The asymptotic behavior of least pseudo-Anosov dilatations

CHIA-YEN TSAI

For a surface *S* with *n* marked points and fixed genus $g \ge 2$, we prove that the logarithm of the minimal dilatation of a pseudo-Anosov homeomorphism of *S* is on the order of $(\log n)/n$. This is in contrast with the cases of genus zero or one where the order is 1/n.

37E30; 57M99, 30F60

1 Introduction

Let $S = S_{g,n}$ be an orientable surface with genus g and n marked points. The *mapping class group* of S is defined to be the group of homotopy classes of orientation preserving homeomorphisms of S. We denote it by Mod(S). Given a pseudo-Anosov element $f \in Mod(S)$, let $\lambda(f)$ denote the *dilatation* of f (see Section 2.1). We define

$$\mathcal{L}(S_{g,n}) := \{ \log \lambda(f) \mid f \in \operatorname{Mod}(S_{g,n}) \text{ pseudo-Anosov} \}.$$

This is precisely the length spectrum of the moduli space $\mathcal{M}_{g,n}$ of Riemann surfaces of genus g with n marked points with respect to the Teichmuller metric; see Ivanov [8]. There is a shortest closed geodesic and we denote its length by

$$l_{g,n} = \min\{\log \lambda(f) \mid f \in Mod(S_{g,n}) \text{ pseudo-Anosov}\}.$$

Our main theorem is the following:

Theorem 1.1 For any fixed $g \ge 2$, there is a constant $c_g \ge 1$ depending on g such that

$$\frac{\log n}{c_g n} < l_{g,n} < \frac{c_g \log n}{n},$$

for all $n \ge 3$.

To contrast with known results, recall that in [13] Penner proves that for 2g - 2 + n > 0,

$$l_{g,n} \ge \frac{\log 2}{12g - 12 + 4n},$$

Published: 26 May 2009

and for closed surfaces with genus $g \ge 2$,

$$\frac{\log 2}{12g - 12} \le l_{g,0} \le \frac{\log 11}{g}.$$

The bounds on $l_{g,0}$ have been improved by a number of authors; see Bauer [1], McMullen [10], Minakawa [11] and Hironaka and Kin [7].

In [13], Penner suggests that there may be an "analogous upper bound for $n \neq 0$ ". In [7], Hironaka and Kin use a concrete construction to prove that for genus g = 0,

$$l_{0,n} < \frac{\log(2+\sqrt{3})}{\lfloor \frac{n-2}{2} \rfloor} \le \frac{2\log(2+\sqrt{3})}{n-3}$$

for all $n \ge 4$. The inequality is proven for even *n* in [7], but it follows for odd *n* by letting the fixed point of their example be a marked point. Combining this with Penner's lower bound, one sees for $n \ge 4$,

$$\frac{\log 2}{4n-12} \le l_{0,n} < \frac{2\log(2+\sqrt{3})}{n-3},$$

which shows that the upper bound is on the same order as Penner's lower bound for g = 0. A similar situation holds for g = 1; see Section 5.1 of the Appendix.

Inspired by the construction of Hironaka and Kin, we tried to find examples of pseudo-Anosov $f_{g,n} \in Mod(S_{g,n})$ with

$$\log \lambda(f_{g,n}) = O\left(\frac{1}{|\chi(S_{g,n})|}\right),\,$$

for $\chi(S_{g,n}) = 2 - 2g - n < 0$. However for any fixed $g \ge 2$, all attempts resulted in $f_{g,n} \in Mod(S_{g,n})$ pseudo-Anosov with

$$\log \lambda(f_{g,n}) = O_g\left(\frac{\log |\chi(S_{g,n})|}{|\chi(S_{g,n})|}\right) \text{ and not } O\left(\frac{1}{|\chi(S_{g,n})|}\right).$$

This led us to prove Theorem 1.1.

The preceding discussion suggests that the asymptotic behavior of $l_{g,n}$ while varying both g and n can be quite complicated, in general. Hence, we will focus on understanding what happens along different (g, n)-rays. In addition to the results discussed above, there are other rays in which the asymptotic behavior of $l_{g,n}$ can be understood via examples (see Section 5.2 of the Appendix) and Penner's lower bound. Table 1 summarizes these behaviors for $\chi(S_{g,n}) < 0$.

Question What are asymptotic behaviors of $l_{g,n}$ along different (g,n)-rays in the (g,n) plane?

(g, n)-rays	The asymptotic behavior of $l_{g,n}$
g = 0	$1/ \chi(S_{g,n}) $
g = 1 and n is even	$1/ \chi(S_{g,n}) $
$g = \text{constant} \ge 2$	$\log\left(\chi(S_{g,n}) \right)/ \chi(S_{g,n}) $
n = 0, 1, 2, 3, or 4	$1/ \chi(S_{g,n}) $
n = g, g + 1, or g + 2	$1/ \chi(S_{g,n}) $
n = g - 1 or $2(g - 1)$	$1/ \chi(S_{g,n}) $

Table	1
-------	---

1.1 Outline of the paper

We will first recall some definitions and properties in Section 2. In Section 3 we prove the lower bound of Theorem 1.1. We construct examples in Section 4 which give an upper bound for the genus 2 case, and we extend the example to arbitrary genus $g \ge 2$ to obtain the upper bound of Theorem 1.1. Finally, we construct a pseudo-Anosov element in Mod $(S_{1,2n})$ and obtain an upper bound on $l_{1,2n}$ in the Appendix.

Acknowledgements The author would like to thank Christopher Leininger for key discussions and for revising an earlier draft. Kasra Rafi and A J Hildebrand offered helpful suggestions and insights. I would also like to thank MSRI for its stimulating, collaborative research environment during its fall 2007 programs.

2 Preliminaries

2.1 Homeomorphisms of a surface

We say that a homeomorphism $f: S \to S$ is *pseudo-Anosov* if there are transverse singular foliations \mathcal{F}^s and \mathcal{F}^u together with transverse measures μ^s and μ^u such that for some $\lambda > 1$,

$$f(\mathcal{F}^{s}, \mu^{s}) = (\mathcal{F}^{s}, \lambda \mu^{s}),$$

$$f(\mathcal{F}^{u}, \mu^{u}) = (\mathcal{F}^{u}, \lambda^{-1} \mu^{u}).$$

The number $\lambda = \lambda(f)$ is called the *dilatation* of f. We call f reducible if there is a finite disjoint union U of simple essential closed curves on S such that f leaves U invariant. If there exists k > 0 such that f^k is the identity, then f is periodic.

A mapping class [f] is pseudo-Anosov, reducible or periodic (respectively) if f is homotopic to a pseudo-Anosov, reducible or periodic homeomorphism (respectively). The following is proved in Fathi, Laudenbach and Poenaru [4].

Theorem 2.1 (Nielsen–Thurston) A mapping class $[f] \in Mod(S)$ is either periodic, reducible, or pseudo-Anosov.

As a slight abuse of notation, we sometimes refer to a mapping class [f] by one of its representatives f.

2.2 Markov partitions

Suppose $f: S \to S$ is pseudo-Anosov with stable and unstable measured singular foliations (\mathcal{F}^s, μ^s) and (\mathcal{F}^u, μ^u) . We define a rectangle R to be a map

$$\rho: I \times I \to S,$$

such that ρ is an embedding on the interior, $\rho(\text{point} \times I)$ is contained in a leaf of \mathcal{F}^{u} , and $\rho(I \times \text{point})$ is contained in a leaf of \mathcal{F}^{s} . We denote $\rho(\partial I \times I)$ by $\partial^{u} R$ and $\rho(I \times \partial I)$ by $\partial^{s} R$.

As a standard abuse of notation, we will write $R \subset S$ for the image of a rectangle map $\rho: I \times I \to S$.

Definition 2.2 A Markov partition for $f: S \to S$ is a decomposition of S into a finite union of rectangles $\{R_i\}_{i=1}^k$, such that:

- (1) $\operatorname{Int}(R_i) \cap \operatorname{Int}(R_j)$ is empty, when $i \neq j$,
- (2) $f(\bigcup_{j=1}^k \partial^u R_j) \subset \bigcup_{j=1}^k \partial^u R_j,$

(3)
$$f^{-1}(\bigcup_{i=1}^k \partial^s R_i) \subset \bigcup_{i=1}^k \partial^s R_i$$
.

Given a pseudo-Anosov homeomorphism $f: S \to S$, a Markov partition is constructed in Bestvina and Handel [2] from a train track map for f. The advantage of this construction over Fathi, Laudenbach and Poenaru [4], for example, is that the number of rectangles is substantially smaller. From [2], one has the following:

Theorem 2.3 For any pseudo-Anosov homeomorphism $f: S \to S$ of a surface S with at least one marked point, there exists a Markov partition for f with at most $-3\chi(S)$ rectangles.

We say that a matrix is *positive* (respectively, *nonnegative*) if all the entries are positive (respectively, nonnegative).

We can define a *transition matrix* M associated to the Markov partition with rectangles $\{R_i\}_{i=1}^k$. The entry $m_{i,j}$ of M is the number of times that $f(R_j)$ wraps over R_i , so M is a nonnegative integral $k \times k$ matrix. In Bestvina and Handel's construction, M is the same as the transition matrix of the train track map and they show it is an integral Perron–Frobenius matrix (ie it is irreducible with nonnegative integer entries); see Gantmacher [5]. Furthermore, the Perron–Frobenius eigenvalue $\mu(M) = \lambda(f)$ is the dilatation of f. The width (respectively, height) of R_i is the *i*-th entry of the corresponding Perron–Frobenius eigenvector of M (respectively, M^T), where the eigenvectors are both positive by the irreducibility of M.

The following proposition will be used in proving the lower bound.

Proposition 2.4 Let *M* be a $k \times k$ integral Perron–Frobenius matrix. If there is a nonzero entry on the diagonal of *M*, then M^{2k} is a positive matrix and its Perron–Frobenius eigenvalue $\mu(M^{2k})$ is at least *k*.

Proof We construct a directed graph Γ from M with k vertices $\{i\}_{i=1}^{k}$ such that the number of the directed edge from i to j in Γ equals $m_{i,j}$. We observe that for any r > 0 the (i, j)-th entry $m_{i,j}^{(r)}$ of M^r is the number of directed edge paths from i to j of length r in Γ .

Since M is a Perron–Frobenius matrix, we know that Γ is path-connected by directed paths. Suppose M has a nonzero entry at the (l, l)–th entry, then we will see at least one corresponding loop edge at the vertex l. For any i and j in Γ , path-connectivity ensures us that there are directed edge paths of length $\leq k$ from i to l and from l to j. This tells us that there is a directed edge path P of length $\leq 2k$ from i to j passing through l. Since we can wrap around the loop edge adjacent to l to increase the length of P, there is always a directed edge path of length 2k from i to j. In other words, $m_{i,j}^{(2k)}$ is at least 1 for all i and j, so M^{2k} is a positive matrix.

Let v be a corresponding Perron–Frobenius eigenvector, so that we have $M^{2k}v = \mu(M^{2k})v$. This implies that if $v = [v_1 \cdots v_k]^T$, for all i,

$$\sum_{j=1}^{k} m_{i,j}^{(2k)} v_j = \mu(M^{2k}) v_i,$$

or equivalently,

$$\mu(M^{2k}) = \sum_{j=1}^{k} m_{i,j}^{(2k)} \frac{v_j}{v_i}$$

Choosing *i* such that $v_i \leq v_j$ for all *j*, we obtain

$$\mu(M^{2k}) \ge \sum_{j=1}^{k} m_{i,j}^{(2k)} \ge \sum_{j=1}^{k} 1 = k.$$

The following proposition will be used in proving the upper bound.

Proposition 2.5 Let Γ be the induced directed graph of an integral Perron–Frobenius matrix M with Perron–Frobenius eigenvalue $\mu(M) = \mu$. Let $P_{\Gamma}(i, d)$ be the total number of paths of length d emanating from vertex i in Γ . Then, for all i,

$$\sqrt[d]{P_{\Gamma}(i,d)} \longrightarrow \mu(M) \quad \text{as } d \to \infty.$$

Proof Let M be an integral $k \times k$ Perron–Frobenius matrix with Perron–Frobenius eigenvalue μ and Perron–Frobenius eigenvector v. As above

$$\sum_{j=1}^{k} m_{i,j}^{(d)} v_j = \mu(M^d) v_i = \mu^d v_i.$$

Let $v_{\max} = \max_i \{v_i\}$ and $v_{\min} = \min_i \{v_i\}$. According to the Perron–Frobenius theory, the irreducibility of M implies that $v_i > 0$ for all i. For all i we have

$$\frac{v_{\min}\left(\sum_{j} m_{i,j}^{(d)}\right)}{\mu^{d}} \leq \frac{\sum_{j} m_{i,j}^{(d)} v_{j}}{\mu^{d}} \leq \frac{v_{\max}\left(\sum_{j} m_{i,j}^{(d)}\right)}{\mu^{d}},\\\frac{v_{i}}{v_{\max}} \leq \frac{\sum_{j} m_{i,j}^{(d)}}{\mu^{d}} \leq \frac{v_{i}}{v_{\min}}.$$

hence

We are done, since $\sum_{j} m_{i,j}^{(d)} = P_{\Gamma}(i, d)$ and for all i,

$$\sqrt[d]{\frac{v_i}{v_{\max}}} \to 1 \quad \text{and} \quad \sqrt[d]{\frac{v_i}{v_{\min}}} \to 1, \quad \text{as } d \text{ tends to } \infty.$$

2.3 Lefschetz numbers

We will review some definitions and properties of Lefschetz numbers. A more complete discussion can be found in Guillemin and Pollack [6] and Bott and Tu [3].

Let X be a compact oriented manifold, and $f: X \to X$ be a map. Define

$$graph(f) = \{(x, f(x)) | x \in X\} \subset X \times X$$

and let Δ be the diagonal of $X \times X$. The algebraic intersection number $I(\Delta, \operatorname{graph}(f))$ is an invariant of the homotopy class of f, called the (global) Lefschetz number of f and it is denoted L(f). As in [3], this can be alternatively described by

(1)
$$L(f) = \sum_{i \ge 0} (-1)^i \operatorname{trace}(f_*^{(i)}),$$

where $f_*^{(i)}$ is the matrix induced by f acting on $H_i(X) = H_i(X; \mathbb{R})$. The Euler characteristic is the self-intersection number of the diagonal Δ in $X \times X$,

$$\chi(X) = I(\Delta, \Delta) = L(\mathrm{id}).$$

As seen in [6], if f has isolated fixed points, we can compute the *local Lefschetz* number of f at a fixed point x in local coordinates as

$$L_x(f) = \deg\left(z \mapsto \frac{f(z) - z}{|f(z) - z|}\right),$$

where z is on the boundary of a small disk centered at x which contains no other fixed points. Moreover we can compute the Lefschetz number by summing the local Lefschetz numbers of fixed points,

$$L(f) = \sum_{f(x)=x} L_x(f).$$

This description of $L_x(f)$ is given for smooth f in [6], but it is equally valid for continuous f since such a map is approximated by smooth maps. We will be computing the Lefschetz number of a homeomorphism $f: S_{g,n} \to S_{g,n}$, ignoring the marked points.

Proposition 2.6 If a homeomorphism $f: S_{g,n} \to S_{g,n}$ is homotopic (not necessarily fixing the marked points) to the identity or a multitwist, then

$$L(f) = \chi(S_{g,0}) = 2 - 2g.$$

A *multitwist* is a composition of powers of Dehn twists on pairwise disjoint simple essential closed curves.

Proof If f is homotopic to the identity, the homotopy invariance of the Lefschetz number tells us $L(f) = L(id) = I(\Delta, \Delta)$ which is $\chi(S_{g,0})$.

Suppose f is homotopic to a multitwist. We will use (1) to compute L(f). Note that $H_i(S_{g,0})$ is 0 for $i \ge 3$, $H_0(S_{g,0}) \cong H_2(S_{g,0}) \cong \mathbb{R}$ and $f_*^{(i)}$ is the identity when i = 0 or 2, so this implies $L(f) = 2 - \text{trace}(f_*^{(1)})$.

There exists a set $\{\gamma_i\}_{i=1}^k$ of disjoint simple essential closed curves with some integers $n_i \neq 0$ such that

$$f\simeq T_{\gamma_1}^{n_1}\circ\cdots\circ T_{\gamma_k}^{n_k},$$

where $T_{\gamma_i}^{n_i}$ is the n_i -th power of a Dehn twist along γ_i .

For any curve γ ,

$$T_{\gamma_i*}^{n_i}([\gamma]) = [\gamma] + n_i \langle \gamma, \gamma_i \rangle [\gamma_i],$$

where $[\gamma]$ is the homology class of γ and $\langle \gamma, \gamma_i \rangle$ is the algebraic intersection number of $[\gamma]$ and $[\gamma_i]$. If any γ_i is a separating curve, then $[\gamma_i]$ is the trivial homology class and $T_{\gamma_i*}^{n_i}$ acts trivially on $H_1(S_{g,0})$. We may therefore assume that each γ_i is nonseparating. After renaming the curves, we can assume that there is a subset $\{\gamma_1, \gamma_2, \dots, \gamma_s\}$ such that $\hat{\gamma} = \bigcup_{i=1}^s \gamma_i$ is nonseparating and $\hat{\gamma} \cup \gamma_j$ is separating for all j > s. Thus, for all $k \ge j > s$,

$$[\gamma_j] = \sum_{i=1}^s c_{ji} [\gamma_i],$$

for some constants $c_{ji} \in \mathbb{R}$. We can extend $\{[\gamma_i]\}_{i=1}^s$ to a basis of $H_1(S_{g,0})$,

 $\{\alpha_1, \alpha_2, \ldots, \alpha_g, \beta_1, \beta_2, \ldots, \beta_g\},\$

where $[\gamma_i] = \alpha_i$ for $i \le s \le g$ and $\langle \alpha_i, \beta_j \rangle = \delta_{ij}, \langle \alpha_i, \alpha_j \rangle = \langle \beta_i, \beta_j \rangle = 0$.

First suppose s = k, then $\langle \alpha_j, \gamma_i \rangle = \langle \alpha_j, \alpha_i \rangle = 0$ for all *i* and *j*. Therefore, for all *j*,

$$f_*^{(1)}(\alpha_j) = \alpha_j$$

a

nd
$$f_*^{(1)}(\beta_j) = \beta_j + \sum_{i=1}^k n_i \langle \beta_j, \gamma_i \rangle [\gamma_i] = \beta_j + \sum_{i=1}^k n_i \langle \beta_j, \alpha_i \rangle \alpha_i = \beta_j - n_j \alpha_j.$$

So we have

$$f_*^{(1)} = \left(\frac{I_{g \times g} | *}{0 | I_{g \times g}}\right)$$

and $L(f) = 2 - \text{trace}(f_*^{(1)}) = 2 - 2g$.

For s < k, we will have

$$f_*^{(1)}(\alpha_j) = \alpha_j + \sum_{i=1}^k n_i \langle \alpha_j, \gamma_i \rangle [\gamma_i]$$

$$= \alpha_j + \sum_{i=1}^s n_i \langle \alpha_j, \alpha_i \rangle \alpha_i + \sum_{i=s+1}^k n_i \langle \alpha_j, \gamma_i \rangle [\gamma_i]$$

$$= \alpha_j + \sum_{i=s+1}^k n_i \sum_{t=1}^s c_{it} \langle \alpha_j, \alpha_t \rangle \alpha_t$$

$$= \alpha_j$$

$$f_*^{(1)}(\beta_j) = \beta_j + \sum_{i=1}^k n_i \langle \beta_j, \gamma_i \rangle [\gamma_i]$$

$$= \beta_j + \sum_{i=1}^s n_i \langle \beta_j, \alpha_i \rangle \alpha_i + \sum_{i=s+1}^k n_i \sum_{t=1}^s c_{it} \langle \beta_j, \alpha_t \rangle \alpha_t$$

$$= \begin{cases} \beta_j, & \text{if } j > s, \\ \beta_j - n_j \alpha_j - \sum_{i=s+1}^k n_i c_{ij} \alpha_j, & \text{if } j > s. \end{cases}$$

and

Therefore, the diagonal of the matrix $f_*^{(1)}$ is still all 1's and

$$L(f) = 2 - \operatorname{trace}(f_*^{(1)}) = 2 - 2g.$$

3 Bounding the dilatation from below

Lemma 3.1 For any pseudo-Anosov element $f \in Mod(S_{g,n})$ equipped with a Markov partition, if L(f) < 0, then there is a rectangle R of the Markov partition, such that the interiors of f(R) and R intersect.

Proof Since f is a pseudo-Anosov homeomorphism, it has isolated fixed points. Suppose x is an isolated fixed point of f such that one of the following happens:

- (1) x is a nonsingular fixed point and the local transverse orientation of \mathcal{F}^s is reversed.
- (2) x is a singular fixed point and no separatrix of \mathcal{F}^s emanating from x is fixed.

A *separatrix* of \mathcal{F}^s is a maximal arc starting at a singularity and contained in a leaf of \mathcal{F}^s .

Claim $L_x(f) = +1$.

Let *B* be a small disk centered at *x* containing no other fixed point of *f*. First we show that (in local coordinates) for every $z \in \partial B$, $f(z) - z \neq \alpha z$ for all $\alpha > 0$.

It is easy to verify this in case 1 by choosing local coordinates (ξ_1, ξ_2) around x so that f is given by

$$f(\xi_1,\xi_2) = \left(-\lambda\xi_1,\frac{-1}{\lambda}\xi_2\right).$$

In case 2, we choose local coordinates around x such that the separatrices of \mathcal{F}^s emanating from x are sent to rays from 0 through the k-th roots of unity in \mathbb{R}^2 . This means f rotates each of the sectors bounded by these rays through an angle $2\pi j/k$ for some $j = 1, \ldots, k-1$, and so for all $z \in \partial B$ $f(z) - z \neq \alpha z$ for all $\alpha > 0$.

Define a smooth map $h_0: \partial B \to S^1$ by $h_0(z) = (f(z) - z)/|f(z) - z|$, so $L_x(f) = \deg(h_0)$ by definition. Let $g: \partial B \to S^1$ be defined by g(z) = z/|z| and $h_1: S^1 \to S^1$ be defined by $h_1(z/|z|) = (f(z) - z)/|f(z) - z|$, so that $h_0 = h_1g$. Then

$$L_x(f) = \deg(h_0) = \deg(h_1g) = \deg(h_1)\deg(g) = \deg(h_1)$$

since deg(g) = 1. Note that h_1 has no fixed point since for all $z \in \partial B$,

$$f(z) - z \neq \alpha z,$$

for all $\alpha > 0$. Therefore $L_x(f) = \deg(h_1) = (-1)^{(1+1)} = +1$.

The assumption of L(f) < 0 implies that there exists a fixed point x of f which is in neither of the cases above. In other words, it falls into one of the cases in Figure 1. As seen in Figure 1, there is a rectangle R of the Markov partition such that the interiors of f(R) and R intersect.

Let $\Gamma_S(3) \triangleleft Mod(S)$ denote the kernel of the action on $H_1(S; \mathbb{Z}/3\mathbb{Z})$, where $S = S_{g,0}$. In [9], it is shown that $\Gamma_S(3)$ consists of pure mapping classes. Setting

$$\Theta(g) = [\operatorname{Mod}(S) : \Gamma_S(3)],$$

we conclude the following.

Figure 1: The intersection of f(R) and R. R is the underlying rectangle and f(R) is the shaded rectangle.

Lemma 3.2 Let $f \in Mod(S_{g,n})$ be a pseudo-Anosov element and $\hat{f} \in Mod(S_{g,o})$ be the induced mapping class obtained by forgetting marked points. There exists a constant $1 \le \alpha \le \Theta(g)$ such that \hat{f}^{α} satisfies exactly one of the following:

- (1) \hat{f}^{α} restricts to a pseudo-Anosov map on a connected subsurface.
- (2) $\hat{f}^{\alpha} = \text{Id.}$
- (3) \hat{f}^{α} is a multitwist map.

Remark For the first two cases of Lemma 3.2, one can find α bounded by a linear function of g, but in case 3, α may be exponential in g.

Theorem 3.3 For $g \ge 2$, given any pseudo-Anosov $f \in Mod(S_{g,n})$, let α be as in Lemma 3.2. Then

$$\log \lambda(f) \ge \min \left\{ \frac{\log 2}{\alpha(12g - 12)}, \frac{\log(6g + 3n - 6)}{2\alpha(6g + 3n - 6)} \right\}.$$

Proof We will deal with case 1 of Lemma 3.2 first.

If \hat{f}^{α} restricts to a pseudo-Anosov homeomorphism on a connected subsurface \sum_{g_0,n_0} of $S_{g,0}$ of genus g_0 with n_0 boundary components (we have $2g_0 + n_0 \le 2g$), then Penner's lower bound tells us

$$\log \lambda(\hat{f}^{\alpha}) \ge \frac{\log 2}{12g_0 - 12 + 4n_0} \ge \frac{\log 2}{12g - 12}.$$

Hence $\log \lambda(f) \ge \log \lambda(\hat{f}) > \log 2/\alpha(12g - 12)$.

If \hat{f}^{α} is homotopic to the identity or a multitwist map, from Proposition 2.6, we have $L(f^{\alpha}) = L(\hat{f}^{\alpha}) = \chi(S_{g,0}) = 2 - 2g < 0$. Theorem 2.3 tells us that for any pseudo-Anosov f there is a Markov partition with k rectangles, where $k \leq -3\chi(S)$. Recall that the transition matrix M obtained from the rectangles is a $k \times k$ Perron–Frobenius matrix and the Perron–Frobenius eigenvalue $\mu(M)$ equals $\lambda(f)$.

By Lemma 3.1, there is a rectangle R such that the interiors of $f^{\alpha}(R)$ and R intersect. This implies that there is a nonzero entry on the diagonal of M^{α} . Applying

Proposition 2.4, we obtain that $\mu((M^{\alpha})^{2k}) = \mu(M^{2k\alpha})$ is at least k, so we have

$$(\lambda(f))^{2k\alpha} = \lambda(f^{2k\alpha}) = \mu(M^{2k\alpha}) \ge k.$$

One can easily check $(\log x)/x$ is monotone decreasing for $x \ge 3$. Since

$$3 \le k \le -3\chi(S) = 6g + 3n - 6,$$

e
$$\log \lambda(f) \ge \frac{\log k}{2\alpha k} \ge \frac{\log(6g + 3n - 6)}{2\alpha(6g + 3n - 6)}.$$

hence

Remark Penner's proof in [13] does not use Lefschetz numbers which we used to conclude that $\mu(M^{2k\alpha})$ is at least k, so we obtain a sharper lower bound for $n \gg g$.

4 An example which provides an upper bound

4.1 For the genus two case

In this section, we will construct a pseudo-Anosov $f \in Mod(S_{2,n})$ for all $n \ge 31$ then we compute its dilatation which gives us an upper bound for $l_{2,n}$.

Let $S_{0,m+2}$ be a genus 0 surface with m + 2 marked points (ie a marked sphere), and recall an example of pseudo-Anosov $\phi \in Mod(S_{0,m+2})$ in [7]. We view $S_{0,m+2}$ as a sphere with s + 1 marked points X circling an unmarked point x and t + 1 marked points Y circling an unmarked point y, and a single extra marked point z. We can also draw this as a "turnover", as in Figure 2. Note that $|X \cap Y| = 1$, |X| = s + 1, |Y| = t + 1 and m = s + t.

Figure 2: Two way of viewing a marked sphere. Black dots are marked points and the shaded dots on the right are marked points at the back.

We define homeomorphisms α_s , $\beta_t: S_{0,m+2} \to S_{0,m+2}$ such that α_s rotates the marked points of X counterclockwise around x and β_t rotates the marked points of Y clockwise around y; see Figure 3. Define $\phi_{s,t} := \beta_t \alpha_s$. In [7], it is shown that $\phi_{s,t}$

Figure 3: Homeomorphisms α_s and β_t

is pseudo-Anosov by checking it satisfies the criterion of [2]. We also note that from this one can check that x, y and z are fixed points of a pseudo-Anosov representative of $\phi_{s,t}$. Moreover, for s, $t \ge 1$ the dilatation of $\phi_{s,t}$ equals the largest root of the polynomial

$$T_{s,t}(x) = x^{t+1}(x^s(x-1)-2) + x^{s+1}(x^{-s}(x^{-1}-1)-2)$$

= (x-1)x^{(s+t+1)} - 2(x^{s+1} + x^{t+1}) - (x-1).

The dilatation is minimized when $s = \lfloor m/2 \rfloor$ and $t = \lceil m/2 \rceil$. Let us define $\phi := \phi_{\lfloor m/2 \rfloor, \lceil m/2 \rceil}$ and its dilatation is the largest root of the polynomial

$$T_m(x) := T_{\lfloor m/2 \rfloor, \lceil m/2 \rceil}(x)$$

= $(x-1)x^{(m+1)} - 2(x^{\lfloor m/2 \rfloor+1} + x^{\lceil m/2 \rceil+1}) - (x-1).$

Proposition 4.1 If $m \ge 5$, then the largest real root of $T_m(x)$ is bounded above by $m^{3/m}$.

Proof For all *m*, we have $T_m(1) = -4$. It is sufficient to show that for all $x \ge m^{3/m}$, we have $T_m(x) > 0$. Dividing the inequality by $x^{(m+1)}$, it is equivalent to show

$$(x-1) + x^{-(m+1)} > 2(x^{\lfloor m/2 \rfloor - m} + x^{\lceil m/2 \rceil - m}) + x^{-m}.$$

For $m \ge 5$, one can verify the following inequalities hold for all $x \ge m^{3/m}$:

- (1) $x-1 > (3 \log m)/m \ge 9/(2m)$, (2) $x^{\lfloor m/2 \rfloor - m} \le x^{\lceil m/2 \rceil - m} \le 1/m$,
- (2) $x^{2n+2} \le x^{n+2+1} \le 1/n$
- (3) $x^{-m} \le 1/(25m)$.

Therefore,

$$(x-1) + x^{-(m+1)} > x - 1 > \frac{9}{2m} > \frac{101}{25m} = 2\left(\frac{1}{m} + \frac{1}{m}\right) + \frac{1}{25m}$$
$$\ge 2\left(x^{\lfloor m/2 \rfloor - m} + x^{\lceil m/2 \rceil - m}\right) + x^{-m}.$$

Remark Proposition 4.1 fails if we try to replace the bound with $c^{1/m}$ where c is any constant.

Remark Hironaka and Kin [7] construct two infinite families of pseudo-Anosovs in $Mod(S_{0,m})$, with $\phi_{s,t}$ being one of them. Unlike $\phi_{s,t}$, the other family provides the sharp bound on $l_{0,m}$.

Next, we take a cyclic branched cover $S_{2,n}$ of $S_{0,m+2}$ with branched points x, y, and z, where n = 5(m+1) + 1 (See Figure 4.). Define $\tilde{X} = \{$ marked points around $\tilde{x} \}$ and $\tilde{Y} = \{$ marked points around $\tilde{y} \}$, so we have $|\tilde{X} \cap \tilde{Y}| = 5$, $|\tilde{X}| = 5(s+1)$ and $|\tilde{Y}| = 5(t+1)$.

Figure 4: π is the covering map. To form $S_{2,n}$ from the decagon, identify the opposite sides. Then π is the quotient by the group generated by rotation of an angle $2\pi/5$.

Figure 5: Homeomorphisms $\widetilde{\alpha_s}$ and $\widetilde{\beta_t}$

We lift α_s , β_t to $S_{2,n}$ and call them $\widetilde{\alpha_s}$, $\widetilde{\beta_t}$, so that $\widetilde{\alpha_s}$ rotates the marked points of \widetilde{X} counterclockwise around \widetilde{x} and $\widetilde{\beta_t}$ rotates the marked points of \widetilde{Y} clockwise around \widetilde{y} ; see Figure 5. We define $\psi_{s,t} := \widetilde{\beta_t} \widetilde{\alpha_s}$. It follows that $\psi_{s,t}$ is a lift of $\phi_{s,t}$, and so is pseudo-Anosov with $\lambda(\psi_{s,t}) = \lambda(\phi_{s,t})$. An invariant train track for $\psi_{s,t}$ is obtained by lifting the one constructed in [7], and is shown in Figure 6 for s = t = 3.

Figure 6: A train track for $\psi_{3,3}$

Hence for $n = 5(m + 1) + 1 \ge 31$, we have constructed a pseudo-Anosov $\psi = \psi_{\lfloor m/2 \rfloor, \lceil m/2 \rceil} \in \text{Mod}(S_{2,n})$ with $\lambda(\psi) = \lambda(\phi) \le m^{3/m}$ which implies

$$\log \lambda(\psi) \le \frac{3\log m}{m} = \frac{15\log(n-6) - 15\log 5}{n-6}.$$

We will now extend ψ so that *n* can be an arbitrary number ≥ 31 . We add an extra marked point p_1 on $S_{2,n}$ between points in \tilde{X} or \tilde{Y} except the places shown in Figure 7.

Figure 7: We are *not* allowed to add p_1 in the places indicated by a shaded point.

Without loss of generality we assume p_1 is added in \widetilde{X} to obtain $S_{2,n+1}$ and we define $\psi_1 := \widetilde{\beta}_t \widetilde{\alpha}_s' \in \text{Mod}(S_{2,n+1})$ where $\widetilde{\alpha}_s'$ is extended from $\widetilde{\alpha}_s$ in the obvious way; see Figure 8. One can check that ψ_1 is pseudo-Anosov via the techniques of [2]. An invariant train track for ψ_1 is shown in Figure 9 and is obtained by modifying the invariant train track for ψ shown in Figure 6.

Next, we will show $\lambda(\psi_1) \leq \lambda(\psi)$. Let *H* (respectively, *H*₁) be the associated transition matrix of the train track map for ψ (respectively, ψ_1), and let Γ (respectively, Γ_1) be the induced directed graph as constructed in Section 2.2.

From the construction above (ie adding p_1), the directed graph Γ_1 is obtained by adding a vertex on the edge going out from some vertex *i* in Γ (that is, subdividing the edge going out from *i*) where *i* has exactly one edge coming in and exactly one

Figure 8: The homeomorphism $\widetilde{\alpha_s}'$. The figure on the right is a local picture near the added point p_1 .

edge going out. This implies $P_{\Gamma_1}(i, k+1) = P_{\Gamma}(i, k)$ and

$$\sqrt[k+1]{P_{\Gamma_1}(i,k+1)} \le \sqrt[k]{P_{\Gamma_1}(i,k+1)} = \sqrt[k]{P_{\Gamma}(i,k)}$$

for all k. Since H and H_1 are Perron–Frobenius matrices with Perron–Frobenius eigenvalues corresponding to the dilatations of ψ and ψ_1 , and Proposition 2.5 tells us $\mu(H_1) \leq \mu(H)$, we have $\lambda(\psi_1) = \mu(H_1)$ is no greater than $\lambda(\psi) = \mu(H)$.

We can obtain ψ_2 , ψ_3 and ψ_4 by repeating the construction above of adding more marked points without increasing dilatations (ie $\lambda(\psi_c) \le \lambda(\psi)$ for c = 1, 2, 3, 4). Since $(\log m)/m \ge (\log(m+1))/(m+1)$, we need not consider the cases with $c \ge 5$. Therefore, set $f: S_{2,n} \to S_{2,n}$ to be ψ_c , where n = 5(m+1) + 1 + c with c < 5, and where $\psi_0 = \psi$. For $n \ge 31$, we have

$$\log \lambda(f) \le \log \lambda(\psi) < \frac{3\log m}{m} < \frac{3\log\left(\frac{n-11}{5}\right)}{\left(\frac{n-11}{5}\right)},$$

where $m = \lfloor (n-6)/5 \rfloor$.

Theorem 4.2 There exists $\kappa_2 > 0$ such that

$$l_{2,n} < \frac{\kappa_2 \log n}{n}$$

for all $n \ge 3$.

Figure 9: A train track for ψ_1 . The figure on the bottom is a local picture.

Proof From the discussion above, for $n \ge 31$,

$$l_{2,n} < \frac{3\log\left(\frac{n-11}{5}\right)}{\left(\frac{n-11}{5}\right)} < \frac{\kappa_2' \log n}{n},$$

for some κ'_2 . For $3 \le n \le 30$, let $\kappa''_2 = \max\{l_{2,3}, l_{2,4}, \dots, l_{2,30}\}$ then

$$l_{2,n} \le \kappa_2'' = \left(\kappa_2'' \frac{31}{\log 31}\right) \frac{\log 31}{31} < \left(\kappa_2'' \frac{31}{\log 31}\right) \frac{\log n}{n}.$$

Let $\kappa_2 := \max\{\kappa'_2, \kappa''_2(31/\log 31)\}.$

Geometry & Topology, Volume 13 (2009)

4.2 Higher genus cases

We can generalize our construction and extend to any genus g > 2. For any fixed g > 2, we define ψ to be a homeomorphism of $S_{g,n}$ in the same fashion with n = (2g+1)(m+1)+1 by taking an appropriate branched cover over $S_{0,m+2}$, and we can again extend to arbitrary n by adding c extra marked points and constructing ψ_c . Define $f: S_{g,n} \to S_{g,n}$ to be ψ_c where n = (2g+1)(m+1)+1+c. If $n \ge 6(2g+1)+1$, then

$$\log \lambda(f) < \frac{3\log m}{m}, \quad \text{where } m = \left\lfloor \frac{n-1}{2g+1} \right\rfloor - 1$$
$$< \frac{3\log\left(\frac{n-4g-3}{2g+1}\right)}{\left(\frac{n-4g-3}{2g+1}\right)}.$$

Theorem 4.3 For any fixed $g \ge 2$, there exists $\kappa_g > 0$ such that

$$l_{g,n} < \frac{\kappa_g \log n}{n},$$

for all $n \ge 3$.

Proof This is similar to the proof of Theorem 4.2, where κ_g is defined to be

$$\kappa_g := \max\left\{\kappa'_g, \kappa''_g \frac{12g+7}{\log(12g+7)}\right\}.$$

Proof of Theorem 1.1 We only need to prove that the lower bounds on $\log \lambda(f)$ of Theorem 3.3 are bounded below by $(\log n)/(\omega_g n)$ for some ω_g depending only on g, then let $c_g = \max{\kappa_g, \omega_g}$. We use the monotone decreasing property of $(\log n)/n$ for $n \ge 3$. Let

$$\omega_g'(\alpha) := \frac{\alpha(12g - 12)}{\log 2} \frac{\log 3}{3} \ge \frac{\alpha(12g - 12)}{\log 2} \frac{\log n}{n}$$

and so

$$\frac{\log 2}{\alpha(12g-12)} \ge \frac{\log n}{\omega'_g(\alpha)n}.$$

For $n \ge g - 1$,

$$\frac{\log(6g+3n-6)}{2\alpha(6g+3n-6)} \ge \frac{\log 9n}{2\alpha 9n} > \frac{1}{18\alpha} \frac{\log n}{n}.$$

For $3 \le n < g - 1$,

$$\frac{\log(6g+3n-6)}{2\alpha(6g+3n-6)} > \frac{\log(9(g-1))}{2\alpha9(g-1)} > \frac{\log g}{18\alpha g} \frac{3}{\log 3} \frac{\log n}{n}.$$

Let $\omega_g := \max\{\omega'_g(\alpha), 18\alpha, (6\alpha g \log 3) / \log g\}$, where $0 \le \alpha \le \Theta(g)$.

5 Appendix

5.1 Torus with marked points

We will construct an example to prove that $l_{1,2n}$ has an upper bound of the same order as Penner's lower bound in [13], ie $l_{1,2n} = O(1/n)$. The construction is analogous to the one given by Penner for $S_{g,0}$ in [13].

Let $S_{1,2n}$ be a marked torus of 2n marked points. Let a and b be essential simple closed curves as in Figure 10. Let T_a^{-1} be the left Dehn twist along a and T_b be the

Figure 10: Essential simple closed curves a and b on a marked torus

right Dehn twist along b, then we define

$$f := \rho \circ T_b \circ T_a^{-1} \in \operatorname{Mod}(S_{1,2n})$$

where ρ rotates the torus clockwise by an angle of $2\pi/n$, so it sends each marked point to the one which is two to the right. As in [12], f^n is shown to be pseudo-Anosov, and thus so is f. Figure 11 shows a bigon track for f^n .

We obtain the $2n \times 2n$ transition matrix M^n associated to the train track map of f^n where M^n is an integral Perron–Frobenius matrix and the Perron–Frobenius

Figure 11: A bigon track for f^n

eigenvalues $\mu(M^n)$ is the dilatation $\lambda(f^n)$ of f^n . For $n \ge 5$, we have $M^n = N$, where

$$N = \begin{pmatrix} A_1 & B_1 & 0 & 0 & \cdots & 0 & 0 & D_1 \\ A_2 & B_2 & B_1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & B_3 & B_2 & B_1 & \cdots & 0 & 0 & 0 \\ 0 & 0 & B_3 & B_2 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & B_3 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & B_1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & B_1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & B_2 & B_1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & B_3 & B_2 & D_2 \\ A_3 & C & 0 & 0 & \cdots & 0 & B_3 & D_3 \end{pmatrix},$$

and

$$A_{1} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \qquad A_{2} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \qquad A_{3} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix},$$
$$B_{1} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \qquad B_{2} = \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}, \qquad B_{3} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix},$$
$$D_{1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad D_{2} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \qquad D_{3} = \begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}.$$

For $n \ge 5$, the greatest column sum of M^n is 9 and the greatest row sum of M^n is 11. One can verify that both the greatest column sum and the greatest row sum are ≤ 11 for $0 < n \le 4$. Therefore, for $n \ge 1$,

$$11 \ge \mu(M^n) = \lambda(f^n) = (\lambda(f))^n$$
$$\Rightarrow l_{1,2n} \le \log \lambda(f) \le \frac{\log 11}{n}.$$

5.2 Higher genus with marked points

In all of the following examples we obtain a mapping class $\tilde{f} \in \text{Mod}(S_{g,n})$ from $f \in \text{Mod}(S_{g,0})$ by adding marked points on the closed surface $S_{g,0}$, where f is a composition of Dehn twists along some set \mathcal{T} of closed geodesics. We can add one marked point in each of the complementary disks of the curves in \mathcal{T} without creating essential reducing curves. By [12, Theorem 3.1], the induced mapping class $\tilde{f} \in \text{Mod}(S_{g,n})$ is pseudo-Anosov with dilatation $\lambda(\tilde{f}) = \lambda(f)$.

Example 1 Penner [13] constructed a pseudo-Anosov mapping class $f \in Mod(S_{g,0})$ with dilatation $\lambda(f) \leq (\log 11)/g$ for $g \geq 2$, where

$$f := \rho \circ T_c \circ T_a^{-1} \circ T_b.$$

and T_{α} is the Dehn twist along α . Here $\mathcal{T} = \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$ with

$$\mathcal{A} = \bigsqcup_{i=1}^{g} a_i, \quad \mathcal{B} = \bigsqcup_{i=1}^{g} b_i \text{ and } \mathcal{C} = \bigsqcup_{i=1}^{g} c_i.$$

We can add g marked points as in the Figure 12 so that $\tilde{f} \in Mod(S_{g,g})$ is pseudo-Anosov. Therefore,

$$l_{g,g} \leq \log \lambda(\tilde{f}) \leq \frac{\log 11}{g}.$$

We can also add extra marked points at the fixed points of the rotation. For $g \ge 2$, we will have for c = 0, 1 and 2,

$$l_{g,g+c} \leq \log \lambda(\tilde{f}) \leq \frac{\log 11}{g},$$

where $\tilde{f} \in \text{Mod}(S_{g,g+c})$.

Figure 12: A pseudo-Anosov $\tilde{f} \in Mod(S_{g,g})$

Example 2 For all $g \ge 3$, define $f: S_{g,0} \to S_{g,0}$ to be $f := \rho \circ T_{b_1} \circ T_{a_1}^{-1}$,

where

and

$$\rho(a_{1}) = a_{g+1}, \qquad \rho(b_{1}) = b_{g+1}$$

$$\rho(a_{i}) = a_{i-1}, \qquad \rho(b_{i}) = b_{i-1}, \qquad i = 2, \dots, g+1.$$

$$b_{3} \qquad \qquad b_{2} \qquad b_{1} \qquad b_{3} \qquad b_{2} \qquad b_{1} \qquad b_{3} \qquad b_{4} \qquad b_{5} \qquad a_{4} \qquad b_{5} \qquad b_{4}$$

Figure 13: A pseudo-Anosov $f \in Mod(S_{g,0})$

We construct the $(2g + 2) \times (2g + 2)$ transition matrix $M^{(g+1)}$ with respect to the spanning vectors associated with geodesics in \mathcal{T} . We will get $M^{(g+1)} = N$ for $g \ge 3$, where the matrices are the same as in the Appendix (Section 5.1). Therefore for $g \ge 3$ we have

$$\log \lambda(f) \le \frac{\log 9}{g+1}.$$

Here $\mathcal{T} = \mathcal{A} \cup \mathcal{B}$ with

$$\mathcal{A} = \bigsqcup_{i=1}^{g} a_i \text{ and } \mathcal{B} = \bigsqcup_{i=1}^{g} b_i.$$

For $g \ge 3$ and c = 0, 1, 2, 3, 4, we have

$$l_{g,c} \le \log \lambda(\tilde{f}) \le \frac{\log 9}{g+1},$$

where $\tilde{f} \in Mod(S_{g,c})$.

Example 3 For $g \ge 5$, define $f: S_{g,0} \to S_{g,0}$ by

$$f := \rho \circ T_{d_1} \circ T_{c_1}^{-1} \circ T_{b_1} \circ T_{a_1},$$

where

$$\rho(a_1) = a_{g-1}, \ \rho(b_1) = b_{g-1}, \ \rho(c_1) = c_{g-1}, \ \rho(d_1) = d_{g-1}$$
and $\rho(a_i) = a_{i-1}, \ \rho(b_i) = b_{i-1}, \ \rho(c_i) = c_{i-1}, \ \rho(d_i) = d_{i-1}, \ i = 2, \dots, g-1.$

Figure 14: A pseudo-Anosov $f \in Mod(S_{g,0})$

Similarly, we have the $(4g-4) \times (4g-4)$ transition matrix $M^{(g-1)}$ with respect to the spanning vectors associated with the geodesics in \mathcal{T} . For $g \ge 5$ we have $M^{(g-1)} = N$

where

For $g \ge 5$, the greatest column sum of $M^{(g-1)}$ is 17 and the greatest row sum of $M^{(g-1)}$ is 21, hence

$$\log \lambda(f) \le \frac{\log 17}{g-1}.$$

Here $\mathcal{T} = \mathcal{A} \cup \mathcal{B} \cup \mathcal{C} \cup \mathcal{D}$ with

$$\mathcal{A} = \bigsqcup_{i=1}^{g} a_i, \quad \mathcal{B} = \bigsqcup_{i=1}^{g} b_i, \quad \mathcal{C} = \bigsqcup_{i=1}^{g} c_i \text{ and } \mathcal{D} = \bigsqcup_{i=1}^{g} d_i.$$

For c = 1 and 2, we can induce $\tilde{f} \in Mod(S_{g,c(g-1)})$ with

$$l_{g,c(g-1)} \le \log \lambda(\tilde{f}) \le \frac{\log 17}{g-1},$$

when $g \ge 5$.

References

 M Bauer, An upper bound for the least dilatation, Trans. Amer. Math. Soc. 330 (1992) 361–370 MR1094556

- [2] **M Bestvina**, **M Handel**, *Train-tracks for surface homeomorphisms*, Topology 34 (1995) 109–140 MR1308491
- [3] R Bott, L W Tu, *Differential forms in algebraic topology*, Graduate Texts in Math. 82, Springer, New York (1982) MR658304
- [4] A Fathi, F Laudenbach, V Poenaru, editors, *Travaux de Thurston sur les surfaces*, second edition, Astérisque 66, Soc. Math. France, Paris (1991) MR568308
- [5] FR Gantmacher, *The theory of matrices. Vols. 1, 2*, Translated by K. A. Hirsch, Chelsea Publ. Co., New York (1959) MR0107649
- [6] V Guillemin, A Pollack, *Differential topology*, Prentice-Hall, Englewood Cliffs, N.J. (1974) MR0348781
- [7] E Hironaka, E Kin, A family of pseudo-Anosov braids with small dilatation, Algebr. Geom. Topol. 6 (2006) 699–738 MR2240913
- [8] NV Ivanov, Coefficients of expansion of pseudo-Anosov homeomorphisms, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988) 111–116, 191 MR964259
- [9] NV Ivanov, Subgroups of Teichmüller modular groups, Transl. of Math. Monogr. 115, Amer. Math. Soc. (1992) MR1195787 Translated from the Russian by EJF Primrose and revised by the author
- [10] CT McMullen, Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations, Ann. Sci. École Norm. Sup. (4) 33 (2000) 519–560 MR1832823
- H Minakawa, Examples of pseudo-Anosov homeomorphisms with small dilatations, J. Math. Sci. Univ. Tokyo 13 (2006) 95–111 MR2277516
- [12] R C Penner, A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179–197 MR930079
- [13] R C Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443–450 MR1068128

Department of Mathematics, The University of Illinois at Urbana-Champaign 1409 West Green Street, Urbana, IL 61801, USA

ctsai6@math.uiuc.edu

http://www.math.uiuc.edu/~ctsai6/

Proposed: Joan Birman Seconded: Danny Calegari, Walter Neumann Received: 8 October 2008 Revised: 6 May 2009