The asymptotic behavior of least pseudo-Anosov dilatations

Chia-Yen Tsai

Abstract

For a surface S with n marked points and fixed genus $g \geq 2$, we prove that the logarithm of the minimal dilatation of a pseudo-Anosov homeomorphism of S is on the order of $(\log n) / n$. This is in contrast with the cases of genus zero or one where the order is $1 / n$.

37E30; 57M99, 30F60

1 Introduction

Let $S=S_{g, n}$ be an orientable surface with genus g and n marked points. The mapping class group of S is defined to be the group of homotopy classes of orientation preserving homeomorphisms of S. We denote it by $\operatorname{Mod}(S)$. Given a pseudo-Anosov element $f \in \operatorname{Mod}(S)$, let $\lambda(f)$ denote the dilatation of f (see Section 2.1). We define

$$
\mathcal{L}\left(S_{g, n}\right):=\left\{\log \lambda(f) \mid f \in \operatorname{Mod}\left(S_{g, n}\right) \text { pseudo-Anosov }\right\}
$$

This is precisely the length spectrum of the moduli space $\mathcal{M}_{g, n}$ of Riemann surfaces of genus g with n marked points with respect to the Teichmuller metric; see Ivanov [8]. There is a shortest closed geodesic and we denote its length by

$$
l_{g, n}=\min \left\{\log \lambda(f) \mid f \in \operatorname{Mod}\left(S_{g, n}\right) \text { pseudo-Anosov }\right\}
$$

Our main theorem is the following:

Theorem 1.1 For any fixed $g \geq 2$, there is a constant $c_{g} \geq 1$ depending on g such that

$$
\frac{\log n}{c_{g} n}<l_{g, n}<\frac{c_{g} \log n}{n}
$$

for all $n \geq 3$.

To contrast with known results, recall that in [13] Penner proves that for $2 g-2+n>0$,

$$
l_{g, n} \geq \frac{\log 2}{12 g-12+4 n}
$$

and for closed surfaces with genus $g \geq 2$,

$$
\frac{\log 2}{12 g-12} \leq l_{g, 0} \leq \frac{\log 11}{g}
$$

The bounds on $l_{g, 0}$ have been improved by a number of authors; see Bauer [1], McMullen [10], Minakawa [11] and Hironaka and Kin [7].

In [13], Penner suggests that there may be an "analogous upper bound for $n \neq 0$ ". In [7], Hironaka and Kin use a concrete construction to prove that for genus $g=0$,

$$
l_{0, n}<\frac{\log (2+\sqrt{3})}{\left\lfloor\frac{n-2}{2}\right\rfloor} \leq \frac{2 \log (2+\sqrt{3})}{n-3}
$$

for all $n \geq 4$. The inequality is proven for even n in [7], but it follows for odd n by letting the fixed point of their example be a marked point. Combining this with Penner's lower bound, one sees for $n \geq 4$,

$$
\frac{\log 2}{4 n-12} \leq l_{0, n}<\frac{2 \log (2+\sqrt{3})}{n-3}
$$

which shows that the upper bound is on the same order as Penner's lower bound for $g=0$. A similar situation holds for $g=1$; see Section 5.1 of the Appendix.

Inspired by the construction of Hironaka and Kin, we tried to find examples of pseudoAnosov $f_{g, n} \in \operatorname{Mod}\left(S_{g, n}\right)$ with

$$
\log \lambda\left(f_{g, n}\right)=O\left(\frac{1}{\left|\chi\left(S_{g, n}\right)\right|}\right)
$$

for $\chi\left(S_{g, n}\right)=2-2 g-n<0$. However for any fixed $g \geq 2$, all attempts resulted in $f_{g, n} \in \operatorname{Mod}\left(S_{g, n}\right)$ pseudo-Anosov with

$$
\log \lambda\left(f_{g, n}\right)=O_{g}\left(\frac{\log \left|\chi\left(S_{g, n}\right)\right|}{\left|\chi\left(S_{g, n}\right)\right|}\right) \quad \text { and not } \quad O\left(\frac{1}{\left|\chi\left(S_{g, n}\right)\right|}\right)
$$

This led us to prove Theorem 1.1.
The preceding discussion suggests that the asymptotic behavior of $l_{g, n}$ while varying both g and n can be quite complicated, in general. Hence, we will focus on understanding what happens along different (g, n)-rays. In addition to the results discussed above, there are other rays in which the asymptotic behavior of $l_{g, n}$ can be understood via examples (see Section 5.2 of the Appendix) and Penner's lower bound. Table 1 summarizes these behaviors for $\chi\left(S_{g, n}\right)<0$.

Question What are asymptotic behaviors of $l_{g, n}$ along different (g, n)-rays in the (g, n) plane?

$(g, n)-$ rays	The asymptotic behavior of $l_{g, n}$
$g=0$	$1 /\left\|\chi\left(S_{g, n}\right)\right\|$
$g=1$ and n is even	$1 /\left\|\chi\left(S_{g, n}\right)\right\|$
$g=$ constant ≥ 2	$\log \left(\left\|\chi\left(S_{g, n}\right)\right\|\right) /\left\|\chi\left(S_{g, n}\right)\right\|$
$n=0,1,2,3$, or 4	$1 /\left\|\chi\left(S_{g, n}\right)\right\|$
$n=g, g+1$, or $g+2$	$1 /\left\|\chi\left(S_{g, n}\right)\right\|$
$n=g-1$ or $2(g-1)$	$1 /\left\|\chi\left(S_{g, n}\right)\right\|$

Table 1

1.1 Outline of the paper

We will first recall some definitions and properties in Section 2. In Section 3 we prove the lower bound of Theorem 1.1. We construct examples in Section 4 which give an upper bound for the genus 2 case, and we extend the example to arbitrary genus $g \geq 2$ to obtain the upper bound of Theorem 1.1. Finally, we construct a pseudo-Anosov element in $\operatorname{Mod}\left(S_{1,2 n}\right)$ and obtain an upper bound on $l_{1,2 n}$ in the Appendix.

Acknowledgements The author would like to thank Christopher Leininger for key discussions and for revising an earlier draft. Kasra Rafi and A J Hildebrand offered helpful suggestions and insights. I would also like to thank MSRI for its stimulating, collaborative research environment during its fall 2007 programs.

2 Preliminaries

2.1 Homeomorphisms of a surface

We say that a homeomorphism $f: S \rightarrow S$ is pseudo-Anosov if there are transverse singular foliations \mathcal{F}^{s} and \mathcal{F}^{u} together with transverse measures μ^{s} and μ^{u} such that for some $\lambda>1$,

$$
\begin{aligned}
f\left(\mathcal{F}^{s}, \mu^{s}\right) & =\left(\mathcal{F}^{s}, \lambda \mu^{s}\right), \\
f\left(\mathcal{F}^{u}, \mu^{u}\right) & =\left(\mathcal{F}^{u}, \lambda^{-1} \mu^{u}\right) .
\end{aligned}
$$

The number $\lambda=\lambda(f)$ is called the dilatation of f. We call f reducible if there is a finite disjoint union U of simple essential closed curves on S such that f leaves U invariant. If there exists $k>0$ such that f^{k} is the identity, then f is periodic.

A mapping class $[f]$ is pseudo-Anosov, reducible or periodic (respectively) if f is homotopic to a pseudo-Anosov, reducible or periodic homeomorphism (respectively). The following is proved in Fathi, Laudenbach and Poenaru [4].

Theorem 2.1 (Nielsen-Thurston) A mapping class $[f] \in \operatorname{Mod}(S)$ is either periodic, reducible, or pseudo-Anosov.

As a slight abuse of notation, we sometimes refer to a mapping class $[f]$ by one of its representatives f.

2.2 Markov partitions

Suppose $f: S \rightarrow S$ is pseudo-Anosov with stable and unstable measured singular foliations (\mathcal{F}^{s}, μ^{s}) and $\left(\mathcal{F}^{u}, \mu^{u}\right)$. We define a rectangle R to be a map

$$
\rho: I \times I \rightarrow S,
$$

such that ρ is an embedding on the interior, ρ (point $\times I$) is contained in a leaf of \mathcal{F}^{u}, and $\rho(I \times$ point $)$ is contained in a leaf of \mathcal{F}^{s}. We denote $\rho(\partial I \times I)$ by $\partial^{u} R$ and $\rho(I \times \partial I)$ by $\partial^{s} R$.

As a standard abuse of notation, we will write $R \subset S$ for the image of a rectangle map $\rho: I \times I \rightarrow S$.

Definition 2.2 A Markov partition for $f: S \rightarrow S$ is a decomposition of S into a finite union of rectangles $\left\{R_{i}\right\}_{i=1}^{k}$, such that:
(1) $\operatorname{Int}\left(R_{i}\right) \cap \operatorname{Int}\left(R_{j}\right)$ is empty, when $i \neq j$,
(2) $f\left(\bigcup_{j=1}^{k} \partial^{u} R_{j}\right) \subset \bigcup_{j=1}^{k} \partial^{u} R_{j}$,
(3) $f^{-1}\left(\bigcup_{i=1}^{k} \partial^{s} R_{i}\right) \subset \bigcup_{i=1}^{k} \partial^{s} R_{i}$.

Given a pseudo-Anosov homeomorphism $f: S \rightarrow S$, a Markov partition is constructed in Bestvina and Handel [2] from a train track map for f. The advantage of this construction over Fathi, Laudenbach and Poenaru [4], for example, is that the number of rectangles is substantially smaller. From [2], one has the following:

Theorem 2.3 For any pseudo-Anosov homeomorphism $f: S \rightarrow S$ of a surface S with at least one marked point, there exists a Markov partition for f with at most $-3 \chi(S)$ rectangles.

We say that a matrix is positive (respectively, nonnegative) if all the entries are positive (respectively, nonnegative).

We can define a transition matrix M associated to the Markov partition with rectangles $\left\{R_{i}\right\}_{i=1}^{k}$. The entry $m_{i, j}$ of M is the number of times that $f\left(R_{j}\right)$ wraps over R_{i}, so M is a nonnegative integral $k \times k$ matrix. In Bestvina and Handel's construction, M is the same as the transition matrix of the train track map and they show it is an integral Perron-Frobenius matrix (ie it is irreducible with nonnegative integer entries); see Gantmacher [5]. Furthermore, the Perron-Frobenius eigenvalue $\mu(M)=\lambda(f)$ is the dilatation of f. The width (respectively, height) of R_{i} is the i-th entry of the corresponding Perron-Frobenius eigenvector of M (respectively, M^{T}), where the eigenvectors are both positive by the irreducibility of M.

The following proposition will be used in proving the lower bound.
Proposition 2.4 Let M be a $k \times k$ integral Perron-Frobenius matrix. If there is a nonzero entry on the diagonal of M, then $M^{2 k}$ is a positive matrix and its PerronFrobenius eigenvalue $\mu\left(M^{2 k}\right)$ is at least k.

Proof We construct a directed graph Γ from M with k vertices $\{i\}_{i=1}^{k}$ such that the number of the directed edge from i to j in Γ equals $m_{i, j}$. We observe that for any $r>0$ the (i, j)-th entry $m_{i, j}^{(r)}$ of M^{r} is the number of directed edge paths from i to j of length r in Γ.

Since M is a Perron-Frobenius matrix, we know that Γ is path-connected by directed paths. Suppose M has a nonzero entry at the (l, l)-th entry, then we will see at least one corresponding loop edge at the vertex l. For any i and j in Γ, path-connectivity ensures us that there are directed edge paths of length $\leq k$ from i to l and from l to j. This tells us that there is a directed edge path P of length $\leq 2 k$ from i to j passing through l. Since we can wrap around the loop edge adjacent to l to increase the length of P, there is always a directed edge path of length $2 k$ from i to j. In other words, $m_{i, j}^{(2 k)}$ is at least 1 for all i and j, so $M^{2 k}$ is a positive matrix.
Let v be a corresponding Perron-Frobenius eigenvector, so that we have $M^{2 k} v=$ $\mu\left(M^{2 k}\right) v$. This implies that if $v=\left[v_{1} \cdots v_{k}\right]^{T}$, for all i,

$$
\sum_{j=1}^{k} m_{i, j}^{(2 k)} v_{j}=\mu\left(M^{2 k}\right) v_{i}
$$

or equivalently,

$$
\mu\left(M^{2 k}\right)=\sum_{j=1}^{k} m_{i, j}^{(2 k)} \frac{v_{j}}{v_{i}} .
$$

Choosing i such that $v_{i} \leq v_{j}$ for all j, we obtain

$$
\mu\left(M^{2 k}\right) \geq \sum_{j=1}^{k} m_{i, j}^{(2 k)} \geq \sum_{j=1}^{k} 1=k
$$

The following proposition will be used in proving the upper bound.

Proposition 2.5 Let Γ be the induced directed graph of an integral Perron-Frobenius matrix M with Perron-Frobenius eigenvalue $\mu(M)=\mu$. Let $P_{\Gamma}(i, d)$ be the total number of paths of length d emanating from vertex i in Γ. Then, for all i,

$$
\sqrt[d]{P_{\Gamma}(i, d)} \longrightarrow \mu(M) \quad \text { as } d \rightarrow \infty
$$

Proof Let M be an integral $k \times k$ Perron-Frobenius matrix with Perron-Frobenius eigenvalue μ and Perron-Frobenius eigenvector v. As above

$$
\sum_{j=1}^{k} m_{i, j}^{(d)} v_{j}=\mu\left(M^{d}\right) v_{i}=\mu^{d} v_{i}
$$

Let $v_{\text {max }}=\max _{i}\left\{v_{i}\right\}$ and $v_{\min }=\min _{i}\left\{v_{i}\right\}$. According to the Perron-Frobenius theory, the irreducibility of M implies that $v_{i}>0$ for all i. For all i we have

$$
\begin{aligned}
\frac{v_{\min }\left(\sum_{j} m_{i, j}^{(d)}\right)}{\mu^{d}} & \leq \frac{\sum_{j} m_{i, j}^{(d)} v_{j}}{\mu^{d}} \leq \frac{v_{\max }\left(\sum_{j} m_{i, j}^{(d)}\right)}{\mu^{d}} \\
\frac{v_{i}}{v_{\max }} & \leq \frac{\sum_{j} m_{i, j}^{(d)}}{\mu^{d}} \leq \frac{v_{i}}{v_{\min }}
\end{aligned}
$$

hence

We are done, since $\sum_{j} m_{i, j}^{(d)}=P_{\Gamma}(i, d)$ and for all i,

$$
\sqrt[d]{\frac{v_{i}}{v_{\max }}} \rightarrow 1 \quad \text { and } \quad \sqrt[d]{\frac{v_{i}}{v_{\min }}} \rightarrow 1, \quad \text { as } d \text { tends to } \infty
$$

2.3 Lefschetz numbers

We will review some definitions and properties of Lefschetz numbers. A more complete discussion can be found in Guillemin and Pollack [6] and Bott and Tu [3].

Let X be a compact oriented manifold, and $f: X \rightarrow X$ be a map. Define

$$
\operatorname{graph}(f)=\{(x, f(x)) \mid x \in X\} \subset X \times X
$$

and let Δ be the diagonal of $X \times X$. The algebraic intersection number $I(\Delta, \operatorname{graph}(f))$ is an invariant of the homotopy class of f, called the (global) Lefschetz number of f and it is denoted $L(f)$. As in [3], this can be alternatively described by

$$
\begin{equation*}
L(f)=\sum_{i \geq 0}(-1)^{i} \operatorname{trace}\left(f_{*}^{(i)}\right), \tag{1}
\end{equation*}
$$

where $f_{*}^{(i)}$ is the matrix induced by f acting on $H_{i}(X)=H_{i}(X ; \mathbb{R})$. The Euler characteristic is the self-intersection number of the diagonal Δ in $X \times X$,

$$
\chi(X)=I(\Delta, \Delta)=L(\mathrm{id}) .
$$

As seen in [6], if f has isolated fixed points, we can compute the local Lefschetz number of f at a fixed point x in local coordinates as

$$
L_{x}(f)=\operatorname{deg}\left(z \mapsto \frac{f(z)-z}{|f(z)-z|}\right),
$$

where z is on the boundary of a small disk centered at x which contains no other fixed points. Moreover we can compute the Lefschetz number by summing the local Lefschetz numbers of fixed points,

$$
L(f)=\sum_{f(x)=x} L_{x}(f)
$$

This description of $L_{x}(f)$ is given for smooth f in [6], but it is equally valid for continuous f since such a map is approximated by smooth maps. We will be computing the Lefschetz number of a homeomorphism $f: S_{g, n} \rightarrow S_{g, n}$, ignoring the marked points.

Proposition 2.6 If a homeomorphism $f: S_{g, n} \rightarrow S_{g, n}$ is homotopic (not necessarily fixing the marked points) to the identity or a multitwist, then

$$
L(f)=\chi\left(S_{g, 0}\right)=2-2 g .
$$

A multitwist is a composition of powers of Dehn twists on pairwise disjoint simple essential closed curves.

Proof If f is homotopic to the identity, the homotopy invariance of the Lefschetz number tells us $L(f)=L(\mathrm{id})=I(\Delta, \Delta)$ which is $\chi\left(S_{g, 0}\right)$.

Suppose f is homotopic to a multitwist. We will use (1) to compute $L(f)$. Note that $H_{i}\left(S_{g, 0}\right)$ is 0 for $i \geq 3, H_{0}\left(S_{g, 0}\right) \cong H_{2}\left(S_{g, 0}\right) \cong \mathbb{R}$ and $f_{*}^{(i)}$ is the identity when $i=0$ or 2 , so this implies $L(f)=2-\operatorname{trace}\left(f_{*}^{(1)}\right)$.

There exists a set $\left\{\gamma_{i}\right\}_{i=1}^{k}$ of disjoint simple essential closed curves with some integers $n_{i} \neq 0$ such that

$$
f \simeq T_{\gamma_{1}}^{n_{1}} \circ \cdots \circ T_{\gamma_{k}}^{n_{k}},
$$

where $T_{\gamma_{i}}^{n_{i}}$ is the n_{i}-th power of a Dehn twist along γ_{i}.
For any curve γ,

$$
T_{\gamma_{i} *}^{n_{i}}([\gamma])=[\gamma]+n_{i}\left\langle\gamma, \gamma_{i}\right\rangle\left[\gamma_{i}\right],
$$

where $[\gamma]$ is the homology class of γ and $\left\langle\gamma, \gamma_{i}\right\rangle$ is the algebraic intersection number of $[\gamma]$ and $\left[\gamma_{i}\right]$. If any γ_{i} is a separating curve, then $\left[\gamma_{i}\right]$ is the trivial homology class and $T_{\gamma_{i} *}^{n_{i}}$ acts trivially on $H_{1}\left(S_{g, 0}\right)$. We may therefore assume that each γ_{i} is nonseparating. After renaming the curves, we can assume that there is a subset $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{s}\right\}$ such that $\hat{\gamma}=\bigcup_{i=1}^{s} \gamma_{i}$ is nonseparating and $\hat{\gamma} \cup \gamma_{j}$ is separating for all $j>s$. Thus, for all $k \geq j>s$,

$$
\left[\gamma_{j}\right]=\sum_{i=1}^{s} c_{j i}\left[\gamma_{i}\right],
$$

for some constants $c_{j i} \in \mathbb{R}$. We can extend $\left\{\left[\gamma_{i}\right]_{i=1}^{S}\right.$ to a basis of $H_{1}\left(S_{g, 0}\right)$,

$$
\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{g}, \beta_{1}, \beta_{2}, \ldots, \beta_{g}\right\}
$$

where $\left[\gamma_{i}\right]=\alpha_{i}$ for $i \leq s \leq g$ and $\left\langle\alpha_{i}, \beta_{j}\right\rangle=\delta_{i j},\left\langle\alpha_{i}, \alpha_{j}\right\rangle=\left\langle\beta_{i}, \beta_{j}\right\rangle=0$.
First suppose $s=k$, then $\left\langle\alpha_{j}, \gamma_{i}\right\rangle=\left\langle\alpha_{j}, \alpha_{i}\right\rangle=0$ for all i and j. Therefore, for all j,

$$
f_{*}^{(1)}\left(\alpha_{j}\right)=\alpha_{j}
$$

and $\quad f_{*}^{(1)}\left(\beta_{j}\right)=\beta_{j}+\sum_{i=1}^{k} n_{i}\left\langle\beta_{j}, \gamma_{i}\right\rangle\left[\gamma_{i}\right]=\beta_{j}+\sum_{i=1}^{k} n_{i}\left\langle\beta_{j}, \alpha_{i}\right\rangle \alpha_{i}=\beta_{j}-n_{j} \alpha_{j}$.
So we have

$$
f_{*}^{(1)}=\left(\begin{array}{c|c}
I_{g \times g} & * \\
\hline 0 & I_{g \times g}
\end{array}\right)
$$

and $L(f)=2-\operatorname{trace}\left(f_{*}^{(1)}\right)=2-2 g$.

For $s<k$, we will have

$$
\begin{aligned}
f_{*}^{(1)}\left(\alpha_{j}\right) & =\alpha_{j}+\sum_{i=1}^{k} n_{i}\left\langle\alpha_{j}, \gamma_{i}\right\rangle\left[\gamma_{i}\right] \\
& =\alpha_{j}+\sum_{i=1}^{s} n_{i}\left\langle\alpha_{j}, \alpha_{i}\right\rangle \alpha_{i}+\sum_{i=s+1}^{k} n_{i}\left\langle\alpha_{j}, \gamma_{i}\right\rangle\left[\gamma_{i}\right] \\
& =\alpha_{j}+\sum_{i=s+1}^{k} n_{i} \sum_{t=1}^{s} c_{i t}\left\langle\alpha_{j}, \gamma_{t}\right\rangle\left[\gamma_{t}\right] \\
& =\alpha_{j}+\sum_{i=s+1}^{k} n_{i} \sum_{t=1}^{s} c_{i t}\left\langle\alpha_{j}, \alpha_{t}\right\rangle \alpha_{t} \\
& =\alpha_{j}
\end{aligned}
$$

and

$$
\begin{aligned}
f_{*}^{(1)}\left(\beta_{j}\right) & =\beta_{j}+\sum_{i=1}^{k} n_{i}\left\langle\beta_{j}, \gamma_{i}\right\rangle\left[\gamma_{i}\right] \\
& =\beta_{j}+\sum_{i=1}^{s} n_{i}\left\langle\beta_{j}, \gamma_{i}\right\rangle\left[\gamma_{i}\right]+\sum_{i=s+1}^{k} n_{i} \sum_{t=1}^{s} c_{i t}\left\langle\beta_{j}, \gamma_{t}\right\rangle\left[\gamma_{t}\right] \\
& =\beta_{j}+\sum_{i=1}^{s} n_{i}\left\langle\beta_{j}, \alpha_{i}\right\rangle \alpha_{i}+\sum_{i=s+1}^{k} n_{i} \sum_{t=1}^{s} c_{i t}\left\langle\beta_{j}, \alpha_{t}\right\rangle \alpha_{t} \\
& = \begin{cases}\beta_{j}, & \text { if } j>s, \\
\beta_{j}-n_{j} \alpha_{j}-\sum_{i=s+1}^{k} n_{i} c_{i j} \alpha_{j}, & \text { if } j \leq s .\end{cases}
\end{aligned}
$$

Therefore, the diagonal of the matrix $f_{*}^{(1)}$ is still all 1 's and

$$
L(f)=2-\operatorname{trace}\left(f_{*}^{(1)}\right)=2-2 g .
$$

3 Bounding the dilatation from below

Lemma 3.1 For any pseudo-Anosov element $f \in \operatorname{Mod}\left(S_{g, n}\right)$ equipped with a Markov partition, if $L(f)<0$, then there is a rectangle R of the Markov partition, such that the interiors of $f(R)$ and R intersect.

Proof Since f is a pseudo-Anosov homeomorphism, it has isolated fixed points. Suppose x is an isolated fixed point of f such that one of the following happens:
(1) x is a nonsingular fixed point and the local transverse orientation of \mathcal{F}^{s} is reversed.
(2) x is a singular fixed point and no separatrix of \mathcal{F}^{s} emanating from x is fixed.

A separatrix of \mathcal{F}^{s} is a maximal arc starting at a singularity and contained in a leaf of \mathcal{F}^{s}.

Claim $\quad L_{x}(f)=+1$.
Let B be a small disk centered at x containing no other fixed point of f. First we show that (in local coordinates) for every $z \in \partial B, f(z)-z \neq \alpha z$ for all $\alpha>0$.

It is easy to verify this in case 1 by choosing local coordinates $\left(\xi_{1}, \xi_{2}\right)$ around x so that f is given by

$$
f\left(\xi_{1}, \xi_{2}\right)=\left(-\lambda \xi_{1}, \frac{-1}{\lambda} \xi_{2}\right)
$$

In case 2 , we choose local coordinates around x such that the separatrices of \mathcal{F}^{s} emanating from x are sent to rays from 0 through the k-th roots of unity in \mathbb{R}^{2}. This means f rotates each of the sectors bounded by these rays through an angle $2 \pi j / k$ for some $j=1, \ldots, k-1$, and so for all $z \in \partial B f(z)-z \neq \alpha z$ for all $\alpha>0$.
Define a smooth map $h_{0}: \partial B \rightarrow S^{1}$ by $h_{0}(z)=(f(z)-z) /|f(z)-z|$, so $L_{x}(f)=$ $\operatorname{deg}\left(h_{0}\right)$ by definition. Let $g: \partial B \rightarrow S^{1}$ be defined by $g(z)=z /|z|$ and $h_{1}: S^{1} \rightarrow S^{1}$ be defined by $h_{1}(z /|z|)=(f(z)-z) /|f(z)-z|$, so that $h_{0}=h_{1} g$. Then

$$
L_{x}(f)=\operatorname{deg}\left(h_{0}\right)=\operatorname{deg}\left(h_{1} g\right)=\operatorname{deg}\left(h_{1}\right) \operatorname{deg}(g)=\operatorname{deg}\left(h_{1}\right)
$$

since $\operatorname{deg}(g)=1$. Note that h_{1} has no fixed point since for all $z \in \partial B$,

$$
f(z)-z \neq \alpha z,
$$

for all $\alpha>0$. Therefore $L_{x}(f)=\operatorname{deg}\left(h_{1}\right)=(-1)^{(1+1)}=+1$.
The assumption of $L(f)<0$ implies that there exists a fixed point x of f which is in neither of the cases above. In other words, it falls into one of the cases in Figure 1. As seen in Figure 1, there is a rectangle R of the Markov partition such that the interiors of $f(R)$ and R intersect.

Let $\Gamma_{S}(3) \triangleleft \operatorname{Mod}(S)$ denote the kernel of the action on $H_{1}(S ; \mathbb{Z} / 3 \mathbb{Z})$, where $S=$ $S_{g, 0}$. In [9], it is shown that $\Gamma_{S}(3)$ consists of pure mapping classes. Setting

$$
\Theta(g)=\left[\operatorname{Mod}(S): \Gamma_{S}(3)\right],
$$

we conclude the following.

Figure 1: The intersection of $f(R)$ and $R . R$ is the underlying rectangle and $f(R)$ is the shaded rectangle.

Lemma 3.2 Let $f \in \operatorname{Mod}\left(S_{g, n}\right)$ be a pseudo-Anosov element and $\widehat{f} \in \operatorname{Mod}\left(S_{g, o}\right)$ be the induced mapping class obtained by forgetting marked points. There exists a constant $1 \leq \alpha \leq \Theta(g)$ such that \hat{f}^{α} satisfies exactly one of the following:
(1) \hat{f}^{α} restricts to a pseudo-Anosov map on a connected subsurface.
(2) $\hat{f}^{\alpha}=\mathrm{Id}$.
(3) \hat{f}^{α} is a multitwist map.

Remark For the first two cases of Lemma 3.2, one can find α bounded by a linear function of g, but in case $3, \alpha$ may be exponential in g.

Theorem 3.3 For $g \geq 2$, given any pseudo-Anosov $f \in \operatorname{Mod}\left(S_{g, n}\right)$, let α be as in Lemma 3.2. Then

$$
\log \lambda(f) \geq \min \left\{\frac{\log 2}{\alpha(12 g-12)}, \frac{\log (6 g+3 n-6)}{2 \alpha(6 g+3 n-6)}\right\} .
$$

Proof We will deal with case 1 of Lemma 3.2 first.
If \widehat{f}^{α} restricts to a pseudo-Anosov homeomorphism on a connected subsurface $\sum_{g_{0}, n_{0}}$ of $S_{g, 0}$ of genus g_{0} with n_{0} boundary components (we have $2 g_{0}+n_{0} \leq 2 g$), then Penner's lower bound tells us

$$
\log \lambda\left(\hat{f}^{\alpha}\right) \geq \frac{\log 2}{12 g_{0}-12+4 n_{0}} \geq \frac{\log 2}{12 g-12} .
$$

Hence $\log \lambda(f) \geq \log \lambda(\widehat{f})>\log 2 / \alpha(12 g-12)$.
If \hat{f}^{α} is homotopic to the identity or a multitwist map, from Proposition 2.6, we have $L\left(f^{\alpha}\right)=L\left(\widehat{f^{\alpha}}\right)=\chi\left(S_{g, 0}\right)=2-2 g<0$. Theorem 2.3 tells us that for any pseudoAnosov f there is a Markov partition with k rectangles, where $k \leq-3 \chi(S)$. Recall that the transition matrix M obtained from the rectangles is a $k \times k$ Perron-Frobenius matrix and the Perron-Frobenius eigenvalue $\mu(M)$ equals $\lambda(f)$.
By Lemma 3.1, there is a rectangle R such that the interiors of $f^{\alpha}(R)$ and R intersect. This implies that there is a nonzero entry on the diagonal of M^{α}. Applying

Proposition 2.4, we obtain that $\mu\left(\left(M^{\alpha}\right)^{2 k}\right)=\mu\left(M^{2 k \alpha}\right)$ is at least k, so we have

$$
(\lambda(f))^{2 k \alpha}=\lambda\left(f^{2 k \alpha}\right)=\mu\left(M^{2 k \alpha}\right) \geq k .
$$

One can easily check $(\log x) / x$ is monotone decreasing for $x \geq 3$. Since
hence

$$
\begin{gathered}
3 \leq k \leq-3 \chi(S)=6 g+3 n-6, \\
\log \lambda(f) \geq \frac{\log k}{2 \alpha k} \geq \frac{\log (6 g+3 n-6)}{2 \alpha(6 g+3 n-6)} .
\end{gathered}
$$

Remark Penner's proof in [13] does not use Lefschetz numbers which we used to conclude that $\mu\left(M^{2 k \alpha}\right)$ is at least k, so we obtain a sharper lower bound for $n \gg g$.

4 An example which provides an upper bound

4.1 For the genus two case

In this section, we will construct a pseudo-Anosov $f \in \operatorname{Mod}\left(S_{2, n}\right)$ for all $n \geq 31$ then we compute its dilatation which gives us an upper bound for $l_{2, n}$.

Let $S_{0, m+2}$ be a genus 0 surface with $m+2$ marked points (ie a marked sphere), and recall an example of pseudo-Anosov $\phi \in \operatorname{Mod}\left(S_{0, m+2}\right)$ in [7]. We view $S_{0, m+2}$ as a sphere with $s+1$ marked points X circling an unmarked point x and $t+1$ marked points Y circling an unmarked point y, and a single extra marked point z. We can also draw this as a "turnover", as in Figure 2. Note that $|X \cap Y|=1,|X|=s+1$, $|Y|=t+1$ and $m=s+t$.

Figure 2: Two way of viewing a marked sphere. Black dots are marked points and the shaded dots on the right are marked points at the back.

We define homeomorphisms $\alpha_{s}, \beta_{t}: S_{0, m+2} \rightarrow S_{0, m+2}$ such that α_{s} rotates the marked points of X counterclockwise around x and β_{t} rotates the marked points of Y clockwise around y; see Figure 3. Define $\phi_{s, t}:=\beta_{t} \alpha_{s}$. In [7], it is shown that $\phi_{s, t}$

Figure 3: Homeomorphisms α_{s} and β_{t}
is pseudo-Anosov by checking it satisfies the criterion of [2]. We also note that from this one can check that x, y and z are fixed points of a pseudo-Anosov representative of $\phi_{s, t}$. Moreover, for $s, t \geq 1$ the dilatation of $\phi_{s, t}$ equals the largest root of the polynomial

$$
\begin{aligned}
T_{s, t}(x) & =x^{t+1}\left(x^{s}(x-1)-2\right)+x^{s+1}\left(x^{-s}\left(x^{-1}-1\right)-2\right) \\
& =(x-1) x^{(s+t+1)}-2\left(x^{s+1}+x^{t+1}\right)-(x-1) .
\end{aligned}
$$

The dilatation is minimized when $s=\lfloor m / 2\rfloor$ and $t=\lceil m / 2\rceil$. Let us define $\phi:=$ $\phi_{\lfloor m / 2\rfloor,\lceil m / 2\rceil}$ and its dilatation is the largest root of the polynomial

$$
\begin{aligned}
T_{m}(x) & :=T_{\lfloor m / 2\rfloor,\lceil m / 2\rceil}(x) \\
& =(x-1) x^{(m+1)}-2\left(x^{\lfloor m / 2\rfloor+1}+x^{\lceil m / 2\rceil+1}\right)-(x-1) .
\end{aligned}
$$

Proposition 4.1 If $m \geq 5$, then the largest real root of $T_{m}(x)$ is bounded above by $m^{3 / m}$.

Proof For all m, we have $T_{m}(1)=-4$. It is sufficient to show that for all $x \geq m^{3 / m}$, we have $T_{m}(x)>0$. Dividing the inequality by $x^{(m+1)}$, it is equivalent to show

$$
(x-1)+x^{-(m+1)}>2\left(x^{\lfloor m / 2\rfloor-m}+x^{\lceil m / 2\rceil-m}\right)+x^{-m} .
$$

For $m \geq 5$, one can verify the following inequalities hold for all $x \geq m^{3 / m}$:
(1) $x-1>(3 \log m) / m \geq 9 /(2 m)$,
(2) $x^{\lfloor m / 2\rfloor-m} \leq x^{\lceil m / 2\rceil-m} \leq 1 / m$,
(3) $x^{-m} \leq 1 /(25 m)$.

Therefore,

$$
\begin{aligned}
(x-1)+x^{-(m+1)} & >x-1>\frac{9}{2 m}>\frac{101}{25 m}=2\left(\frac{1}{m}+\frac{1}{m}\right)+\frac{1}{25 m} \\
& \geq 2\left(x^{\lfloor m / 2\rfloor-m}+x^{\lceil m / 2\rceil-m}\right)+x^{-m} .
\end{aligned}
$$

Remark Proposition 4.1 fails if we try to replace the bound with $c^{1 / m}$ where c is any constant.

Remark Hironaka and Kin [7] construct two infinite families of pseudo-Anosovs in $\operatorname{Mod}\left(S_{0, m}\right)$, with $\phi_{s, t}$ being one of them. Unlike $\phi_{s, t}$, the other family provides the sharp bound on $l_{0, m}$.

Next, we take a cyclic branched cover $S_{2, n}$ of $S_{0, m+2}$ with branched points x, y, and z, where $n=5(m+1)+1$ (See Figure 4.). Define $\tilde{X}=\{$ marked points around $\tilde{x}\}$ and $\tilde{Y}=\{$ marked points around $\tilde{y}\}$, so we have $|\tilde{X} \cap \tilde{Y}|=5,|\tilde{X}|=5(s+1)$ and $|\widetilde{Y}|=5(t+1)$.

Figure 4: π is the covering map. To form $S_{2, n}$ from the decagon, identify the opposite sides. Then π is the quotient by the group generated by rotation of an angle $2 \pi / 5$.

Figure 5: Homeomorphisms $\widetilde{\alpha_{s}}$ and $\widetilde{\beta_{t}}$

We lift α_{s}, β_{t} to $S_{2, n}$ and call them $\widetilde{\alpha_{s}}, \widetilde{\beta_{t}}$, so that $\widetilde{\alpha_{s}}$ rotates the marked points of \tilde{X} counterclockwise around \tilde{x} and $\widetilde{\beta_{t}}$ rotates the marked points of \tilde{Y} clockwise around \tilde{y}; see Figure 5. We define $\psi_{s, t}:=\widetilde{\beta_{t}} \widetilde{\alpha_{s}}$. It follows that $\psi_{s, t}$ is a lift of $\phi_{s, t}$, and so is pseudo-Anosov with $\lambda\left(\psi_{s, t}\right)=\lambda\left(\phi_{s, t}\right)$. An invariant train track for $\psi_{s, t}$ is obtained by lifting the one constructed in [7], and is shown in Figure 6 for $s=t=3$.

Figure 6: A train track for $\psi_{3,3}$

Hence for $n=5(m+1)+1 \geq 31$, we have constructed a pseudo-Anosov $\psi=$ $\psi_{\lfloor m / 2\rfloor,\lceil m / 2\rceil} \in \operatorname{Mod}\left(S_{2, n}\right)$ with $\lambda(\psi)=\lambda(\phi) \leq m^{3 / m}$ which implies

$$
\log \lambda(\psi) \leq \frac{3 \log m}{m}=\frac{15 \log (n-6)-15 \log 5}{n-6}
$$

We will now extend ψ so that n can be an arbitrary number ≥ 31. We add an extra marked point p_{1} on $S_{2, n}$ between points in \tilde{X} or \tilde{Y} except the places shown in Figure 7.

Figure 7: We are not allowed to add p_{1} in the places indicated by a shaded point.

Without loss of generality we assume p_{1} is added in \tilde{X} to obtain $S_{2, n+1}$ and we define $\psi_{1}:=\widetilde{\beta_{t}} \widetilde{\alpha_{s}}{ }^{\prime} \in \operatorname{Mod}\left(S_{2, n+1}\right)$ where $\widetilde{\alpha_{s}}{ }^{\prime}$ is extended from $\widetilde{\alpha_{s}}$ in the obvious way; see Figure 8. One can check that ψ_{1} is pseudo-Anosov via the techniques of [2]. An invariant train track for ψ_{1} is shown in Figure 9 and is obtained by modifying the invariant train track for ψ shown in Figure 6.

Next, we will show $\lambda\left(\psi_{1}\right) \leq \lambda(\psi)$. Let H (respectively, $\left.H_{1}\right)$ be the associated transition matrix of the train track map for ψ (respectively, ψ_{1}), and let Γ (respectively, Γ_{1}) be the induced directed graph as constructed in Section 2.2.

From the construction above (ie adding p_{1}), the directed graph Γ_{1} is obtained by adding a vertex on the edge going out from some vertex i in Γ (that is, subdividing the edge going out from i) where i has exactly one edge coming in and exactly one

Figure 8: The homeomorphism $\widetilde{\alpha_{s}}{ }^{\prime}$. The figure on the right is a local picture near the added point p_{1}.
edge going out. This implies $P_{\Gamma_{1}}(i, k+1)=P_{\Gamma}(i, k)$ and

$$
\sqrt[k+1]{P_{\Gamma_{1}}(i, k+1)} \leq \sqrt[k]{P_{\Gamma_{1}}(i, k+1)}=\sqrt[k]{P_{\Gamma}(i, k)}
$$

for all k. Since H and H_{1} are Perron-Frobenius matrices with Perron-Frobenius eigenvalues corresponding to the dilatations of ψ and ψ_{1}, and Proposition 2.5 tells us $\mu\left(H_{1}\right) \leq \mu(H)$, we have $\lambda\left(\psi_{1}\right)=\mu\left(H_{1}\right)$ is no greater than $\lambda(\psi)=\mu(H)$.

We can obtain ψ_{2}, ψ_{3} and ψ_{4} by repeating the construction above of adding more marked points without increasing dilatations (ie $\lambda\left(\psi_{c}\right) \leq \lambda(\psi)$ for $c=1,2,3,4$). Since $(\log m) / m \geq(\log (m+1)) /(m+1)$, we need not consider the cases with $c \geq 5$. Therefore, set $f: S_{2, n} \rightarrow S_{2, n}$ to be ψ_{c}, where $n=5(m+1)+1+c$ with $c<5$, and where $\psi_{0}=\psi$. For $n \geq 31$, we have

$$
\log \lambda(f) \leq \log \lambda(\psi)<\frac{3 \log m}{m}<\frac{3 \log \left(\frac{n-11}{5}\right)}{\left(\frac{n-11}{5}\right)}
$$

where $m=\lfloor(n-6) / 5\rfloor$.

Theorem 4.2 There exists $\kappa_{2}>0$ such that

$$
l_{2, n}<\frac{\kappa_{2} \log n}{n}
$$

for all $n \geq 3$.

Figure 9: A train track for ψ_{1}. The figure on the bottom is a local picture.

Proof From the discussion above, for $n \geq 31$,

$$
l_{2, n}<\frac{3 \log \left(\frac{n-11}{5}\right)}{\left(\frac{n-11}{5}\right)}<\frac{\kappa_{2}^{\prime} \log n}{n}
$$

for some κ_{2}^{\prime}. For $3 \leq n \leq 30$, let $\kappa_{2}^{\prime \prime}=\max \left\{l_{2,3}, l_{2,4}, \ldots, l_{2,30}\right\}$ then

$$
l_{2, n} \leq \kappa_{2}^{\prime \prime}=\left(\kappa_{2}^{\prime \prime} \frac{31}{\log 31}\right) \frac{\log 31}{31}<\left(\kappa_{2}^{\prime \prime} \frac{31}{\log 31}\right) \frac{\log n}{n}
$$

Let $\kappa_{2}:=\max \left\{\kappa_{2}^{\prime}, \kappa_{2}^{\prime \prime}(31 / \log 31)\right\}$.

4.2 Higher genus cases

We can generalize our construction and extend to any genus $g>2$. For any fixed $g>2$, we define ψ to be a homeomorphism of $S_{g, n}$ in the same fashion with $n=$ $(2 g+1)(m+1)+1$ by taking an appropriate branched cover over $S_{0, m+2}$, and we can again extend to arbitrary n by adding c extra marked points and constructing ψ_{c}. Define $f: S_{g, n} \rightarrow S_{g, n}$ to be ψ_{c} where $n=(2 g+1)(m+1)+1+c$. If $n \geq 6(2 g+1)+1$, then

$$
\begin{aligned}
\log \lambda(f) & <\frac{3 \log m}{m}, \quad \text { where } m=\left\lfloor\frac{n-1}{2 g+1}\right\rfloor-1 \\
& <\frac{3 \log \left(\frac{n-4 g-3}{2 g+1}\right)}{\left(\frac{n-4 g-3}{2 g+1}\right)} .
\end{aligned}
$$

Theorem 4.3 For any fixed $g \geq 2$, there exists $\kappa_{g}>0$ such that

$$
l_{g, n}<\frac{\kappa_{g} \log n}{n},
$$

for all $n \geq 3$.

Proof This is similar to the proof of Theorem 4.2, where κ_{g} is defined to be

$$
\kappa_{g}:=\max \left\{\kappa_{g}^{\prime}, \kappa_{g}^{\prime \prime} \frac{12 g+7}{\log (12 g+7)}\right\} .
$$

Proof of Theorem 1.1 We only need to prove that the lower bounds on $\log \lambda(f)$ of Theorem 3.3 are bounded below by $(\log n) /\left(\omega_{g} n\right)$ for some ω_{g} depending only on g, then let $c_{g}=\max \left\{\kappa_{g}, \omega_{g}\right\}$. We use the monotone decreasing property of $(\log n) / n$ for $n \geq 3$. Let

$$
\omega_{g}^{\prime}(\alpha):=\frac{\alpha(12 g-12)}{\log 2} \frac{\log 3}{3} \geq \frac{\alpha(12 g-12)}{\log 2} \frac{\log n}{n}
$$

and so

$$
\frac{\log 2}{\alpha(12 g-12)} \geq \frac{\log n}{\omega_{g}^{\prime}(\alpha) n} .
$$

For $n \geq g-1$,

$$
\frac{\log (6 g+3 n-6)}{2 \alpha(6 g+3 n-6)} \geq \frac{\log 9 n}{2 \alpha 9 n}>\frac{1}{18 \alpha} \frac{\log n}{n} .
$$

For $3 \leq n<g-1$,

$$
\frac{\log (6 g+3 n-6)}{2 \alpha(6 g+3 n-6)}>\frac{\log (9(g-1))}{2 \alpha 9(g-1)}>\frac{\log g}{18 \alpha g} \frac{3}{\log 3} \frac{\log n}{n}
$$

Let $\omega_{g}:=\max \left\{\omega_{g}^{\prime}(\alpha), 18 \alpha,(6 \alpha g \log 3) / \log g\right\}$, where $0 \leq \alpha \leq \Theta(g)$.

5 Appendix

5.1 Torus with marked points

We will construct an example to prove that $l_{1,2 n}$ has an upper bound of the same order as Penner's lower bound in [13], ie $l_{1,2 n}=O(1 / n)$. The construction is analogous to the one given by Penner for $S_{g, 0}$ in [13].

Let $S_{1,2 n}$ be a marked torus of $2 n$ marked points. Let a and b be essential simple closed curves as in Figure 10. Let T_{a}^{-1} be the left Dehn twist along a and T_{b} be the

Figure 10: Essential simple closed curves a and b on a marked torus
right Dehn twist along b, then we define

$$
f:=\rho \circ T_{b} \circ T_{a}^{-1} \in \operatorname{Mod}\left(S_{1,2 n}\right)
$$

where ρ rotates the torus clockwise by an angle of $2 \pi / n$, so it sends each marked point to the one which is two to the right. As in [12], f^{n} is shown to be pseudo-Anosov, and thus so is f. Figure 11 shows a bigon track for f^{n}.

We obtain the $2 n \times 2 n$ transition matrix M^{n} associated to the train track map of f^{n} where M^{n} is an integral Perron-Frobenius matrix and the Perron-Frobenius

Figure 11: A bigon track for f^{n}
eigenvalues $\mu\left(M^{n}\right)$ is the dilatation $\lambda\left(f^{n}\right)$ of f^{n}. For $n \geq 5$, we have $M^{n}=N$, where

$$
N=\left(\begin{array}{cccccccc}
A_{1} & B_{1} & 0 & 0 & \cdots & 0 & 0 & D_{1} \\
A_{2} & B_{2} & B_{1} & 0 & \cdots & 0 & 0 & 0 \\
0 & B_{3} & B_{2} & B_{1} & \cdots & 0 & 0 & 0 \\
0 & 0 & B_{3} & B_{2} & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & B_{3} & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & B_{1} & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & B_{2} & B_{1} & 0 \\
0 & 0 & 0 & 0 & \cdots & B_{3} & B_{2} & D_{2} \\
A_{3} & C & 0 & 0 & \cdots & 0 & B_{3} & D_{3}
\end{array}\right)
$$

and

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right), \quad A_{2}=\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right), \quad A_{3}=\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right), \quad C=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right), \\
& B_{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right), \quad B_{2}=\left(\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right), \quad B_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right), \\
& D_{1}=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right), \quad D_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right), \quad D_{3}=\left(\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right) .
\end{aligned}
$$

For $n \geq 5$, the greatest column sum of M^{n} is 9 and the greatest row sum of M^{n} is 11. One can verify that both the greatest column sum and the greatest row sum are ≤ 11 for $0<n \leq 4$. Therefore, for $n \geq 1$,

$$
\begin{gathered}
11 \geq \mu\left(M^{n}\right)=\lambda\left(f^{n}\right)=(\lambda(f))^{n} \\
\Rightarrow l_{1,2 n} \leq \log \lambda(f) \leq \frac{\log 11}{n} .
\end{gathered}
$$

5.2 Higher genus with marked points

In all of the following examples we obtain a mapping class $\tilde{f} \in \operatorname{Mod}\left(S_{g, n}\right)$ from $f \in \operatorname{Mod}\left(S_{g, 0}\right)$ by adding marked points on the closed surface $S_{g, 0}$, where f is a composition of Dehn twists along some set \mathcal{T} of closed geodesics. We can add one marked point in each of the complementary disks of the curves in \mathcal{T} without creating essential reducing curves. By [12, Theorem 3.1], the induced mapping class $\tilde{f} \in \operatorname{Mod}\left(S_{g, n}\right)$ is pseudo-Anosov with dilatation $\lambda(\tilde{f})=\lambda(f)$.

Example 1 Penner [13] constructed a pseudo-Anosov mapping class $f \in \operatorname{Mod}\left(S_{g, 0}\right)$ with dilatation $\lambda(f) \leq(\log 11) / g$ for $g \geq 2$, where

$$
f:=\rho \circ T_{c} \circ T_{a}^{-1} \circ T_{b} .
$$

and T_{α} is the Dehn twist along α. Here $\mathcal{T}=\mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$ with

$$
\mathcal{A}=\bigsqcup_{i=1}^{g} a_{i}, \quad \mathcal{B}=\bigsqcup_{i=1}^{g} b_{i} \quad \text { and } \quad \mathcal{C}=\bigsqcup_{i=1}^{g} c_{i} .
$$

We can add g marked points as in the Figure 12 so that $\tilde{f} \in \operatorname{Mod}\left(S_{g, g}\right)$ is pseudoAnosov. Therefore,

$$
l_{g, g} \leq \log \lambda(\tilde{f}) \leq \frac{\log 11}{g} .
$$

We can also add extra marked points at the fixed points of the rotation. For $g \geq 2$, we will have for $c=0,1$ and 2 ,

$$
l_{g, g+c} \leq \log \lambda(\tilde{f}) \leq \frac{\log 11}{g}
$$

where $\tilde{f} \in \operatorname{Mod}\left(S_{g, g+c}\right)$.

Figure 12: A pseudo-Anosov $\tilde{f} \in \operatorname{Mod}\left(S_{g, g}\right)$
Example 2 For all $g \geq 3$, define $f: S_{g, 0} \rightarrow S_{g, 0}$ to be

$$
f:=\rho \circ T_{b_{1}} \circ T_{a_{1}}^{-1}
$$

where
and

$$
\begin{array}{ll}
\rho\left(a_{1}\right)=a_{g+1}, & \rho\left(b_{1}\right)=b_{g+1} \\
\rho\left(a_{i}\right)=a_{i-1}, & \rho\left(b_{i}\right)=b_{i-1},
\end{array} \quad i=2, \ldots, g+1
$$

Figure 13: A pseudo-Anosov $f \in \operatorname{Mod}\left(S_{g, 0}\right)$

We construct the $(2 g+2) \times(2 g+2)$ transition matrix $M^{(g+1)}$ with respect to the spanning vectors associated with geodesics in \mathcal{T}. We will get $M^{(g+1)}=N$ for $g \geq 3$, where the matrices are the same as in the Appendix (Section 5.1). Therefore for $g \geq 3$ we have

$$
\log \lambda(f) \leq \frac{\log 9}{g+1}
$$

Here $\mathcal{T}=\mathcal{A} \cup \mathcal{B}$ with

$$
\mathcal{A}=\bigsqcup_{i=1}^{g} a_{i} \quad \text { and } \quad \mathcal{B}=\bigsqcup_{i=1}^{g} b_{i}
$$

For $g \geq 3$ and $c=0,1,2,3,4$, we have

$$
l_{g, c} \leq \log \lambda(\tilde{f}) \leq \frac{\log 9}{g+1}
$$

where $\tilde{f} \in \operatorname{Mod}\left(S_{g, c}\right)$.
Example 3 For $g \geq$ 5, define $f: S_{g, 0} \rightarrow S_{g, 0}$ by

$$
f:=\rho \circ T_{d_{1}} \circ T_{c_{1}}^{-1} \circ T_{b_{1}} \circ T_{a_{1}},
$$

where

$$
\rho\left(a_{1}\right)=a_{g-1}, \rho\left(b_{1}\right)=b_{g-1}, \rho\left(c_{1}\right)=c_{g-1}, \rho\left(d_{1}\right)=d_{g-1}
$$

and $\rho\left(a_{i}\right)=a_{i-1}, \quad \rho\left(b_{i}\right)=b_{i-1}, \quad \rho\left(c_{i}\right)=c_{i-1}, \quad \rho\left(d_{i}\right)=d_{i-1}, i=2, \ldots, g-1$.

Figure 14: A pseudo-Anosov $f \in \operatorname{Mod}\left(S_{g, 0}\right)$
Similarly, we have the $(4 g-4) \times(4 g-4)$ transition matrix $M^{(g-1)}$ with respect to the spanning vectors associated with the geodesics in \mathcal{T}. For $g \geq 5$ we have $M^{(g-1)}=N$
where

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 3 & 1 \\
1 & 1 & 3 & 2
\end{array}\right), \quad A_{2}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 3 & 1
\end{array}\right), \quad A_{3}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 3 & 2 \\
1 & 1 & 3 & 0
\end{array}\right), \\
& B_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), \quad B_{2}=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 3 & 1 \\
1 & 1 & 3 & 3
\end{array}\right), \quad B_{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 3 & 1
\end{array}\right), \\
& C=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) \text {, } \\
& D_{1}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), \\
& D_{2}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), \\
& D_{3}=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 4 & 1 \\
1 & 1 & 4 & 3
\end{array}\right) .
\end{aligned}
$$

For $g \geq 5$, the greatest column sum of $M^{(g-1)}$ is 17 and the greatest row sum of $M^{(g-1)}$ is 21 , hence

$$
\log \lambda(f) \leq \frac{\log 17}{g-1} .
$$

Here $\mathcal{T}=\mathcal{A} \cup \mathcal{B} \cup \mathcal{C} \cup \mathcal{D}$ with

$$
\mathcal{A}=\bigsqcup_{i=1}^{g} a_{i}, \quad \mathcal{B}=\bigsqcup_{i=1}^{g} b_{i}, \quad \mathcal{C}=\bigsqcup_{i=1}^{g} c_{i} \quad \text { and } \quad \mathcal{D}=\bigsqcup_{i=1}^{g} d_{i}
$$

For $c=1$ and 2 , we can induce $\tilde{f} \in \operatorname{Mod}\left(S_{g, c(g-1)}\right)$ with

$$
l_{g, c(g-1)} \leq \log \lambda(\tilde{f}) \leq \frac{\log 17}{g-1}
$$

when $g \geq 5$.

References

[1] M Bauer, An upper bound for the least dilatation, Trans. Amer. Math. Soc. 330 (1992) 361-370 MR1094556
[2] M Bestvina, M Handel, Train-tracks for surface homeomorphisms, Topology 34 (1995) 109-140 MR1308491
[3] R Bott, L W Tu, Differential forms in algebraic topology, Graduate Texts in Math. 82, Springer, New York (1982) MR658304
[4] A Fathi, F Laudenbach, V Poenaru, editors, Travaux de Thurston sur les surfaces, second edition, Astérisque 66, Soc. Math. France, Paris (1991) MR568308
[5] FR Gantmacher, The theory of matrices. Vols. 1, 2, Translated by K. A. Hirsch, Chelsea Publ. Co., New York (1959) MR0107649
[6] V Guillemin, A Pollack, Differential topology, Prentice-Hall, Englewood Cliffs, N.J. (1974) MR0348781
[7] E Hironaka, E Kin, A family of pseudo-Anosov braids with small dilatation, Algebr. Geom. Topol. 6 (2006) 699-738 MR2240913
[8] N V Ivanov, Coefficients of expansion of pseudo-Anosov homeomorphisms, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988) 111-116, 191 MR964259
[9] N V Ivanov, Subgroups of Teichmüller modular groups, Transl. of Math. Monogr. 115, Amer. Math. Soc. (1992) MR1195787 Translated from the Russian by E J F Primrose and revised by the author
[10] CT McMullen, Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations, Ann. Sci. École Norm. Sup. (4) 33 (2000) 519-560 MR1832823
[11] H Minakawa, Examples of pseudo-Anosov homeomorphisms with small dilatations, J. Math. Sci. Univ. Tokyo 13 (2006) 95-111 MR2277516
[12] R C Penner, A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179-197 MR930079
[13] R C Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443-450 MR1068128

Department of Mathematics, The University of Illinois at Urbana-Champaign 1409 West Green Street, Urbana, IL 61801, USA
ctsai6@math.uiuc.edu
http://www.math.uiuc.edu/~ctsai6/

Proposed: Joan Birman
Seconded: Danny Calegari, Walter Neumann

Received: 8 October 2008 Revised: 6 May 2009

