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Abstract

The asymptotic behavior of the composition of two resolvents in a Hilbert space is investigated.
Connections are made between the solutions of associated monotone inclusion problems and their
dual versions. The applications provided include a study of an alternating minimization procedure
and a new proof of von Neumann’s classical result on the method of alternating projections.
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1. Introduction

Throughout,# is a real Hilbert space with inner produget -) and induced nornjj - ||.
Let A andB be two maximal monotone operators froi to 2 with resolvents/4 and
Jp, respectively, and let € ]0, +-oo[. Our paper is concerned with the inclusion problem

find (x, y) € #2 suchthat (0,0) € (Id — R + (A x B))(x, y), (1)
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whereR: (x, y) — (y, x). This abstract formulation subsumes a wide spectrum of problems
in nonlinear analysis and its applications. We thus recover problems arising in variational
inequalities[30], best approximatiofil2], image processinf,44], mechanicg§34], and
optimization[1,31]. The dual inclusion problem associated with (1) is

find (x*, y*) € #? such that
0,00 € ((1d — B 1 4+ (A7 x B™YH o (1d/p)) (x*, y). (2

Now consider the alternating resolvent method
xoeH and (VneN) y, =Xy, Xpr1=JpaVn, 3)

whereN = {0, 1, 2, .. .}. The objective of the present paper is to provide a systematic in-
vestigation of the asymptotic behavior of the sequeregs,cn: (Vn)nens Vn — Xn)neNs

and (x,+1 — yn),en generated by this algorithm in connection with the solutions of (1)
and (2). When specialized to the case whemand B are subdifferentials, our results
will be significantly refined and will yield new insights into an alternating minimization
procedure.

The remainder of the paper is organized as follows. Section 2 contains basic nota-
tion and auxiliary results on nonexpansive and monotone operators. In Section 3, we
provide a detailed investigation of the asymptotic behavior of (3). The applications dis-
cussed in that section include variational inequalities as well as the problem of finding
cycles for inconsistent feasibility problems. In Section 4, the results of Section 3 are
sharpened in the context of proximity operators and we obtain new results on the pri-
mal and dual behavior of an alternating minimization procedure. Among the applications
presented is a new proof of von Neumann'’s classical result on the convergence of alternating
projections.

2. Auxiliary results

We recall some useful results on monotone operators and resolvents. #et—> 27
be a set-valued operator. The sets dom {x € # | Ax # O}, ranA ={u € # |
3x € #A)u € Ax}, and grA = {(x,u) € #? | u € Ax} are the domain, the range,
and the graph oA\, respectively. The inverse & is the set-valued operatot—1 with
graph{(u, x) € V& | u € Ax}, the resolvent oA is J4, = (Id + A)~1, and the Yosida
approximation oA of indexy € 0, +o0[ is

TA=(d — Jy0)/y = (d + A7 /p) " o (1d/). (@)

The operatoA is monotone ifix — y|u — v) >0, for all (x, u) and(y, v) ingrA. If Ais
monotone and gA cannot be enlarged without destroying monotonicity, thémaximal
monotone. A classical result due to Mir{85] implies thatA is maximal monotone if and
only if J4 is firmly nonexpansive with domaig#’. We now provide basic properties of
firmly nonexpansive operators (sg&t, Sections 1.9 and 1.11¢r proofs and additional
properties).
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Fact 2.1. LetT: # — 2 be an operator with domain D. Then T is firmly nonexpansive
on D if any of the following equivalent properties halds

(i) (Vx € D)(Vy € D) |Tx — TylI*<|x — y[|> — |(1d — T)x — (Id — T)y||*.
(i) 2T —Idis nonexpansivée., (Vx € D)(Yy € D) ||(2T—Id)x @r-1d)y|<lx—yl.
(iiiy T = J4 for some monotone operatdr. # — 27

The class of firmly nonexpansive operators is not closed under compositjps],1Bruck
and Reich introduced the class of strongly nonexpansive operators: a nonexpansive operator
T:# — A is strongly nonexpansive abf = domT if (x, — y,) — (Tx, — Ty,) — 0O,
whenever(x,),cn and (y,),en are sequences ib such that(x, — y,),cn is bounded
and|x, — y,ll — ITx, — Ty, || = 0. We shall utilize the following properties of strongly
nonexpansive operators (which hold true in considerably more general settifgs,469.
As usual,

FIXT={xe | Tx=x} (5)

denotes the set of fixed points of an operdtor? — 7.

Fact 2.2. Let T and(7;)1<; <, be operators from# to # with domain.#’. Then the
following properties hold

() If T is firmly nonexpansivehen it is strongly nonexpansive
(ii) Ifthe operatorgT;); <, <, are strongly nonexpansiythen the compositioff; - - - 7,
is also strongly nonexpansive
(iii) Suppose that T is strongly nonexpansive andviee . IfFixT # O, then the
sequenceél " xp),cn converges weakly to some pointHix 7'; otherwise || T" xo|| —
+00.

Proof. (i): Se€[15, Proposition 2.1Jii): See[15, Proposition 1.1Jii): See[15, Corollaries
1.3and1.4] O

Now let A: # — 27 be a set-valued operator. We use the notation
AY = Ao (—Id) (6)
and
A=(=ld)oA 1o (=Id) = —((A~H™). (7)

It is straightforward to verify thal is (maximal) monotone if and only &is, thaty € Ax
if and only if —x € A(—y), and that

Tpld+ A (®)

These concepts admit finer descriptions when specialized to subdifferentialg,(L£Y)
be the class of all proper lower semicontinuous convex functions #0io | — oo, +o0].
Now takef € I'o(#°). Then the subdifferential operatdy of f is maximal monotone and
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the proximity operator prox= Jor has full domain# [36]. Fory € ]0, +oo[, the function

Vf=fD(2—1yll - ||2) (©)

is the Moreau envelope dfof indexy, wherel denotes the inf-convolution operator. We
have[36]

VIH=10f). (10)

Now let f* denote the conjugate df Then Moreau’s decompositiof36] states that
sI-12=GI- 120 £) + (31l - I* D ). Differentiation then yields le= prox, + prox..
More generally, we deduce from (4) that

(Vx € A)  x =Prox,sx +yproXe,,(x/y). (11)

If fis the indicator function of a nonempty closed convex Getlenoted by:c, then
prox, is the projector ont&, denoted byPc.
We conclude this section with a resolvent identity.

Fact 2.3. LetA, B: # — 2’ be maximal monotone operators andget 10, +oo[. Then

FiX]pA((l—p)|d+pJB)=FiXJA]B. (12)

Proof. Takex € . Then the following equivalences hold: € Fix(J4Jp) < Jpx —
x € Ax & (1—p)x+pJpx € x + pAx & (L — p)ld + pJp)x € (Id + pA)x &
x = (d+ pA)~((1 - p)ld + pJp)x < x € Fix Joa(A=p)ld +pJp). O

The following facts appear implicitly i{83,34].

Fact 2.4. Let H be a real Hilbert space and leA, B:H — 2H be maximal monotone
operators. Leb6 be the set of solutions to the primal inclusion problem

find x € H such that 0e Ax 4 Bx (13)
and letS* be the set of solutions to the associated dual problem

find x* € H such that 0e A™1x* + Bx*. (14)
Then
() S={xeH|@x*eS" x*€Ax and —x* € Bx}.
(i) S"={x*cH|@xeS) xeA* and —x¢ §x*}.
3. The composition of two resolvents

Throughout this sectiomd, B: # — 27 are maximal monotone operators and:
10, 400
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3.1. Primal and dual inclusions

A regularization of the problem

find x € # suchthat 0= Ax + Bx (15)
is [31,34]
find x € # suchthat 0= Ax+’Bx. (16)

As seen in Fact 2.4, the dual problem of (16) is

find x* € # suchthat 0= A~1x* 4+ 7Bx*. (17)
An alternative regularization of (15) is

find y € # suchthat @"Ay + By, (18)
the dual of which is

find y* € # suchthat 0Oc 7Ay* + B~ 1y*. (19)
The connection between the composition of the two resolventandJ,  and the inclusion
problems (16)—(19) will be explored after the following definition.

Definition 3.1. Set

() S=(d—R+7(A x B)"%0,0);
(i) *=((d—R)"t+ (A7t x B™H o (Id/7))1(0, 0);
(i) E=(A+"B)"1(0) andF = ("A + B)~1(0);
(iv) u* = J(A,l+§)/7(0) andv* = J(AV+B*1)/y*(O); no:e that, depe_nding on the domains of
Ja-148) andJ(;JrB,l)/y, the vectors:* andv* may not exist.

In other words, the solution sets of (1), (2), (16), and (18) are denot&] £¥, E, and
F, respectively.

Proposition 3.2. The following identities hotd

(i) E=Fix Jyadyp = Jya(F) and F = Fix JypJya = Jyp(E).
(i) S=Fix JyaxpR=(E x F)NngrJp.
@ii) S* = {(yu*, yv™)} andv* = —u*.
(iv) §* = (R —1d)(S).
(V) JyBlg: E — F:x +— x+yu*isabijectionwithinversd,s|r: F — E:y — y+yv*.
(i) E=A"1w* N (B) L") andF = (A) " Lw*) n B~1(v*).
(Vi) S=(E x F)N (R —Id)~1(5*).

Proof. (i) The equivalences

x€E & 0€Ax+'Bx & Jypx € x + yAx
& x = ]‘/AJ"/BX & x € Fix ‘,”/A‘I“/B (20)
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show thatE = Fix J,4 J,p; the proof of F = Fix J,5J,4 is analogous. If € Fix J,4J,5,
thenJ,px € Fix J,pJ,4. HenceJ,g(E) C F and similarlyJ,4(F) C E. Now applyJ, 4
and J,p to the last two inclusions and obtain the remaining inclusiéns J,4(F) and
F C J,p(E), respectively.

(ii) These two identities result from the equivalences

(x,y) €S < R(x,y) € (Id+ y(A x B))(x, y)

where

S (x,y) € Fix Jy(AxB)R

Sx=Jyay and y=J,px

& x € Fix Jyadyg, y € Fix JypJya, and y= Jypx
& (x,y) € ExF and (x,y) egrl/,p,

the last equivalence follows from ().

(iii) Take (x*, y*) € S*, i.e.,
(0.0) € (A1 (x*/7) x B7H(y* /7)) + (1d — R)7H(x*, y*).
Then, by Fact 2.4(ii), there exists, y) € S such that

These

In turn

(x,y) € A7Yx*/p) x B7Lo% /),
(—x, —y) € (Id = B)~1(x*, y%).

two inclusions can be rewritten as

(x*, %) € p(A x B)(x, ),
(=x*, —=y") =(d = R)(x, y).
, (24) is equivalent to

x e ATy,

—y € B(x*/y),
X*=y—x=—y"

or, alternatively, to

—x € AO*/Y),
y € B71(y* /),

xX*=y—x=—y*

Adding the two inclusions in both (25) and (26), we arrive at

—xt=x—ye (A 1+ B/,
y =y —xe @A+ B YO,

In view of Definition 3.1(iv), we conclude that

X*/V = J(Afl+§)/«/y(0) =u",
y*/')} = J(Z+B—l)/«/(o) =v"

We have thus proven that

S* c {(yu*, v} and,if $* £0, then v*=—u".

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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Now suppose that* = J 41, 7, ,(0) exists. Then G yu* + A~ u* + Bu*=A"Yu*+7Bu*
by (8). In other wordsy™ solves the dual problem (17) and, by Fact 2.4(ii), the primal
problem (16) also has a solution. Accordingly, by Definition 3.1(ifi),# . In turn, it
follows from (i) and (ii) thatS # . Consequently, invoking Fact 2.4(i), we obtaih # O
and we therefore deduce from (29) that (iii) holds.

(iv): SinceS =0 <« S§* £ @, itis enough to assume th&t # . SinceS* =
{(yu*, yv*)}, it follows from (25) that there exists:, y) € S such thatu™ =y — x = yv*.
HenceS* c (Id — R)(S). Conversely, takéx, y) € S. Then, by Fact 2.4(i), (24) holds and
thereforeyu™ =y — x = yv*. Thus(ld — R)(S) C S*.

(v): Itis clear from (i) that/, | g: E — F issurjective. Nowtake € E. Then (i) implies
that (x, J,px) € S. By (iii) and (iv), y(u*, v*) = (R — Id)(x, Jypx) and hence/,z|g is a
translation byyu*, the inverse of which is a translation byyu* = yv*, namely,J 4| r.

(vi): Fix x € E and sety = Jypx. Then it follows from (i) and (i) thaix, y) € S. In
turn, we deduce from (25) and (28) that

{x e A~ Ly,

V= (x = /7 = (& — Jp) [y=TBx, (30)

whencex € A~Lu* N ('B)"1(v*). Accordingly, E ¢ A~1u* N ('B)~1(v*). To verify the
reverse inclusion, take € A~1u* N ("B)~1(v*) and sety = x + yu*. Thenx = Jyay and
y = Jypx. Thus, (i) yieldsy € Fix J,4J,p = E and we obtaim—u* N ('B)"Y(—u*) C E.
The corresponding identity fdf is derived in the same fashion.

(vii): On the one hand, (ii) yield§ c E x F and, on the other hand, (iv) yields C
(R — I1d)~1(S*). ThereforeS c (E x F) N (R — Id)~1(5*). Conversely, letx, y) €
(E x F) N (R — Id)~1(8%). Then(x, y) € (R — Id)~1(5*) and it follows from (iii) that
y = x + yu*. Hence, sincdx, y) € (E x F), (v) yieldsy = J,px. In view of (ii), we
conclude thatx, y) € S. O

3.2. Asymptotic behavior

The objective of this section is to study the asymptotic behavior of the alternating resolvent
method

xoeH and (VneN) y,=Jpxy, Xpy1=JpaVn- (32)

Theorem 3.3. Lety €10, +ool, letA, B: # — 27 be maximal monotone operators such
thatS # O, and let((x,, y»)),.en be the sequence generated(Bg). Then

(i) The sequencé&x,, y,)),en CONverges weakly to a pointin S
(i) Forevery(x,y) € S,

Y @ —yn) = G=NIP<+o00 and
neN

D Gnt1 = yn) — = $)I% < + oo. (32)
neN
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(i) The sequenc€y, — xn, Xn+1 — Yn))nen CONvVerges strongly te(u™, v*).

Proof. Let (x, ¥) € S. Then we derive from Proposition 3.2(i) and (v) the equalities
y=Jppx=x+y" and x=Jy=y+ypw'=y—pu* (33)
Hence, it follows from Fact 2.1(i) and (31) that
(Vn € N) |xnp1 — X2 = 1 Fyadypxn — JyaJyp |
< ypxn — JopX )% — (1d — Jya)JyBxn
— (Id = J,0) ;%1%
<llxn — %12 = 1(d = J;8)x, — (1d — ;)12
—110d = J0) Jypxn — (1 = Jy4) S5 %]

=[x, — %)% = [|(xn — yu) — & — D2

— G = Xnr1) — (G — DI (34)
Therefore,
D U = yu) = @ = DIP+ [ Conga = yu) — & =PI < Jlxo — &I (35)
neN

and (i) is established. In view of (33), we deduce from (ii) that- x, — y —x =yu™ and
Xu41— Yo — X —y =yv*. Hence (iii) holds and, moreovet, ;1 —x, — 0. SinceJ,4 J, 3

iS nonexpansive, it follows frorf88, Theorem 1that(x,),cn converges weakly to a fixed
pointxof J, 4 J, 5. Now lety=J,px. Then Proposition 3.2(i) and (ii) yield, y) € S.Hence,
as seen above,, — x, — y — x and thereforey, — y. Thus,((x,, yn))pen — (x,¥)
esS. O

Remark 3.4. Some comments on Theorem 3.3 are in order.

(i) Item (i) in Theorem 3.3 was obtained via different techniquef3iy Section 3.4]
It can also be deduced from results on iterations of firmly nonexpansive operators
[32, Théoreme 5.5.2ps well as from results on iterations of strongly nonexpansive
operatord15]. ltems (i) and (ii) can also be derived from results on the asymptotic
behavior of averaged operatd29]. Recall that an averaged operator is a strict con-
vex combination of a nonexpansive operator and the identity. This notion was first
introduced and analyzed [].

(ii) The sequencesy,),cn and(y,),en in Theorem 3.3 converge strongly when béth

andB are odd. Indeed, the resolvents and their compositions are odd and averaged and

[6, Corollary 2.1]therefore applies. The counterexample of Genel and Lindenstrauss
[23] shows that strong convergencd.of),,cny and(y,) . May fail outside Euclidean
spaces, even whei= 0 (henceJ,4 = Id has no effect and only the resolvehy is
iterated). The situation does not improve for proximity operators or even projectors;
see Remark 4.7(ii) below.

(i) 1t would be interesting to find out in what form Theorem 3.3 can be extended to more

general Banach space settings, in which firmly nonexpansive operators are defined as
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resolvents of accretive operatdgs!, Section 1.11]See alsdg1l5, Theorem 2.4][41]
for weak and strong convergence results on the iteration of a single resolvent in Banach
spaces.

(iv) Theorem 3.3 may have a Hilbert ball counterpart based upon resolvents of co-accretive
operators (which are firmly nonexpansive of the first kind and therefore (para-) strongly
nonexpansive); s€d2, p. 540] [13, Section 9]

We now turn to the inconsistent case.

Theorem 3.5. Lety €]0, +ool, letA, B: # — 27 be maximal monotone operators such
that S =, and let((x,, y»)),en b€ the sequence generated(Bg). Then|x, || — +oo
and |y, || = +oc.

Proof. We have, for everyt € N, x, = T"xo, whereT = J,4 J, g is strongly nonexpansive
(see Fact 2.2(i) and (ii)) with FiX =@ by Proposition 3.2(i) and (vii). Hendpr,, || = +o0
by Fact 2.2 (iii). The sequenge,), <y is treated similarly. [J

3.3. Applications

In this section, we discuss applications of Theorem 3.3 that feature at least one resolvent
which is not a proximity operator.

3.3.1. Variational inequalities
Takey €10, +oo[, f € I'o(#), and setd = 0 f so thatA—1 = 3 f*. ThenE is the set of
solutions to the variational inequality problem

findx € # suchthat (Vze #) (x —z|"Bx)+ f(x)< f(2), (36)
which itself reduces to the classical variational inequality problem

findx € C suchthat (vze C) (x —z|"Bx)<0 (37)
when f = 1 for some nonempty closed convex §etMoreover, algorithm (31) becomes

xoeH and (VneN) y,=Jpx,, Xpy1= Prox, ¢ yu. (38)

Let us assume that (36) possesses at least one solutioB, #e¢}. Then Proposition 3.2(i)
and (ii) imply thatS # @. Consequently, Theorem 3.3 states thaj, . converges weakly
to a point inE and that(y, — x,),cn cOnverges strongly to the solutidf@afug)/},(O) of
the associated dual variational inequality, which is derived from (17) to be

find x* € # such that
Ay* € BTH—x")(Vz" € #) (¢ — 2" |y — y*) + FFaH < FFED. (39)

3.3.2. Cycles for compositions of projection operators
Consider afinite family of nonempty closed convex $8t%; < ; < ,, inareal Hilbert space
H with associated projector®; )1 < ; < ,,» Wherem >3 (the casen = 2 will be discussed in
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Section 4.3). The convex feasibility problem is to

m
find x €(7)S;. (40)
i=1
This formulation has found numerous applications in engineering and in the physical sci-
ences; see, for instandé0,16,19] If the intersection of the sets;); <, <, iS nonempty,
then one can equivalently look for a fixed point of the compositin - - P1 [26]. This
reformulation remains useful even when the intersection of the(Sgtsc ; <, is empty;,
seeg[7,11,18]and references therein.
Asin[7], itwill be convenientto work in the product spakié', where we define the prod-
uctselS=S; x- - -x§,, andthe circularright-shiftoperat®&. H” — H™: (x1,x2, ..., Xp)
— (X, X1, ..., Xm—1). The problem of finding a cycle, i.e., a point (x1, x2, ..., x;) €
H™ satisfyingxy = P1xy, x2 = Pox1, ..., X, = Ppxp,—1, IS equivalent to finding a fixed
point of PsR. Although the projectoPs is a resolvent (actually, a proximity operator; see
Section 2), the operat&is not since itis not firmly nonexpansive. Theorem 3.3 is therefore
not directly applicable. However, siné®is an isometry, it is nonexpansive on the entire
spaceH™. Hence, Fact 2.1 implies th& = (Id + R)/2 is defined everywhere and firmly
nonexpansive, and that it is the resolvent of the maximal monotone op8rat@r 1 — Id.
Letting, furthermoreA = Ns = 0is (the normal cone operator §) andp = 2, we derive
from Fact 2.3 that

Fix PsR = Fix PsQ. (41)

Now, let us assume that cycles exist, i.e., PR # . Then we first deduce from Propo-
sition 3.2(v) that every cycle satisfies

RX —x= 2JN§l+§(O)' (42)
Furthermore, if we tak&y € H™ and set
(Vn € N) Xn+1 = PsOX,, (43)

then Theorem 3.3, Proposition 3.2(i), and (41) imply that),.n converges weakly to
some cyclex, that Ox, — Qx, and thatRx, — X, = 2(0X, — X;) — 2(0X — X) =
Rx — X. We observe that, sinc@ # Q* for m >3, Q cannot be a proximity operator
[36, Section 3]

3.3.3. Cycles for compositions of resolvents

The arguments just presented extend with minor modifications as follows. Suppose that
(Ai)1<i <m arefinitely many maximal monotone operators on a real Hilbert sdadeich
admit at least one cycle, i.e., a point= (x1, x2, ..., x,) € H™ satistyingxy = Ja,xm,
x2 = Ja,X1, ooy Xy = Ja, Xm—1. NOow defined = A1 x --- x A, let R be the circular
right-shift operator, and s@ = (Id + R)/2 andB = 9~ —Id. Then a cycle is a fixed point
of J4 R and Fact 2.3 (applied ta /2 andB, with p = 2) yields FixJ4 R = Fix J4,2Q. Now
takexg € H™ and generate a sequenGg), cn ViaX,+1 = Ja,20X,, foralln € N. Then
it follows from Theorem 3.3 thaix,),,cn converges weakly to some cyoleQx, — QX
andRx, — Xp = 2J 412, 5(0).
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4. The composition of two proximity operators

We specialize the results of Section 3 on resolvents to proximity operators by setting
A=0f and B=2d0dg, where {f, g} C o). (44)

This additional structure makes significant refinements of the previous results possible. Let
us introduce the function

1
§:H X H ] — 00, +00l: (x,y) > f(x) + () + z—ynx —ylI%, (45)

wherey €10, +o0l. It is assumed throughout that

o =Inf ®(H x #) € R. (46)
4.1. Primal and dual optimization problems
We first identify the set§, E, andF of Definition 3.1 in the present setting.

Proposition 4.1. The following identities hotd

(i) S=Argmin®.
(||) E = F@x(proxyf prox,,) = Argm?n(f#g).
(iii) F = Fix(prox,, prox, ) = Argmin(’f + g).

Proof. Item (i) follows from the equivalences

(x, y) minimizes® over # x # < (0,0) € y0P(x, y)
=Q0f(x)+x—y,708(y) +y —x)
< (0,0) € (Id— R+ y(0f x 0g)(x,y). (47)

Next, using (44) and (10), we observe that

A+'B=0f+"(0g) =0f + d("g) = 0(f+g). (48)
This identity and Definition 3.1(iii) imply that

x€E & 0c(A+'B)(x) & 0cd(f+'g)(x) & x minimizesf+’g. (49)

Hence (ii) is verified. The proof of (iii) is similar. [

The following definition is justified by the Fenchel-Rockafellar duality theorem (see, for
instance[43, Theorem 1br [45, Corollary 2.8.5).

Definition 4.2. Consider the problem of minimizing+"g over »#, and letw* € # be
the unique solution of its Fenchel dual problem, i.e.,

— = fr @) + g (—w) + Sl =min(f*+ gV + T |2) (). (50)
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Proposition 4.3. The following statements hold true

(i) w* = Prox e gevy, (0) = —%proxy(f*JFg*V)*(O) = —%,proxy(f 0 gvy= (0).

(i) If fOg" is lower semicontinuoyghen w* = —%,proxl,(ngV)(O). In particular,
this happens when the cone generateddoyn f* + domg* is a closed vector
subspace

(iii) The vectow* in Definition3.1(iv) exists if and only iff +7¢ has minimizersin which
caseu™ = w*.

Proof. Note that (50) implies thaf* + g* € I'o(#) and, in turn, that f* + g*¥)* €
To().

(): The first equality is clear by Definition 4.2, and the second one follows from (11).
Since(fOg")* = f*+g"* = f*+ g*¥,we have(f Og")* = (f* + ¢g*¥)* and hence
the third equation is also verified.

(i): If fOgY is lower semicontinuous, thefldg¥ € I'o(#") and thereforef [ g¥ =
(f Og"¥)*. In turn, the formula forw* follows from (i). Now, since dony* + domg* =
dom f* — domg*V, the stated assumption is simply the Attouch—Brézis qualification con-
dition for f* andg*¥ and it follows from[2, Theorem 1.1pr [45, Theorem 2.8.7that
(f*+ ¢*)* = fOgY, whence the lower semicontinuity ¢gfl] g".

(iii): Proposition 3.2 implies that* exists< S* # O & S # O < E # . The
equivalence thus follows from Proposition 4.1. Now assumethakists. Then Definition
3.1(iv) and (44) yield

w=J @n-t1a0 O = Jar+ragrny @ (51)
We deducethat@ (yld+0 f*+2d(g*")) ™) C (pld+o(f*+g*V))(u*) and furthermore,
using (i), thatu™ = prox s« vy, (0) =w*. [
4.2. Asymptotic behavior

We begin with two preliminary results.

Lemma 4.4. Let (x, y, u, v, w) € #°. Then

e — ll® = e = wll? + lw = v]|® = x = yIZ+ 1 (x = y) = = v)|]?

4+ 2 —wlw—v)+2u—v|v—y). (52)

Proof. This is verified by a straightforward calculation]

Proposition 4.5. Let @, ¢, and w* be as in(45), (46), and (50), respectively. Let
((un, vn))nen De asequence it x # such that® (u,, v,) — @.Then(v, —u,)/y — w*.



H.H. Bauschke et al. / Nonlinear Analysis 60 (2005) 283—-301 295

Proof. Eq. (50) and the Fenchel-Young inequality imply
0« P(uy, vy) — Y
1
= /@) + 8+ 5w = vl 1) + ") + 22

* * * * 1 2 Y *2
=(f(un) + f7 (W) + (g(vn) + &7 (—w ))+2_V||un_vn” + Sllwl

2
* * 1 2 V4 x2
> Gun | W) + (o | = w*) + o llun = vl + Sl
Y 2

1
= ol —un) yw*||?

Y
>0. (53)

Thereforep, — u,, — yw*. 0O

The main result of this section is a refinement of Theorem 3.3 for the case of proximity
operators.

Theorem 4.6. Lety € ]0, +o0[, let f and g be two functions ifig(#), and let
1
PH X A — ] =00, +00): (x,y) = f(x) +80) + 7w = ylIZ. (54)

Assume thap = inf @(# x #) € R and consider the sequences,),,cn and (yn),en
generated by the method of alternating proximity operators

xoeH and (VneN) y,= proxyg(x,,), Xn+1 = prO)Syf(yn)~ (55)

Then

(i) (vneN) P(xpq1, Y1) SP(xnt1, o) < P(Xn, yn).
(i) im ;400 Pxpy1, Yo) =My yoo P(Xn, Yu) = @.
(i) The sequence&y, — x,)/P)nen aNd ((vn — xu+1)/7)nen CONVerge strongly to the
unique minimizer

1
w* = ProX pr gevy/y (0) = —; ProX, s gvy=(0) (56)

of the functions* > f*(z*) + g*(—z*) + (/2)|1z*|1%.
(iv) If Argmin® # @, then (x,),cny converges weakly to a minimizérof f+7 and
(¥n)nen coONnverges weakly to a minimizewof 7f + g. Moreovey

(@) y =prox,, (x).

0) el Gn =) —(E =M% <+ooandy, oyl (nr1 — yn) — (& = MIIZ <+ o0.
(©) O(x,5) = o.

(d) y —x=yw*.

€) X en(@(Xpg1, yo) — @) < +ooand) , n(P(xn, yp) — @) < + o0.
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(v) If Argmin® = @, then||x, || — +oc and|y,| — +oo.

Proof. (i): For everyn € N, we have
@< ¢(xn+1: Yn+1)

1
= f(xn+1) + g(nt1) + 2_y||xn+1 e
1
= f(xp41) + g(DFOX,g(anrl)) + 2_“/ lxnr1 — proxyg(xn+l)”2

1
S Cn) F 80m) + 5 = all?
= ¢('x1’l+17 yl’l)
1
= J(ProX, () + £3n) + - IPTOX, () — yall?

1
S Cxn) + 80w + -l = Yall?
= D (xp, yn)- (57)
(ii): In view of (57), the two limits are well defined and coincide, say withThus,

(PSKP= lim ¢(xn+l9 Yn) = lim  &(x,, Yn)- (58)
n——+o00 n—-+00

Our next step is to prove that =, i.e., by (58),¢ >. To this end, letz € N and
(x,y) e domf x domg. Lemma 4.4 (with(u, v, w) replaced by(x,, y., x,+1)) yields
lr = 217 = llx = Xp 2 + 01 = Yall® = llx = Y%+ 10x = ) = (v — y)II
+ 2(x — Xpa1 | Xng1 — Yn) + 2000 — Yu | yn — ¥). (59)

Onthe other hand, sing@:prox,,g (xn) andxn+1=prox/f (yn), we havex, —y, € y0g(y,)
andy, — xp4+1 € y0f (xs+1), whence

78(3) = 78(n) + (¥n — ¥ 1 xXn — yu) 20 (60)
and

Pf () =y f (nt1) + (X1 — X | yn — Xnt2) 20. (61)
Thus (59), (60), (61), (i), and (58) result in

2 2
[ [

— I = Xpgall® = a1 — yall® = lx = Y12+ 1 = ¥) = Gon — y)lI2

+ 29(f (ns1) + 8(Gm) — F(X) — g(3))
+ Z(Vf(x) - Vf(anrl) + (x — Xn+1 | Xn+1 — )’n))
+ 2(08(y) = y8n) + (Xn — Yulyn —¥))

> s — yall2 = Ix = Y12+ 1 = ¥) = (e — y) 112
+ 29(f Cepg1) +g0m) — f(x) —g(y)

= 29( D41, Yn) — P, ) + (3 — x) — (v — 0|12

>29() — D(x, ). (62)

llx — x
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Consequently,

2)(D(xXnt1, ) — P, ) + | — x0) — (v — 0)||?
<xn — x112 = xn11 — x|12. (63)

Now suppose thap < y. Then we can pickx, y) € domf x domg so that
@=Inf O(H x )< D(x,y) <. (64)

However, summing (62) ovet € N, we arrive at the absurdity-oo>2)", (/ —
D(x, y)) = +oo. Thereforep > .

(iii): This claim follows from (ii), Proposition 4.5, and Proposition 4.3(i).

(iv): Suppose that Argmi # ©. Then it follows from Proposition 4.1(i) theft # O.
Therefore, (iv) and items (iv)(a) and (b) follow from Theorem 3.3(i) and (ii), Proposition
3.2(ii), and Proposition 4.1(ii) and (iii). (iv)(c): Sinag, y) € S by Theorem 3.3(i), this
claim follows at once from Proposition 4.1(i) and (46). (iv)(d): We deduce from (iv)(b) that
Yo — xp — ¥ — X. On the other hand, (iii) yieldg, — x, — yw*. (iv)(e): Let(x, y) be a
minimizer of @. Then summing (63) over € N, we obtain the first summability property
and, using (i), the second follows.

(v): Suppose that Argmih= 0. ThenS = by Proposition 4.1(i) and the claim follows
from Theorem 3.5. Alternatively, if the desired conclusion were false, then by (iii) the
sequencé(x,, yn)),en Would have a weakly convergent subsequence,(say yk,) —
(x,y). However, the weak lower semicontinuity @fon »# x . and (ii) would then imply
that(x, y) is a minimizer of®, which is a contradiction. [

Remark 4.7. Some comments on Theorem 4.6 are in order.

(i) In [1], Acker and Prestel obtained items (i), (ii), and (v) of Theorem 4.6 by different
means. They also established the weak convergence,ofy,)),<n to a minimizer of
@, as well as the strong convergenceof — x,),cn- The identification of the strong
limit in (iii) as the solution of a dual optimization problem, as well as the other items
in Theorem 4.6, is new.

(i) Strong convergence dfx,),cn @nd(y,),en in Theorem 4.6(iv) is guaranteed when
both f and g are even (which implies thaD, 0) is a minimizer of® and that the
subdifferential operatoréf anddg are odd so that Remark 3.4(ii) is applicable). On
the other hand, it is known that strong convergence may fail to hold, even when both
proximity operators are projectors (§28,33]) or even when only a single proximity
operator is iterated (s¢&3,27]). See also Remark 4.8 below.

(iii) Along the same lines as in Remark 3.4(iii), it would be interesting to know how these
results generalize to Banach space settings. A starting point coy@Bb&heorem
3.7(b)], which yields strong convergence of the sequepger — xp),cN-

Remark 4.8 (weak-but-not-strong convergence of the gradient projection metHoet C
andD be two closed convex subsets.sf with associated distance functiodg anddp,
respectively, and assume th@an D # Q.
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(i) Setf =1 andg =1p. Then (55) yields the method of alternating projections
Xn+1= PcPpxy. (65)

This iteration converges weal{¥4, Theorem 1}o a point inC N D (see also Theorem
4.6(iv)(a)). Now seth =d12)/2, which implies tha¥h=Id — Pp is 1-Lipschitz. Observe
that (65) assumes the form of the gradient projection mefb5@9]

Xpy1 = Pc(xy — Vh(xy)). (66)

As shown in[28], (65) does not converge strongly in general and, therefore, neither
does the gradient projection method.

(i) Setf =14 andg:# — Rix — Fmin[|(C —x) N (x — D)||. Then prox = Id,
prox, = (Pc + Pp)/2[13, Theorem 6.1]and (55) becomes the method of barycentric
projections

Pcxy, + Ppxy

> : (67)

Xn+l=
which is known to converge weakly to a pointdhn D [5]. Now seth = (dg + d,z))/Z.
Then (67) assumes the form of the (unconstrained) gradient mg2RApd

Xpy1 =X, — Vh(xp). (68)

As shown in[13, Corollary 7.1] (67) does not converge strongly in general and, there-
fore, neither does the gradient method.

4.3. Applications

Our first application concerns the method of alternating projections. Set andg=1p
in (45), whereC andD are nonempty closed convex setsAh Then minimizing® reduces
to finding a best approximation pair, i.€x,, y) € C x D such that|x — y|| is equal to the
gap inf||C — D| betweenC andD. It is possible that has no minimizers in which case
u* is not defined: consider, for instance, the case whiés the horizontal axis anB is
the epigraph of the exponential function in the Euclidean plane. Returning to the general
setting, note that iteration (55) becomes the method of alternating projections

xoe# and (VneN) y,=Pp(xy), Xpp1=Pc(n). (69)
Now observe thay O gV =1cOi1_p = 1c_p. Hence
(fOgY" =18 p=1p (70)

is the indicator function of the closure of the Minkowski differexdte D. Using Proposition
4.3(i) with y = 1, we determine the dual solution to be (see #s&ection 2)

w* = —ProX s gvy=(0) = —proxlﬁ(O) = —Ps—5(0) = P—(0). (71)

In this setting, Theorem 4.6 recovers most of the resul{9,iiBection 4] which—when
viewed in the product space setting utilized in Section 3.3.2—yield in turn some of the
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results on parallel projection methods discussed in [8, Section 6; 9, Section 6; 18]. Alter-
nating projections for two possibly nonintersecting sets were first considered by Cheney in
Goldstein[17] in 1959 and then by Gubin et 426]; see alsd12,33, Corollary 4.6for
related recent results.

As a second application, we propose a new derivation of von Neumann’s method of
alternating projection§37]. Let C andD be two closed vector subspaces.éf, and let
z € A . Consider the problem of findingcnp (z), i.e., the best approximation wfrom
CnD.J.von Neumann proved thBtnp (z) can be constructed by alternating projections.
We now provide a novel proof of his result (§8&,21, Chapter 9or further information,
and[13, Section 3for a recent elementary proof).

Corollary 4.9 (von Neumann Suppose that C and D are closed vector subspaceg of
and thatz € /. Then

lim (PpPc)"(2) = Pcnp(2). (72)
n—+00
Proof. Denote the orthogonal complements@&ndD by C1 and D+, respectively. We
define
fiH —1—00,+00lix > 101 (x +2) — 32> and g=1p1. (73)

Then, forevery™ € 7, f*(z*):%”z”z— (z|z*)+1¢0(z*) andg*(z*) =1p(z*). Recalling
Definition 4.2 withy = 1, the (Fenchel dual) minimizes* of the functionz* — f*(z*) +
gX (=) +3l*12=3lIzl2 = (2| 2*) +1c(@) + 1p(@) + 311212 =3 112" — 21>+ 1enp ()
is preciselyPcnp(z). Furthermore, for anw € 27, we compute

proxs(w) =w — Pcw — Pcz and prox (w) =w — Ppw. (74)
Now consider the alternating proximity operator iteration

xoe# and (VvneN) y,=x,— Ppxy, Xug1=yn — Pcyn — Pcz.  (75)
Theorem 4.6(iii) withy = 1 implies that

lim Yn —Xn = w* = Pcnp(2). (76)

n——+00

Now let xg = 0 and observe that (75) yieldg = 0, x1 = —Pcz, y1 = —Pcz + PpPcz,
x2=—Pcz+4+ PpPcz— PcPpPcz,y2=—Pcz+ PpPcz— PcPpPcz+ PpPcPpPcz,
and so forth. Therefore,

(Vn e N\{0})  yn —xp = (PpPc)"(2), (77)

and the result follows from (76). ]
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