy inequality [14], [9] for (1.1),

f    f  \V(uk)m\2 dx dt <C    (C constant).
Js   J R„

Hence,

Vuki -^Vtf weakly in L2oc[Ä" X (0, oo)].

Since each uk is a generalized solution, we deduce that also

w is a generalized solution. (4.6)

Define

We have

and

Hence

where

L0 = lim  L(t). (4.7)
Í-.O0

uk(x, t) = k"u(kx, kn/'t)

u(x, t) > VUl)(r, t + t,),       t, <Ct(t > 1).

uk(x, t) > knVak^{kr, kn'lt + tk¡) (4.8)

tk.    <- tkn/l.    <    Ct.

For each t there is a subsequence k¡, of k¡ for which

Taking k = kr ^ oo in (4.8) and using (4.5), (4.7), we get

w(x, t) > VLo(r, t + t,). (4.9)

Lemma 4.1. For any t > 0,

w(x, t) = VLo(r, t + tt). (4.10)

Proof. Suppose otherwise; then for some t > 0,

w(x, t) 5É VLo(r, t + f,)    for x E R".

Proceeding as in Lemma 3.2 (recall that w is a solution of (1.1)) we find that for

some r/ > 0 and for sufficiently small e, 0 < e < r/,

w(x, t + tj) > V¿(r, t + f, + T) — e)    on supp V¿,

for some L > L0. Recalling (4.5) we deduce that

uKfx, t + r,) > VL(r, t + f, + r, - e)

if k¡ is sufficiently large. Hence

L(kr/l(t + -n))>£

and, consequently, also L0 > L, a contradiction.
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Lemma 4.2. f, = 0.

Proof. Since w is a generalized solution, the same is true of the function

(*> 0 -* Vgtj, t + tt).

Since also

(x, t) -» VLo(r, t + ts)        (8 > 0)

is a solution, and both solutions agree on / = 8, it follows that they agree for all

t > 8. Hence f, = ts if t > 8; thus f, = const = t*.

Next, by (2.10),

uk(x, t) = k"u(kx, kn"t) > knVL¡(kr, kn'h + t,)

- VLx(r, t + tx/k"/').

Taking x = 0, t = 8 we get

1*4(0, 8) > VLt(Q, 8 + tx/kn/l) > ß2/(m-X)/28'

if k is sufficiently large. On the other hand

«*.(0,ó-)-W(0,ó*)- VLo(0,8 + t*).

Therefore

VLo(0, 8 + t*) > ß2/(m-X)/28'.

Taking 8-»0we deduce that t* must be equal to zero.

We have proved so far that

uki(x,t)-*VLo(r,t) (4.11)

uniformly in (x, t) in compact subsets of R" X (0, oo). Since the supports of the

functions

x -> uk(x, t)

are uniformly bounded, by (2.13), we conclude that

f   uk(x,t)dx^f    VL(r,t)dx.
JR" •> R"

Observing that

f  uk(x, t)dx = kn f  u(kx, kn/lt)dx = I,
JRn JRn

the assertion (1.9) follows. Thus the limit in (4.11) is independent of the sequence

k* that we have started with (just before (4.5)). It follows that

uk(x, t) -» VLo(r, t)    ask^ oo, (4.12)

where the convergence is uniform in (x, t) in compact subsets of R" X (0, oo); in

view of (2.13), the convergence is in fact uniform in (x, t) E R" X [8, oo), for any

Ô > 0.

Taking z = 1 in (4.12) we deduce that, as k —» oo,

knu(kx, kn/l) - VL (r, 1) -> 0   uniformly in x E R",

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



560 AVNER FRIEDMAN AND SHOSHANA KAMIN

or

k"[u(kx, kn'1) - VLo(kr, *"/')] -»0

uniformly in x E R". Replacing kx by x and setting t = kn/l, the assertion (1.8)

follows. This completes the proof of Theorem 1.1 in case u0 has compact support.

5. Proof of Theorem  1.1. We shall now remove the restriction (2.11). The

following estimate due to Benilan [3] and Veron [15] will be needed:

Lemma 5.1. There exists a positive constant C such that, for any nonnegative initial

data u0in LX(R"),

21/n

(5.1)

For any N = 1, 2, ... , let u"(x) be an initial data satisfying (1.3), such that

Uq(x) = u0(x)   if |jc| < N,

u£(x) =0    if |jc| > N + I,

u£(x) < u0(x)   if N < x < N + 1.

Denote by uN(x, t) the solution of (1.1), (1.2) corresponding to u* and set

uj/(x, t) = k"uN(kx, kn/'t),

IN=f  u»(x)dx.
JR"

Then IN —> 7.

By Lemma 5.1,

M,(*,z)<(C/z')72'/". (5.2)

Hence, by [5], [6], the uk are equicontinuous in compact subsets of R" X (0, oo). It

follows that for any given sequence k*\oo there exists a subsequence k¡ such that

uk(x, t) —* w(x, t) uniformly in compact subsets of Rn X (0, oo);       (5.3)

the function w may a priori depend on the sequence.

By what we have proved in §4, for any N,

ukN(x, t) -* vLy, t)

uniformly in compact subsets of R " X (0, oo), where

i    = (I \m~x
^N \1N)

Since u > uN, we also have uk > uk , so that

w(x, t) > VLN(r, t).

Taking N —> oo we find that

w(x, t) > VLo(r, t) (5.4)

where L0 is defined by ( 1.9).

sup   u(x, t) < —- / u0(x)dx
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From (5.3) we obtain, using Fatou's lemma,

I   w(x, t)dx < lim J   uk(x, i)dx = I;
J R" •>R"    '

consequently,

f   [w(x, t) - VLo(r, t)]dx < I - L?-x = 0.
J Rn

Comparing with (5.4) it follows that

w(x, t) = VLo(r, t).

We deduce that the entire family uk is convergent to the same limit function,

namely VL .

We have thus proved that

uk(x, t) = k"u(kx, k"/'t) ^ VLo(r, t)

uniformly in compact subsets of R " X (0, oo).

Choosing t = 1 and replacing kx by x, the assertion (1.8) follows.

Remark 1. The method of proof of Theorem 1.1 can be used to prove similar

results for other equations. We illustrate this in the case of the heat equation

u, = Am inR" X (0, oo)

with the Cauchy data

u(x, 0) = u0(x)       (x E R"),

assuming that

u0(x) is continuous,   u0(x) ^ 0,

0 « u0(x) < C0e"|x|2    (for some C0 > 0, a > 0).

We shall show that, as z —> oo,

,„/2 u(x, t)-^L-e-W2/4r
(4nt)n/2

0 (5.5)

uniformly in x, \x\2 < Ct (for any C > 0), where

A) = I    u0(x)dx.
Jon' R"

(This result, for any u0 E L (R"), can of course be proved directly from the

formula

(4ttz)

We define

"(*' ') = 7-7^2- Í  e-{x-y]2/*\(y)dy)
(4irt) '   JR'' J

and set

(4irt)n/2

L(t) =     inf      L
(L,r)e2,
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where 2, consists of all pairs (L, t) such that L > 0, t > 0,

u(x, t) < VL(r, t + t)       (x E Rn).

Then L(t) is strictly increasing (assuming (2.15)); we use here an analog of Lemma

2.1, namely, if

VL(r, t + e) = VL(r, t)

then

r = rt -> (2«t)1/2    ase^O.

Representing u(x, t) in terms of the fundamental solution and the initial data, we

find that

u(x, t) > (c/t)e-ßW2   if t > 1        (c > 0, ß > 0).

We now define

uk(x, t) = k"u(kx, k2t)

and continue as in the preceding proof.

Remark 2. For the equation (1.1) with (« — 2)/« < m < 1 the assertion (1.5) is

still valid. Furthermore, P. Benilan (oral communication) proved a uniform

Lipschitz continuity in any interval (8, oo), 8 > 0, with coefficient depending on C,

where \\u0\\L < C. Defining VL(r, t) as in (1.6), but with c2 replaced by — c2, we

see that the support of x —» VL(r, t) is all of R". The method of Remark 1 extends

with minor changes to the present case, showing that (1.8) is valid.

The same procedure can be applied to nonlinear parabolic equations, such as

u, = auxx + ß\uxx\        (a>\ß\>0)

studied in [8], [2]; similarity solutions are constructed in [2].
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