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Abstract

The asymptotic behavior of the composition of two resolvents in a Hilbert space is investigated.
Connections are made between the solutions of associated monotone inclusion problems and their
dual versions. The applications provided include a study of an alternating minimization procedure
and a new proof of von Neumann’s classical result on the method of alternating projections.
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1. Introduction

Throughout,H is a real Hilbert space with inner product〈· | ·〉 and induced norm‖ · ‖.
Let A andB be two maximal monotone operators fromH to 2H with resolventsJA and
JB , respectively, and let� ∈ ]0,+∞[. Our paper is concerned with the inclusion problem

find (x, y) ∈H2 such that (0,0) ∈ (Id − R + �(A× B))(x, y), (1)
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whereR: (x, y) �→ (y, x). This abstract formulation subsumesawide spectrumof problems
in nonlinear analysis and its applications. We thus recover problems arising in variational
inequalities[30], best approximation[12], image processing[4,44], mechanics[34], and
optimization[1,31]. The dual inclusion problem associated with (1) is

find (x∗, y∗) ∈H2 such that

(0,0) ∈ ((Id − R)−1+ (A−1× B−1) ◦ (Id/�))(x∗, y∗). (2)

Now consider the alternating resolvent method

x0 ∈H and (∀n ∈ N) yn = J�Bxn, xn+1= J�Ayn, (3)

whereN = {0,1,2, . . .}. The objective of the present paper is to provide a systematic in-
vestigation of the asymptotic behavior of the sequences(xn)n∈N, (yn)n∈N, (yn − xn)n∈N,
and(xn+1 − yn)n∈N generated by this algorithm in connection with the solutions of (1)
and (2). When specialized to the case whenA and B are subdifferentials, our results
will be significantly refined and will yield new insights into an alternating minimization
procedure.
The remainder of the paper is organized as follows. Section 2 contains basic nota-

tion and auxiliary results on nonexpansive and monotone operators. In Section 3, we
provide a detailed investigation of the asymptotic behavior of (3). The applications dis-
cussed in that section include variational inequalities as well as the problem of finding
cycles for inconsistent feasibility problems. In Section 4, the results of Section 3 are
sharpened in the context of proximity operators and we obtain new results on the pri-
mal and dual behavior of an alternating minimization procedure. Among the applications
presented is a newproof of vonNeumann’s classical result on the convergence of alternating
projections.

2. Auxiliary results

We recall some useful results on monotone operators and resolvents. LetA:H→ 2H

be a set-valued operator. The sets domA = {x ∈ H | Ax �= ]}, ranA = {u ∈ H |
(∃ x ∈ H) u ∈ Ax}, and grA = {(x, u) ∈ H2 | u ∈ Ax} are the domain, the range,
and the graph ofA, respectively. The inverse ofA is the set-valued operatorA−1 with
graph{(u, x) ∈ H2 | u ∈ Ax}, the resolvent ofA is JA = (Id + A)−1, and the Yosida
approximation ofA of index� ∈ ]0,+∞[ is

�A= (Id − J�A)/�= (Id + A−1/�)−1 ◦ (Id/�). (4)

The operatorA is monotone if〈x − y |u − v〉�0, for all (x, u) and(y, v) in grA. If A is
monotone and grA cannot be enlarged without destroying monotonicity, thenA is maximal
monotone. A classical result due to Minty[35] implies thatA is maximal monotone if and
only if JA is firmly nonexpansive with domainH. We now provide basic properties of
firmly nonexpansive operators (see[24, Sections 1.9 and 1.11]for proofs and additional
properties).
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Fact 2.1. Let T :H→H be an operator with domain D. Then T is firmly nonexpansive
on D if any of the following equivalent properties holds:

(i) (∀x ∈ D)(∀y ∈ D) ‖T x − Ty‖2�‖x − y‖2− ‖(Id − T )x − (Id − T )y‖2.
(ii) 2T−Id is nonexpansive, i.e., (∀x ∈ D)(∀y ∈ D) ‖(2T−Id)x−(2T−Id)y‖�‖x−y‖.
(iii) T = JA for some monotone operatorA:H→ 2H.

Theclassof firmlynonexpansiveoperators is not closedunder composition. In[15],Bruck
andReich introduced the class of strongly nonexpansive operators: a nonexpansive operator
T :H→H is strongly nonexpansive onD = domT if (xn − yn) − (T xn − Tyn)→ 0,
whenever(xn)n∈N and (yn)n∈N are sequences inD such that(xn − yn)n∈N is bounded
and‖xn − yn‖ − ‖T xn − Tyn‖ → 0. We shall utilize the following properties of strongly
nonexpansive operators (which hold true in considerablymoregeneral settings, see[15,40]).
As usual,

Fix T = {x ∈H | T x = x} (5)

denotes the set of fixed points of an operatorT :H→H.

Fact 2.2. Let T and(Ti)1� i�m be operators fromH to H with domainH. Then the
following properties hold:

(i) If T is firmly nonexpansive, then it is strongly nonexpansive.
(ii) If the operators(Ti)1� i�m are strongly nonexpansive, then the compositionT1 · · · Tm

is also strongly nonexpansive.
(iii) Suppose that T is strongly nonexpansive and letx0 ∈ H. If Fix T �= ], then the

sequence(T nx0)n∈N converges weakly to some point inFix T ; otherwise, ‖T nx0‖ →
+∞.

Proof. (i): See[15,Proposition2.1]. (ii): See[15,Proposition1.1]. (iii): See[15,Corollaries
1.3 and 1.4]. �

Now letA:H→ 2H be a set-valued operator. We use the notation

A∨ = A ◦ (−Id) (6)

and

Ã= (−Id) ◦ A−1 ◦ (−Id)=−((A−1)∨). (7)

It is straightforward to verify that̃A is (maximal) monotone if and only ifA is, thaty ∈ Ãx
if and only if−x ∈ A(−y), and that

�̃A= �Id + Ã. (8)

These concepts admit finer descriptions when specialized to subdifferentials. Let�0(H)
be the class of all proper lower semicontinuous convex functions fromH to ] −∞,+∞].
Now takef ∈ �0(H). Then the subdifferential operator�f of f is maximal monotone and
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the proximity operator proxf =J�f has full domainH [36]. For� ∈ ]0,+∞[, the function

�f = f �
(
1

2�
‖ · ‖2

)
(9)

is the Moreau envelope off of index�, where� denotes the inf-convolution operator. We
have[36]

∇(�f )=�(�f ). (10)

Now let f ∗ denote the conjugate off. Then Moreau’s decomposition[36] states that
1
2‖ · ‖2= (12‖ · ‖2�f )+ (12‖ · ‖2�f ∗). Differentiation then yields Id= proxf + proxf ∗ .
More generally, we deduce from (4) that

(∀x ∈H) x = prox�f x + �proxf ∗/�(x/�). (11)

If f is the indicator function of a nonempty closed convex setC, denoted by�C , then
proxf is the projector ontoC, denoted byPC .
We conclude this section with a resolvent identity.

Fact 2.3. LetA,B:H→ 2H bemaximal monotone operators and let� ∈ ]0,+∞[.Then
Fix J�A((1− �)Id + �JB)= Fix JAJB. (12)

Proof. Takex ∈ H. Then the following equivalences hold:x ∈ Fix(JAJB) ⇔ JBx −
x ∈ Ax ⇔ (1 − �)x + �JBx ∈ x + �Ax ⇔ ((1 − �)Id + �JB)x ∈ (Id + �A)x ⇔
x = (Id + �A)−1((1− �)Id + �JB)x⇔ x ∈ Fix J�A((1− �)Id + �JB). �

The following facts appear implicitly in[3,34].

Fact 2.4. Let H be a real Hilbert space and letA,B:H → 2H be maximal monotone
operators. LetS be the set of solutions to the primal inclusion problem

f ind x ∈ H such that 0 ∈ Ax + Bx (13)

and letS∗ be the set of solutions to the associated dual problem

f ind x∗ ∈ H such that 0 ∈ A−1x∗ + B̃x∗. (14)

Then:

(i) S= {x ∈ H | (∃ x∗ ∈ S∗) x∗ ∈ Ax and − x∗ ∈ Bx}.
(ii) S∗ = {x∗ ∈ H | (∃ x ∈ S) x ∈ A−1x∗ and − x ∈ B̃x∗}.

3. The composition of two resolvents

Throughout this section,A,B:H → 2H are maximal monotone operators and� ∈
]0,+∞[.
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3.1. Primal and dual inclusions

A regularization of the problem

find x ∈H such that 0∈ Ax + Bx (15)

is [31,34]

find x ∈H such that 0∈ Ax+�Bx. (16)

As seen in Fact 2.4, the dual problem of (16) is

find x∗ ∈H such that 0∈ A−1x∗ + �̃Bx∗. (17)

An alternative regularization of (15) is

find y ∈H such that 0∈�Ay + By, (18)

the dual of which is

find y∗ ∈H such that 0∈ �̃Ay∗ + B−1y∗. (19)

The connection between the composition of the two resolventsJ�A andJ�B and the inclusion
problems (16)–(19) will be explored after the following definition.

Definition 3.1. Set

(i) S = (Id − R + �(A× B))−1(0,0);
(ii) S∗ = ((Id − R)−1+ (A−1× B−1) ◦ (Id/�))−1(0,0);
(iii) E = (A+�B)−1(0) andF = (�A+ B)−1(0);
(iv) u∗ = J(A−1+B̃)/�(0) andv∗ = J(Ã+B−1)/�(0); note that, depending on the domains of
J(A−1+B̃)/� andJ(Ã+B−1)/�, the vectorsu∗ andv∗ may not exist.

In other words, the solution sets of (1), (2), (16), and (18) are denoted byS, S∗, E, and
F, respectively.

Proposition 3.2. The following identities hold:

(i) E = Fix J�AJ�B = J�A(F ) andF = Fix J�BJ�A = J�B(E).
(ii) S = Fix J�(A×B)R = (E × F) ∩ grJ�B .
(iii) S∗ = {(�u∗, �v∗)} andv∗ = −u∗.
(iv) S∗ = (R − Id)(S).
(v) J�B |E :E→ F : x �→ x+�u∗ is a bijectionwith inverseJ�A|F :F → E: y �→ y+�v∗.
(vi) E = A−1(u∗) ∩ (�B)−1(v∗) andF = (�A)−1(u∗) ∩ B−1(v∗).
(vii) S = (E × F) ∩ (R − Id)−1(S∗).

Proof. (i) The equivalences

x ∈ E ⇔ 0 ∈ Ax+�Bx ⇔ J�Bx ∈ x + �Ax
⇔ x = J�AJ�Bx ⇔ x ∈ Fix J�AJ�B (20)
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show thatE = Fix J�AJ�B ; the proof ofF = Fix J�BJ�A is analogous. Ifx ∈ Fix J�AJ�B ,
thenJ�Bx ∈ Fix J�BJ�A. HenceJ�B(E) ⊂ F and similarlyJ�A(F ) ⊂ E. Now applyJ�A
andJ�B to the last two inclusions and obtain the remaining inclusionsE ⊂ J�A(F ) and
F ⊂ J�B(E), respectively.
(ii) These two identities result from the equivalences

(x, y) ∈ S ⇔ R(x, y) ∈ (Id + �(A× B))(x, y)
⇔ (x, y) ∈ Fix J�(A×B)R
⇔ x = J�Ay and y = J�Bx
⇔ x ∈ Fix J�AJ�B, y ∈ Fix J�BJ�A, and y = J�Bx
⇔ (x, y) ∈ E × F and (x, y) ∈ grJ�B, (21)

where the last equivalence follows from (i).
(iii) Take (x∗, y∗) ∈ S∗, i.e.,
(0,0) ∈ (A−1(x∗/�)× B−1(y∗/�))+ (Id − R)−1(x∗, y∗). (22)

Then, by Fact 2.4(ii), there exists(x, y) ∈ S such that{
(x, y) ∈ A−1(x∗/�)× B−1(y∗/�),
(−x,−y) ∈ (Id − R)−1(x∗, y∗). (23)

These two inclusions can be rewritten as{
(x∗, y∗) ∈ �(A× B)(x, y),
(−x∗,−y∗)= (Id − R)(x, y). (24)

In turn, (24) is equivalent to{
x ∈ A−1(x∗/�),
−y ∈ B̃(x∗/�),
x∗ = y − x =−y∗,

(25)

or, alternatively, to{−x ∈ Ã(y∗/�),
y ∈ B−1(y∗/�),
x∗ = y − x =−y∗.

(26)

Adding the two inclusions in both (25) and (26), we arrive at{−x∗ = x − y ∈ (A−1+ B̃)(x∗/�),
−y∗ = y − x ∈ (Ã+ B−1)(y∗/�). (27)

In view of Definition 3.1(iv), we conclude that{
x∗/�= J(A−1+B̃)/�(0)= u∗,
y∗/�= J(Ã+B−1)/�(0)= v∗. (28)

We have thus proven that

S∗ ⊂ {(�u∗, �v∗)} and, if S∗ �= ], then v∗ = −u∗. (29)
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Now suppose thatu∗=J(A−1+B̃)/�(0) exists. Then 0∈ �u∗+A−1u∗+B̃u∗=A−1u∗+ �̃Bu∗
by (8). In other words,u∗ solves the dual problem (17) and, by Fact 2.4(ii), the primal
problem (16) also has a solution. Accordingly, by Definition 3.1(iii),E �= ]. In turn, it
follows from (i) and (ii) thatS �= ]. Consequently, invoking Fact 2.4(i), we obtainS∗ �= ]
and we therefore deduce from (29) that (iii) holds.
(iv): SinceS = ] ⇔ S∗ �= ], it is enough to assume thatS∗ �= ]. SinceS∗ =
{(�u∗, �v∗)}, it follows from (25) that there exists(x, y) ∈ S such that�u∗ = y − x = �v∗.
HenceS∗ ⊂ (Id−R)(S). Conversely, take(x, y) ∈ S. Then, by Fact 2.4(i), (24) holds and
therefore�u∗ = y − x = �v∗. Thus(Id − R)(S) ⊂ S∗.
(v): It is clear from (i) thatJ�B |E :E→ F is surjective. Now takex ∈ E. Then (ii) implies

that(x, J�Bx) ∈ S. By (iii) and (iv), �(u∗, v∗) = (R − Id)(x, J�Bx) and henceJ�B |E is a
translation by�u∗, the inverse of which is a translation by−�u∗ = �v∗, namely,J�A|F .
(vi): Fix x ∈ E and sety = J�Bx. Then it follows from (i) and (ii) that(x, y) ∈ S. In

turn, we deduce from (25) and (28) that{
x ∈ A−1u∗,
v∗ = (x − y)/�= (x − J�Bx)/�=�Bx,

(30)

whencex ∈ A−1u∗ ∩ (�B)−1(v∗). Accordingly,E ⊂ A−1u∗ ∩ (�B)−1(v∗). To verify the
reverse inclusion, takex ∈ A−1u∗ ∩ (�B)−1(v∗) and sety = x + �u∗. Thenx = J�Ay and
y = J�Bx. Thus, (i) yieldsx ∈ Fix J�AJ�B =E and we obtainA−1u∗ ∩ (�B)−1(−u∗) ⊂ E.
The corresponding identity forF is derived in the same fashion.
(vii): On the one hand, (ii) yieldsS ⊂ E × F and, on the other hand, (iv) yieldsS ⊂
(R − Id)−1(S∗). ThereforeS ⊂ (E × F) ∩ (R − Id)−1(S∗). Conversely, let(x, y) ∈
(E × F) ∩ (R − Id)−1(S∗). Then(x, y) ∈ (R − Id)−1(S∗) and it follows from (iii) that
y = x + �u∗. Hence, since(x, y) ∈ (E × F), (v) yields y = J�Bx. In view of (ii), we
conclude that(x, y) ∈ S. �

3.2. Asymptotic behavior

Theobjectiveof this section is to study theasymptotic behavior of thealternating resolvent
method

x0 ∈H and (∀n ∈ N) yn = J�Bxn, xn+1= J�Ayn. (31)

Theorem 3.3. Let� ∈ ]0,+∞[, letA,B:H→ 2H bemaximal monotone operators such
thatS �= ], and let((xn, yn))n∈N be the sequence generated by(31).Then:

(i) The sequence((xn, yn))n∈N converges weakly to a point in S.
(ii) For every(x̄, ȳ) ∈ S,∑

n∈N

‖(xn − yn)− (x̄ − ȳ)‖2<+∞ and∑
n∈N

‖(xn+1− yn)− (x̄ − ȳ)‖2<+∞. (32)
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(iii) The sequence((yn − xn, xn+1− yn))n∈N converges strongly to�(u∗, v∗).

Proof. Let (x̄, ȳ) ∈ S. Then we derive from Proposition 3.2(i) and (v) the equalities

ȳ = J�Bx̄ = x̄ + �u∗ and x̄ = J�Aȳ = ȳ + �v∗ = ȳ − �u∗. (33)

Hence, it follows from Fact 2.1(i) and (31) that

(∀n ∈ N) ‖xn+1− x̄‖2= ‖J�AJ�Bxn − J�AJ�Bx̄‖2
�‖J�Bxn − J�Bx̄‖2− ‖(Id − J�A)J�Bxn
− (Id − J�A)J�Bx̄‖2

�‖xn − x̄‖2− ‖(Id − J�B)xn − (Id − J�B)x̄‖2
− ‖(Id − J�A)J�Bxn − (Id − J�A)J�Bx̄‖2

= ‖xn − x̄‖2− ‖(xn − yn)− (x̄ − ȳ)‖2
− ‖(yn − xn+1)− (ȳ − x̄)‖2. (34)

Therefore,∑
n∈N

(‖(xn − yn)− (x̄ − ȳ)‖2+ ‖(xn+1− yn)− (x̄ − ȳ)‖2)�‖x0 − x̄‖2 (35)

and (ii) is established. In view of (33), we deduce from (ii) thatyn−xn→ ȳ− x̄= �u∗ and
xn+1− yn→ x̄− ȳ= �v∗. Hence (iii) holds and, moreover,xn+1− xn→ 0. SinceJ�AJ�B
is nonexpansive, it follows from[38, Theorem 1]that(xn)n∈N converges weakly to a fixed
pointxofJ�AJ�B . Now lety=J�Bx. ThenProposition3.2(i) and (ii) yield(x, y) ∈ S. Hence,
as seen above,yn − xn → y − x and thereforeyn ⇀ y. Thus,((xn, yn))n∈N ⇀ (x, y)

∈ S. �

Remark 3.4. Some comments on Theorem 3.3 are in order.

(i) Item (i) in Theorem 3.3 was obtained via different techniques in[34, Section 3.4].
It can also be deduced from results on iterations of firmly nonexpansive operators
[32, Théorème 5.5.2], as well as from results on iterations of strongly nonexpansive
operators[15]. Items (i) and (ii) can also be derived from results on the asymptotic
behavior of averaged operators[20]. Recall that an averaged operator is a strict con-
vex combination of a nonexpansive operator and the identity. This notion was first
introduced and analyzed in[6].

(ii) The sequences(xn)n∈N and(yn)n∈N in Theorem 3.3 converge strongly when bothA
andBare odd. Indeed, the resolvents and their compositions are odd and averaged and
[6, Corollary 2.1]therefore applies. The counterexample of Genel and Lindenstrauss
[23] shows that strong convergence of(xn)n∈N and(yn)n∈N may fail outsideEuclidean
spaces, even whenA= 0 (henceJ�A = Id has no effect and only the resolventJ�B is
iterated). The situation does not improve for proximity operators or even projectors;
see Remark 4.7(ii) below.

(iii) It would be interesting to find out in what form Theorem 3.3 can be extended to more
general Banach space settings, in which firmly nonexpansive operators are defined as
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resolvents of accretive operators[24, Section 1.11]. See also[15, Theorem 2.4]; [41]
for weak and strong convergence results on the iteration of a single resolvent in Banach
spaces.

(iv) Theorem 3.3may have aHilbert ball counterpart based upon resolvents of co-accretive
operators (which are firmly nonexpansive of the first kind and therefore (para-) strongly
nonexpansive); see[42, p. 540]; [13, Section 9].

We now turn to the inconsistent case.

Theorem 3.5. Let� ∈ ]0,+∞[, letA,B:H→ 2H bemaximal monotone operators such
that S = ], and let((xn, yn))n∈N be the sequence generated by(31).Then‖xn‖ → +∞
and‖yn‖ → +∞.

Proof. We have, for everyn ∈ N, xn= T nx0, whereT = J�AJ�B is strongly nonexpansive
(see Fact 2.2(i) and (ii)) with FixT =] by Proposition 3.2(i) and (vii). Hence‖xn‖ → +∞
by Fact 2.2 (iii). The sequence(yn)n∈N is treated similarly. �

3.3. Applications

In this section, we discuss applications of Theorem 3.3 that feature at least one resolvent
which is not a proximity operator.

3.3.1. Variational inequalities
Take� ∈ ]0,+∞[, f ∈ �0(H), and setA= �f so thatA−1= �f ∗. ThenE is the set of

solutions to the variational inequality problem

find x ∈H such that (∀z ∈H) 〈x − z | �Bx〉 + f (x)�f (z), (36)

which itself reduces to the classical variational inequality problem

find x ∈ C such that (∀z ∈ C) 〈x − z | �Bx〉�0 (37)

whenf = �C for some nonempty closed convex setC. Moreover, algorithm (31) becomes

x0 ∈H and (∀n ∈ N) yn = J�Bxn, xn+1= prox�f yn. (38)

Let us assume that (36) possesses at least one solution, i.e.,E �= ]. Then Proposition 3.2(i)
and (ii) imply thatS �= ]. Consequently, Theorem3.3 states that(xn)n∈N convergesweakly
to a point inE and that(yn − xn)n∈N converges strongly to the solutionJ(�f ∗+B̃)/�(0) of
the associated dual variational inequality, which is derived from (17) to be

find x∗ ∈H such that

(∃ y∗ ∈ B−1(−x∗))(∀z∗ ∈H) 〈x∗ − z∗ | �x∗ − y∗〉 + f ∗(x∗)�f ∗(z∗). (39)

3.3.2. Cycles for compositions of projection operators
Consider a finite family of nonempty closed convex sets(Si)1� i�m in a realHilbert space

H with associated projectors(Pi)1� i�m, wherem�3 (the casem= 2 will be discussed in
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Section 4.3). The convex feasibility problem is to

find x ∈
m⋂
i=1
Si. (40)

This formulation has found numerous applications in engineering and in the physical sci-
ences; see, for instance,[10,16,19]. If the intersection of the sets(Si)1� i�m is nonempty,
then one can equivalently look for a fixed point of the compositionPm · · ·P1 [26]. This
reformulation remains useful even when the intersection of the sets(Si)1� i�m is empty;
see[7,11,18]and references therein.
As in [7], it will be convenient towork in the product spaceHm, wherewedefine the prod-

uct setS=S1×· · ·×Sm and thecircular right-shift operatorR:Hm→ Hm: (x1, x2, . . . , xm)
�→ (xm, x1, . . . , xm−1). The problem of finding a cycle, i.e., a pointx= (x1, x2, . . . , xm) ∈
Hm satisfyingx1 = P1xm, x2 = P2x1, …, xm = Pmxm−1, is equivalent to finding a fixed
point ofPSR. Although the projectorPS is a resolvent (actually, a proximity operator; see
Section 2), the operatorR is not since it is not firmly nonexpansive. Theorem 3.3 is therefore
not directly applicable. However, sinceR is an isometry, it is nonexpansive on the entire
spaceHm. Hence, Fact 2.1 implies thatQ= (Id + R)/2 is defined everywhere and firmly
nonexpansive, and that it is the resolvent of the maximal monotone operatorB=Q−1− Id.
Letting, furthermore,A= NS= ��S (the normal cone operator ofS) and�= 2, we derive
from Fact 2.3 that

FixPSR = FixPSQ. (41)

Now, let us assume that cycles exist, i.e., FixPSR �= ]. Then we first deduce from Propo-
sition 3.2(v) that every cyclex satisfies

Rx − x = 2J
N−1S +B̃ (0). (42)

Furthermore, if we takex0 ∈ Hm and set

(∀n ∈ N) xn+1= PSQxn, (43)

then Theorem 3.3, Proposition 3.2(i), and (41) imply that(xn)n∈N converges weakly to
some cyclex, thatQxn ⇀ Qx, and thatRxn − xn = 2(Qxn − xn) → 2(Qx − x) =
Rx − x. We observe that, sinceQ �= Q∗ for m�3, Q cannot be a proximity operator
[36, Section 3].

3.3.3. Cycles for compositions of resolvents
The arguments just presented extend with minor modifications as follows. Suppose that
(Ai)1� i�m are finitely manymaximal monotone operators on a real Hilbert spaceHwhich
admit at least one cycle, i.e., a pointx = (x1, x2, . . . , xm) ∈ Hm satisfyingx1 = JA1xm,
x2 = JA2x1, …, xm = JAmxm−1. Now defineA = A1 × · · · × Am, let R be the circular
right-shift operator, and setQ= (Id+R)/2 andB=Q−1− Id. Then a cycle is a fixed point
of JAR and Fact 2.3 (applied toA/2 andB, with �= 2) yields FixJAR=Fix JA/2Q. Now
takex0 ∈ Hm and generate a sequence(xn)n∈N via xn+1= JA/2Qxn, for all n ∈ N. Then
it follows from Theorem 3.3 that(xn)n∈N converges weakly to some cyclex,Qxn ⇀ Qx,
andRxn − xn→ 2JA−1(2·)+B̃ (0).
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4. The composition of two proximity operators

We specialize the results of Section 3 on resolvents to proximity operators by setting

A= �f and B = �g, where {f, g} ⊂ �0(H). (44)

This additional structure makes significant refinements of the previous results possible. Let
us introduce the function

�:H×H→]−∞,+∞]: (x, y) �→ f (x)+ g(y)+ 1

2�
‖x − y‖2, (45)

where� ∈ ]0,+∞[. It is assumed throughout that
�= inf �(H×H) ∈ R. (46)

4.1. Primal and dual optimization problems

We first identify the setsS, E, andF of Definition 3.1 in the present setting.

Proposition 4.1. The following identities hold:

(i) S = Argmin�.
(ii) E = Fix(prox�f prox�g)= Argmin(f+�g).
(iii) F = Fix(prox�g prox�f )= Argmin(�f + g).

Proof. Item (i) follows from the equivalences

(x, y) minimizes� overH×H⇔ (0,0) ∈ ���(x, y)
= (��f (x)+ x − y, ��g(y)+ y − x)

⇔ (0,0) ∈ (Id − R + �(�f × �g))(x, y). (47)

Next, using (44) and (10), we observe that

A+�B = �f+� (�g)= �f + �(�g)= �(f+�g). (48)

This identity and Definition 3.1(iii) imply that

x ∈ E ⇔ 0 ∈ (A+�B)(x) ⇔ 0 ∈ �(f+�g)(x) ⇔ x minimizesf+�g. (49)

Hence (ii) is verified. The proof of (iii) is similar.�

The following definition is justified by the Fenchel–Rockafellar duality theorem (see, for
instance,[43, Theorem 1]or [45, Corollary 2.8.5]).

Definition 4.2. Consider the problem of minimizingf+�g overH, and letw∗ ∈ H be
the unique solution of its Fenchel dual problem, i.e.,

−�= f ∗(w∗)+ g∗(−w∗)+ �
2
‖w∗‖2=min

(
f ∗ + g∗∨ + �

2
‖ · ‖2

)
(H). (50)
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Proposition 4.3. The following statements hold true:

(i) w∗ = prox(f ∗+g∗∨)/�(0)=−1
�prox�(f ∗+g∗∨)∗(0)=−1

�prox�(f � g∨)∗∗(0).

(ii) If f � g∨ is lower semicontinuous, thenw∗ = −1
�prox�(f � g∨)(0). In particular,

this happens when the cone generated bydomf ∗ + domg∗ is a closed vector
subspace.

(iii) The vectoru∗ in Definition3.1(iv)exists if and only iff+�g has minimizers, in which
caseu∗ = w∗.

Proof. Note that (50) implies thatf ∗ + g∗∨ ∈ �0(H) and, in turn, that(f ∗ + g∗∨)∗ ∈
�0(H).
(i): The first equality is clear by Definition 4.2, and the second one follows from (11).

Since(f � g∨)∗ = f ∗ + g∨∗ = f ∗ + g∗∨, we have(f � g∨)∗∗ = (f ∗ + g∗∨)∗ and hence
the third equation is also verified.
(ii): If f � g∨ is lower semicontinuous, thenf � g∨ ∈ �0(H) and thereforef � g∨ =
(f � g∨)∗∗. In turn, the formula forw∗ follows from (i). Now, since domf ∗ + domg∗ =
domf ∗ − domg∗∨, the stated assumption is simply the Attouch–Brézis qualification con-
dition for f ∗ andg∗∨ and it follows from[2, Theorem 1.1]or [45, Theorem 2.8.7]that
(f ∗ + g∗∨)∗ = f � g∨, whence the lower semicontinuity off � g∨.
(iii): Proposition 3.2 implies thatu∗ exists⇔ S∗ �= ] ⇔ S �= ] ⇔ E �= ]. The

equivalence thus follows from Proposition 4.1. Now assume thatu∗ exists. Then Definition
3.1(iv) and (44) yield

u∗ = J
((�f )−1+�̃g)/�(0)= J(�f ∗+�(g∗∨))/�(0). (51)

We deduce that 0∈ (�Id+�f ∗+�(g∗∨))(u∗) ⊂ (�Id+�(f ∗+g∗∨))(u∗) and furthermore,
using (i), thatu∗ = prox(f ∗+g∗∨)/�(0)= w∗. �

4.2. Asymptotic behavior

We begin with two preliminary results.

Lemma 4.4. Let (x, y, u, v,w) ∈H5. Then

‖x − u‖2= ‖x − w‖2+ ‖w − v‖2− ‖x − y‖2+ ‖(x − y)− (u− v)‖2
+ 2〈x − w |w − v〉 + 2〈u− v | v − y〉. (52)

Proof. This is verified by a straightforward calculation.�

Proposition 4.5. Let �, �, and w∗ be as in (45), (46), and (50), respectively. Let
((un, vn))n∈N be a sequence inH×H such that�(un, vn)→ �.Then(vn−un)/�→ w∗.
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Proof. Eq. (50) and the Fenchel–Young inequality imply

0← �(un, vn)− �

= f (un)+ g(vn)+ 1

2�
‖un − vn‖2+ f ∗(w∗)+ g∗(−w∗)+ �

2
‖w∗‖2

= (f (un)+ f ∗(w∗))+ (g(vn)+ g∗(−w∗))+ 1

2�
‖un − vn‖2+ �

2
‖w∗‖2

�〈un |w∗〉 + 〈vn | − w∗〉 + 1

2�
‖un − vn‖2+ �

2
‖w∗‖2

= 1

2�
‖(vn − un)− �w∗‖2

�0. (53)

Therefore,vn − un→ �w∗. �

The main result of this section is a refinement of Theorem 3.3 for the case of proximity
operators.

Theorem 4.6. Let � ∈ ]0,+∞[, let f and g be two functions in�0(H), and let

�:H×H→]−∞,+∞]: (x, y) �→ f (x)+ g(y)+ 1

2�
‖x − y‖2. (54)

Assume that� = inf �(H ×H) ∈ R and consider the sequences(xn)n∈N and (yn)n∈N

generated by the method of alternating proximity operators

x0 ∈H and (∀n ∈ N) yn = prox�g(xn), xn+1= prox�f (yn). (55)

Then:

(i) (∀n ∈ N) �(xn+1, yn+1)��(xn+1, yn)��(xn, yn).
(ii) lim n→+∞�(xn+1, yn)= limn→+∞�(xn, yn)= �.
(iii) The sequences((yn − xn)/�)n∈N and ((yn − xn+1)/�)n∈N converge strongly to the

unique minimizer

w∗ = prox(f ∗+g∗∨)/�(0)=−
1

�
prox�(f � g∨)∗∗(0) (56)

of the functionz∗ �→ f ∗(z∗)+ g∗(−z∗)+ (�/2)‖z∗‖2.
(iv) If Argmin� �= ], then (xn)n∈N converges weakly to a minimizerx̄ of f+�g and
(yn)n∈N converges weakly to a minimizerȳ of �f + g.Moreover,
(a) ȳ = prox�g(x̄).
(b)

∑
n∈N‖(xn−yn)− (x̄− ȳ)‖2<+∞ and

∑
n∈N‖(xn+1−yn)− (x̄− ȳ)‖2<+∞.

(c) �(x̄, ȳ)= �.
(d) ȳ − x̄ = �w∗.
(e)

∑
n∈N(�(xn+1, yn)− �)<+∞ and

∑
n∈N(�(xn, yn)− �)<+∞.
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(v) If Argmin�=], then‖xn‖ → +∞ and‖yn‖ → +∞.

Proof. (i): For everyn ∈ N, we have

���(xn+1, yn+1)

= f (xn+1)+ g(yn+1)+ 1

2�
‖xn+1− yn+1‖2

= f (xn+1)+ g(prox�g(xn+1))+
1

2�
‖xn+1− prox�g(xn+1)‖2

�f (xn+1)+ g(yn)+ 1

2�
‖xn+1− yn‖2

=�(xn+1, yn)

= f (prox�f (yn))+ g(yn)+
1

2�
‖prox�f (yn)− yn‖2

�f (xn)+ g(yn)+ 1

2�
‖xn − yn‖2

=�(xn, yn). (57)

(ii): In view of (57), the two limits are well defined and coincide, say with�. Thus,

���= lim
n→+∞�(xn+1, yn)= lim

n→+∞�(xn, yn). (58)

Our next step is to prove that� = �, i.e., by (58),���. To this end, letn ∈ N and
(x, y) ∈ domf × domg. Lemma 4.4 (with(u, v,w) replaced by(xn, yn, xn+1)) yields

‖x − xn‖2= ‖x − xn+1‖2+ ‖xn+1− yn‖2− ‖x − y‖2+ ‖(x − y)− (xn − yn)‖2
+ 2〈x − xn+1 | xn+1− yn〉 + 2〈xn − yn | yn − y〉. (59)

On the other hand, sinceyn=prox�g(xn) andxn+1=prox�f (yn), we havexn−yn ∈ ��g(yn)
andyn − xn+1 ∈ ��f (xn+1), whence

�g(y)− �g(yn)+ 〈yn − y | xn − yn〉�0 (60)

and

�f (x)− �f (xn+1)+ 〈xn+1− x | yn − xn+1〉�0. (61)

Thus (59), (60), (61), (i), and (58) result in

‖x − xn‖2− ‖x − xn+1‖2= ‖xn+1− yn‖2− ‖x − y‖2+ ‖(x − y)− (xn − yn)‖2
+ 2�(f (xn+1)+ g(yn)− f (x)− g(y))
+ 2(�f (x)− �f (xn+1)+ 〈x − xn+1 | xn+1− yn〉)
+ 2(�g(y)− �g(yn)+ 〈xn − yn | yn − y〉)

�‖xn+1− yn‖2− ‖x − y‖2+ ‖(x − y)− (xn − yn)‖2
+ 2�(f (xn+1)+ g(yn)− f (x)− g(y))

= 2�(�(xn+1, yn)− �(x, y))+ ‖(yn − xn)− (y − x)‖2
�2�(�− �(x, y)). (62)
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Consequently,

2�(�(xn+1, yn)− �(x, y))+ ‖(yn − xn)− (y − x)‖2
�‖xn − x‖2− ‖xn+1− x‖2. (63)

Now suppose that�<�. Then we can pick(x, y) ∈ domf × domg so that

�= inf �(H×H)��(x, y)<�. (64)

However, summing (62) overn ∈ N, we arrive at the absurdity+∞>2∑n∈N(� −
�(x, y))=+∞. Therefore,���.
(iii): This claim follows from (ii), Proposition 4.5, and Proposition 4.3(i).
(iv): Suppose that Argmin� �= ]. Then it follows from Proposition 4.1(i) thatS �= ].

Therefore, (iv) and items (iv)(a) and (b) follow from Theorem 3.3(i) and (ii), Proposition
3.2(ii), and Proposition 4.1(ii) and (iii). (iv)(c): Since(x̄, ȳ) ∈ S by Theorem 3.3(i), this
claim follows at once from Proposition 4.1(i) and (46). (iv)(d):We deduce from (iv)(b) that
yn − xn → ȳ − x̄. On the other hand, (iii) yieldsyn − xn → �w∗. (iv)(e): Let (x, y) be a
minimizer of�. Then summing (63) overn ∈ N, we obtain the first summability property
and, using (i), the second follows.
(v): Suppose that Argmin�=]. ThenS=] by Proposition 4.1(i) and the claim follows

from Theorem 3.5. Alternatively, if the desired conclusion were false, then by (iii) the
sequence((xn, yn))n∈N would have a weakly convergent subsequence, say(xkn, ykn) ⇀

(x̄, ȳ). However, the weak lower semicontinuity of� onH×H and (ii) would then imply
that(x̄, ȳ) is a minimizer of�, which is a contradiction. �

Remark 4.7. Some comments on Theorem 4.6 are in order.

(i) In [1], Acker and Prestel obtained items (i), (ii), and (v) of Theorem 4.6 by different
means. They also established the weak convergence of((xn, yn))n∈N to aminimizer of
�, as well as the strong convergence of(yn− xn)n∈N. The identification of the strong
limit in (iii) as the solution of a dual optimization problem, as well as the other items
in Theorem 4.6, is new.

(ii) Strong convergence of(xn)n∈N and(yn)n∈N in Theorem 4.6(iv) is guaranteed when
both f andg are even (which implies that(0,0) is a minimizer of� and that the
subdifferential operators�f and�g are odd so that Remark 3.4(ii) is applicable). On
the other hand, it is known that strong convergence may fail to hold, even when both
proximity operators are projectors (see[28,33]) or even when only a single proximity
operator is iterated (see[13,27]). See also Remark 4.8 below.

(iii) Along the same lines as in Remark 3.4(iii), it would be interesting to know how these
results generalize to Banach space settings. A starting point could be[39, Theorem
3.7(b)], which yields strong convergence of the sequence(xn+1− xn)n∈N.

Remark 4.8 (weak-but-not-strong convergence of the gradient projection method). LetC
andD be two closed convex subsets ofH with associated distance functionsdC anddD,
respectively, and assume thatC ∩D �= ].



298 H.H. Bauschke et al. / Nonlinear Analysis 60 (2005) 283–301

(i) Setf = �C andg = �D. Then (55) yields the method of alternating projections

xn+1= PCPDxn. (65)

This iteration converges weakly[14, Theorem 1]to a point inC∩D (see also Theorem
4.6(iv)(a)). Now seth=d2D/2, which implies that∇h=Id−PD is 1-Lipschitz. Observe
that (65) assumes the form of the gradient projection method[25,29]

xn+1= PC(xn − ∇h(xn)). (66)

As shown in[28], (65) does not converge strongly in general and, therefore, neither
does the gradient projection method.

(ii) Set f = �H andg:H → R: x �→ 1
2 min‖(C − x) ∩ (x − D)‖2. Then proxf = Id,

proxg = (PC +PD)/2 [13, Theorem 6.1], and (55) becomes the method of barycentric
projections

xn+1= PCxn + PDxn
2

, (67)

which is known to converge weakly to a point inC ∩D [5]. Now seth= (d2C + d2D)/2.
Then (67) assumes the form of the (unconstrained) gradient method[22]

xn+1= xn − ∇h(xn). (68)

As shown in[13, Corollary 7.1], (67) does not converge strongly in general and, there-
fore, neither does the gradient method.

4.3. Applications

Our first application concerns themethod of alternating projections. Setf =�C andg=�D
in (45), whereCandD are nonempty closed convex sets inH. Then minimizing� reduces
to finding a best approximation pair, i.e.,(x, y) ∈ C ×D such that‖x − y‖ is equal to the
gap inf‖C −D‖ betweenC andD. It is possible that� has no minimizers in which case
u∗ is not defined: consider, for instance, the case whenC is the horizontal axis andD is
the epigraph of the exponential function in the Euclidean plane. Returning to the general
setting, note that iteration (55) becomes the method of alternating projections

x0 ∈H and (∀n ∈ N) yn = PD(xn), xn+1= PC(yn). (69)

Now observe thatf � g∨ = �C � �−D = �C−D. Hence

(f � g∨)∗∗ = �∗∗C−D = �C−D (70)

is the indicator functionof the closureof theMinkowski differenceC−D. UsingProposition
4.3(i) with �= 1, we determine the dual solution to be (see also[8, Section 2])

w∗ = −prox(f � g∨)∗∗(0)=−prox�C−D(0)=−PC−D(0)= PD−C(0). (71)

In this setting, Theorem 4.6 recovers most of the results in[9, Section 4], which—when
viewed in the product space setting utilized in Section 3.3.2—yield in turn some of the
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results on parallel projection methods discussed in [8, Section 6; 9, Section 6; 18]. Alter-
nating projections for two possibly nonintersecting sets were first considered by Cheney in
Goldstein[17] in 1959 and then by Gubin et al.[26]; see also[12,33, Corollary 4.6]for
related recent results.
As a second application, we propose a new derivation of von Neumann’s method of

alternating projections[37]. Let C andD be two closed vector subspaces ofH, and let
z ∈ H. Consider the problem of findingPC∩D(z), i.e., the best approximation toz from
C∩D. J. von Neumann proved thatPC∩D(z) can be constructed by alternating projections.
We now provide a novel proof of his result (see[37,21, Chapter 9]for further information,
and[13, Section 3]for a recent elementary proof).

Corollary 4.9 (von Neumann). Suppose that C and D are closed vector subspaces ofH
and thatz ∈H. Then

lim
n→+∞(PDPC)

n(z)= PC∩D(z). (72)

Proof. Denote the orthogonal complements ofC andD by C⊥ andD⊥, respectively. We
define

f :H→]−∞,+∞]: x �→ �C⊥(x + z)− 1
2‖z‖2 and g = �D⊥ . (73)

Then, for everyz∗ ∈H, f ∗(z∗)= 1
2‖z‖2−〈z | z∗〉+ �C(z∗) andg∗(z∗)= �D(z∗). Recalling

Definition 4.2 with�= 1, the (Fenchel dual) minimizerw∗ of the functionz∗ �→ f ∗(z∗)+
g∗(−z∗)+ 1

2‖z∗‖2= 1
2‖z‖2−〈z | z∗〉+ �C(z∗)+ �D(z∗)+ 1

2‖z∗‖2= 1
2‖z∗−z‖2+ �C∩D(z∗)

is preciselyPC∩D(z). Furthermore, for anyw ∈H, we compute

proxf (w)= w − PCw − PCz and proxg(w)= w − PDw. (74)

Now consider the alternating proximity operator iteration

x0 ∈H and (∀n ∈ N) yn = xn − PDxn, xn+1= yn − PCyn − PCz. (75)

Theorem 4.6(iii) with�= 1 implies that

lim
n→+∞ yn − xn = w

∗ = PC∩D(z). (76)

Now let x0 = 0 and observe that (75) yieldsy0 = 0, x1 = −PCz, y1 = −PCz + PDPCz,
x2=−PCz+ PDPCz− PCPDPCz, y2=−PCz+ PDPCz− PCPDPCz+ PDPCPDPCz,
and so forth. Therefore,

(∀n ∈ N\{0}) yn − xn = (PDPC)n(z), (77)

and the result follows from (76).�
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