THE ASYMPTOTIC BEHAVIOUR OF CERTAIN INTEGRAL FUNCTIONS

BY

P. C. FENTON

ABSTRACT. Let $f(z)$ be an integral function satisfying

$$
\int^{\infty}\{\log m(r, f)-\cos \pi \rho \log M(r, f)\}^{+} \frac{d r}{r^{\rho+1}}<\infty
$$

and

$$
0<\lim _{r \rightarrow \infty} \frac{\log M(r, f)}{r^{p}}<\infty
$$

for some $\rho: 0<\rho<1$. It is shown that such functions have regular asymptotic behaviour outside a set of circles with centres ζ_{i} and radii t_{i} for which

$$
\sum_{i=1}^{\infty} \frac{t_{i}}{\left|\xi_{i}\right|}<\infty
$$

1. Introduction. For an integral function $f(z)$ let

$$
M(r, f)=\max _{|z|=r}|f(z)|, \quad m(r, f)=\min _{|z|=r}|f(z)|
$$

and let $n(r, f)$ be the number of zeros of f in $|z| \leqslant r$. The order ρ of f is

$$
\rho=\varlimsup_{r \rightarrow \infty} \frac{\log \log M(r, f)}{\log r}
$$

The following result appears in [6].
Theorem A. Let ρ be a positive number less than one and let $f(z)$ be an integral function of order ρ satisfying the following conditions:
(i) there is a finite constant K such that

$$
\varlimsup_{\varlimsup_{2}>r_{1}} \int_{r_{1}}^{r_{2}}\{\log m(r, f)-\cos \pi \rho \log M(r, f)\} \frac{d r}{r_{1}+\infty} \leqslant K ;
$$

(ii) there are numbers α and β, with $0<\alpha<\beta<\infty$, such that, for all large r,

$$
\alpha r^{\rho} \leqslant n(r, f) \leqslant \beta r^{\rho} .
$$

Let

[^0]\[

$$
\begin{equation*}
k=\left\{\frac{2 \beta}{\alpha}\right\}^{1 / \rho} \tag{1.1}
\end{equation*}
$$

\]

Then there is a curve $C: z=r e^{i \phi(r)}$, where $\phi(r)$ is a continuous function satisfying

$$
\begin{equation*}
\left|\phi\left(R_{1}\right)-\phi\left(R_{2}\right)\right|=o\left|\log \frac{R_{2}}{R_{1}}\right|^{1 / 2} \text { as } \min \left(R_{1}, R_{2}\right) \rightarrow \infty \tag{1.2}
\end{equation*}
$$

a function $\varepsilon(t)$ satisfying $\pi \geqslant \varepsilon(t) \geqslant 0$ and $\varepsilon(t) \rightarrow 0$ as $t \rightarrow \infty$, and a function $\nu(t)$ satisfying $1 \geqslant \nu(t) \geqslant 0, \nu(t) \rightarrow 0$ as $t \rightarrow \infty$ and

$$
\begin{equation*}
\int^{\infty} \frac{\nu(t)}{t} d t<\infty \tag{1.3}
\end{equation*}
$$

for which the following is true. If ζ is any point on C, then the set

$$
\left\{z: k^{-1}|\zeta|<|z| \leqslant k|\zeta| \text { and }\left|\arg z \zeta^{-1}\right| \geqslant \varepsilon(|\zeta|)\right\}
$$

contains at most $\nu(|\zeta|) N(|\zeta|)$ zeros of f, where $N(|\zeta|)$ is the number of zeros of f in

$$
\left\{z: k^{-1}|\zeta|<|z| \leqslant k|\zeta|\right\}
$$

The equation (1.2) is a consequence of the following: there is a constant $A=A(k)$ and a function $\Delta(t)$ satisfying $\pi \geqslant \Delta(t) \geqslant 0, \Delta(t) \rightarrow 0$ and

$$
\begin{equation*}
\int^{\infty} \frac{\Delta(t)^{2}}{t} d t<\infty \tag{1.4}
\end{equation*}
$$

for which

$$
\begin{equation*}
\left|\phi^{\prime}(t)\right| \leqslant A \frac{\Delta(t)}{t} \quad \text { for all large } t \tag{1.5}
\end{equation*}
$$

The reader is referred to [6] for details.
It will be shown here that this result leads to a precise description (outside a small exceptional set) of the asymptotic behavior of a certain class of integral functions. To be specific, let ρ be a positive number less than one and suppose that f is an integral function satisfying
(i)' with the convention that $a^{+}=\max (0, a)$ for any real number a,

$$
\int^{\infty}\{\log m(r, f)-\cos \pi \rho \log M(r, f)\}^{+} \frac{d r}{r^{\rho+1}}<\infty ;
$$

(ii)' there is a finite nonzero constant β such that

$$
0<\beta=\lim _{r \rightarrow \infty} \frac{\log M(r, f)}{r^{\rho}}<\infty
$$

We shall prove here

Theorem 1. Let ρ be a positive number less than one and let $f(z)$ be an integral function satisfying conditions (i)' and (ii)' above. Then $f(z)$ satisfies the hypotheses of Theorem A and with $\phi(r)$ as in that theorem we have

$$
\begin{equation*}
\left|r^{-\rho} \log \right| f\left(r e^{i(\phi(r)+\theta-\pi)}\right)|-\beta \cos \rho \theta|=o(1) \tag{1.6}
\end{equation*}
$$

as r tends to infinity outside a set of discs with centres ζ_{i}, radii t_{i}, for which

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{t_{i}}{\left|\zeta_{i}\right|}<\infty . \tag{1.7}
\end{equation*}
$$

The exceptional set of Theorem 1 may be described briefly, following Hayman [7], as an E-set. Theorem 1 has much in common with results of Essén [4] and Essén and Lewis [5] on subharmonic functions. In [4] Essén is concerned with functions subharmonic in the plane slit along the negative real axis while [5] generalizes the considerations of [4] to functions subharmonic in d-dimensional cones and also establishes an improved estimate of the exceptional set. When restricted to integral functions the result of [4] combined with the estimate of the exceptional set of [5] may be viewed as a special case of Theorem 1, when $|f(r)|=M(r, f),|f(-r)|=m(r, f)$ and $\log |f(-r)| \leqslant \cos \pi \rho \log |f(r)|$.

The condition (i)' cannot be replaced with

$$
\begin{equation*}
\varlimsup_{r_{1}, r_{2} \rightarrow \infty} \int_{r_{1}}^{r_{2}}\{\log m(r, f)-\cos \pi \rho \log M(r, f)\} \frac{d r}{r^{\rho+1}} \leqslant 0, \tag{1.8}
\end{equation*}
$$

a condition arising in the work of Anderson [1]. For in [1], Anderson shows that

$$
\int_{0}^{\infty}\{\log |f(-r)|-\cos \pi \rho \log |f(r)|\} \frac{d r}{r^{\rho+1}}
$$

exists (so that.(1.8) certainly holds) for an integral function $f(z)$ with real negative zeros if

$$
\begin{equation*}
\frac{\log f(r)}{r^{\rho}} \rightarrow A \quad(0<A<\infty) \tag{1.9}
\end{equation*}
$$

for some $\rho: 0<\rho<1$. It will be shown in $\S 9$, however, that there exists an integral function $f(z)$ with real negative zeros satisfying (1.9) and such that, for some $\varepsilon>0$,

$$
\log |f(-r)|<(A \cos \pi \rho-\varepsilon) r^{\rho}
$$

for all r in a set of infinite logarithmic measure. Since an E-set intersects every ray through the origin in a set of finite logarithmic measure (1.6) cannot hold outside an E-set.
2. Preliminaries. From (i)' it follows that

$$
\varlimsup_{r_{1}, r_{2} \rightarrow \infty} \int_{r_{1}}^{r_{2}}\{\log m(r, f)-\cos \pi \rho \log M(r, f)\} \frac{d r}{r^{\rho+1}} \leqslant 0
$$

and from this together with (ii)' and the theorem of Anderson already mentioned [1, p. 154] we deduce that

$$
\begin{align*}
\log M(r, f) & \sim \beta r^{\rho}, \tag{2.1}\\
\log f_{1}(r) & \sim \beta r^{\rho}, \tag{2.2}
\end{align*}
$$

where

$$
\begin{equation*}
f_{1}(z)=\prod_{1}^{\infty}\left(1+\frac{z}{\left|a_{n}\right|}\right) \tag{2.3}
\end{equation*}
$$

the numbers $a_{n}, n=1,2,3, \ldots$, being the nonzero zeros of f arranged in order of increasing magnitude. A well-known consequence of (2.2) is that

$$
\begin{equation*}
n(r, f)=n\left(r, f_{1}\right) \sim \pi^{-1} \beta \sin \pi \rho r^{\rho} \tag{2.4}
\end{equation*}
$$

so that functions satisfying (i) and (ii)' are of order ρ and satisfy (i) and (ii) of Theorem A.

In the course of the proof of Theorem 1 we shall find it convenient to refer to a result due to Kolomiiceva [9]. A complete discussion of Kolomiiceva's theorem would involve us in needless complications but a simple consequence of it is

Lemma 1. Let $g(z)$ be an integral function satisfying

$$
\lim _{r \rightarrow \infty} \frac{\log M(r, g)}{r^{\rho}}=\beta
$$

where $0<\rho<1$ and $0<\beta<\infty$, which is such that, for each $\eta>0$, the number of zeros of g in

$$
\{|z| \leqslant r\} \cap\{|\arg z| \leqslant \pi-\eta\}
$$

is $o\left(r^{\rho}\right)$ as $r \rightarrow \infty$. Then a necessary and sufficient condition that

$$
\log \left|g\left(r e^{i \theta}\right)\right|=(\beta \cos \rho \theta+o(1)) r^{\rho}
$$

outside a set E is the following: given $\varepsilon>0$, there exist $\delta=\delta(\varepsilon)>0$ and $r(\varepsilon)$ such that for all z outside E satisfying $|z|>r(\varepsilon)$,

$$
\begin{equation*}
\int_{0}^{\delta r} \frac{n_{z}(t, g)}{t} d t<\varepsilon r^{\rho} \tag{2.5}
\end{equation*}
$$

where $n_{z}(t, g)$ is the number of zeros of g contained in the open disc with centre z and radius t.
3. An auxiliary function. We suppose without loss of generality that $f(0)=1$ so that

$$
\begin{equation*}
f(z)=\prod_{1}^{\infty}\left(1-\frac{z}{a_{n}}\right) \tag{3.1}
\end{equation*}
$$

As was mentioned before the results of Theorem A hold for functions satisfying the hypotheses of Theorem 1. Choose

$$
\begin{equation*}
k=(12)^{1 / \rho} \tag{3.2}
\end{equation*}
$$

and let C and $\phi(t)$ be as in Theorem A. We relabel C as C_{π} and for every θ satisfying $-\pi<\theta<\pi$ we define C_{θ} by

$$
\begin{equation*}
C_{\theta}: z=r e^{i(\phi(r)+\theta-\pi)} \tag{3.3}
\end{equation*}
$$

Let us rearrange the zeros of f in the following way: if a_{n} is a zero of f lying on the curve C_{θ} say, we transfer it to the point $a_{n}^{\prime}=\left|a_{n}\right| e^{i \theta}$ and define

$$
\begin{equation*}
F(z)=\prod_{1}^{\infty}\left(1-\frac{z}{a_{n}^{\prime}}\right) \tag{3.4}
\end{equation*}
$$

Our first concern is to show that $\log \left|F\left(|z| e^{i \theta}\right)\right|$ and $\log |f(z)|$ do not greatly differ. Later we shall show that $\log |F(z)|$ and $\log \left|f_{1}(z)\right|$ have similar asymptotic behavior and then, after estimating $\log \left|f_{1}(z)\right|$, we shall appeal to the intermediate character of F to estimate $\log |f(z)|$.
4. Comparison of f and F. We shall prove

Lemma 2. Given any number $\varepsilon>0$, there exists a number $R(\varepsilon)$ such that, if $f(z) \neq 0$,

$$
\begin{equation*}
|\log | f(z)|-\log | F\left(|z| e^{i \theta}\right)\left|\mid<\varepsilon r^{\rho}\right. \tag{4.1}
\end{equation*}
$$

whenever $|z|>R(\varepsilon)$, where θ satisfies $-\pi<\theta \leqslant \pi$ and is such that z lies on C_{θ}.

Throughout the proof we suppose that $z=r e^{i \psi}$ is not a zero of f. We have, from (3.1) and (3.4),

$$
\begin{equation*}
\log \left|\frac{f(z)}{F\left(r e^{i \theta}\right)}\right|=\sum_{1}^{\infty} \log \left|\left(1-\frac{z}{a_{n}}\right)\left(1-\frac{r e^{i \theta}}{a_{n}^{\prime}}\right)^{-1}\right| \tag{4.2}
\end{equation*}
$$

and we examine the sum of (4.2) in three parts. First, with $a_{n}=r_{n} e^{i \phi_{n}}$ consider, for $p>1$,

$$
\begin{aligned}
S_{1} & =\prod_{r_{n}>k^{p} r} \log \left|\left(1-\frac{z}{a_{n}}\right)\left(1-\frac{r e^{i \theta}}{a_{n}^{\prime}}\right)^{-1}\right| \\
& \leqslant \sum_{r_{n}>k^{p} r} \log \left(1+\frac{r}{r_{n}}\right)\left(1-\frac{r}{r_{n}}\right)^{-1} \\
& \leqslant 2 r\left(1-k^{-1}\right)^{-1} \sum_{r_{n}>k^{p_{r}}} r_{n}^{-1} \\
& =2 r\left(1-k^{-1}\right)^{-1} \int_{k^{p} r}^{\infty} \frac{d n(t)}{t}
\end{aligned}
$$

Integrating by parts we obtain

$$
\begin{equation*}
S_{1}=O\left(k^{p(\rho-1)} r^{\rho}\right) \tag{4.3}
\end{equation*}
$$

Next consider

$$
\begin{align*}
S_{2} & =\sum_{r_{n}<k^{-p_{r}}} \log \left|\left(1-\frac{z}{a_{n}}\right)\left(1-\frac{r e^{i \theta}}{a_{n}^{\prime}}\right)^{-1}\right| \\
& \leqslant \sum_{r_{n}<k^{-p_{r}}} \log \left\{\left(1+\frac{r_{n}}{r}\right)\left(1-\frac{r_{n}}{r}\right)^{-1}\right\} \\
& \leqslant 2 r^{-1}\left(1-k^{-1}\right)^{-1} \sum_{r_{n}<k^{-p_{r}}} r_{n} \tag{4.4}\\
& =2 r^{-1}\left(1-k^{-1}\right)^{-1} \int_{0}^{k^{-p_{r}}} t d n(t) \\
& =O\left(k^{-p(\rho+1)} r^{\rho}\right) .
\end{align*}
$$

Finally we consider the remaining part of the sum, that for which $k^{-p_{r}} \leqslant$ $r_{n} \leqslant k^{p} r$. Since $\theta=\pi+\psi-\phi(r)$ and $a_{n}^{\prime}=r_{n} e^{i\left(\pi+\phi_{n}-\phi\left(r_{n}\right)\right)}$,

$$
\begin{aligned}
J_{n} & =\left|\left(1-\frac{z}{a_{n}}\right)\left(1-\frac{r e^{i \theta}}{a_{n}^{\prime}}\right)^{-1}\right|^{2} \\
& =\frac{\left(1-\frac{r}{r_{n}}\right)^{2}+\frac{4 r}{r_{n}} \sin ^{2}\left(\frac{\psi-\phi_{n}}{2}\right)}{\left(1-\frac{r}{r_{n}}\right)^{2}+\frac{4 r}{r_{n}} \sin ^{2}\left(\frac{\psi-\phi_{n}-\phi(r)+\phi\left(r_{n}\right)}{2}\right)}
\end{aligned}
$$

Let us write $t_{n}=r / r_{n}, \psi-\phi_{n}=\psi_{n}, \phi(r)-\phi\left(r_{n}\right)=\nu_{n}$. Then

$$
\begin{aligned}
J_{n} & =\frac{\left(1-t_{n}\right)^{2}+4 t_{n} \sin ^{2}\left(\psi_{n} / 2\right)}{\left(1-t_{n}\right)^{2}+4 t_{n} \sin ^{2}\left(\left(\psi_{n}-\nu_{n}\right) / 2\right)} \\
& =1+\frac{4 t_{n} \sin \left(\psi_{n}-\frac{1}{2} \nu_{n}\right) \sin \frac{1}{2} \nu_{n}}{\left(1-t_{n}\right)^{2}+4 t_{n} \sin ^{2}\left(\left(\psi_{n}-\nu_{n}\right) / 2\right)}
\end{aligned}
$$

Hence

$$
\begin{align*}
\log J_{n} & \leqslant \frac{4 t_{n}\left|\sin \left(\psi_{n}-\frac{1}{2} \nu_{n}\right) \sin \frac{1}{2} \nu_{n}\right|}{\left(1-t_{n}\right)^{2}+4 t_{n} \sin ^{2}\left(\frac{\psi_{n}-\nu_{n}}{2}\right)} \tag{4.5}\\
& \leqslant \frac{8 t_{n}\left|\sin \left(\frac{\psi_{n}-\nu_{n}}{2}\right) \sin \frac{1}{2} \nu_{n}\right|+8 t_{n}\left|\sin \frac{1}{4} \nu_{n} \sin \frac{1}{2} \nu_{n}\right|}{\left(1-t_{n}\right)^{2}+4 t_{n} \sin ^{2}\left(\frac{\psi_{n}-\nu_{n}}{2}\right)}
\end{align*}
$$

since, for any real numbers a and b,

$$
\begin{aligned}
\left|\sin \left(a-\frac{1}{2} b\right)\right| & \leqslant 2\left|\sin \left(\frac{1}{2}(a-b)+\frac{1}{4} b\right)\right| \\
& \leqslant 2\left|\sin \frac{1}{2}(a-b)\right|+2\left|\sin \frac{1}{4} b\right|
\end{aligned}
$$

Further, from (1.5),

$$
\begin{align*}
\left|\nu_{n}\right| & =\left|\phi(r)-\phi\left(r_{n}\right)\right| \leqslant\left|\int_{r_{n}}^{r}\right| \phi^{\prime}(t)|d t| \\
& \leqslant\left|\int_{r_{n}}^{r} A \frac{\Delta(t)}{t} d t\right| \leqslant A\left|\log \frac{r}{r_{n}}\right|\left\{\sup _{t>k^{-p_{r}}} \Delta(t)\right\} \tag{4.6}\\
& \leqslant A k^{p}\left|1-\frac{r}{r_{n}}\right|\left\{\sup _{t>k^{-p_{r}}} \Delta(t)\right\} .
\end{align*}
$$

Substituting (4.6) into (4.5) we obtain

$$
\begin{aligned}
\log J_{n} \leqslant & \frac{\left.4 A k^{p} t_{n}\left|1-t_{n}\right| \sin \left(\frac{\psi_{n}-\nu_{n}}{2}\right) \right\rvert\,}{\left(1-t_{n}\right)^{2}+4 t_{n} \sin ^{2}\left(\frac{\psi_{n}-v_{n}}{2}\right)}\left\{\sup _{t>k^{-p_{r}}} \Delta(t)\right\} \\
& +A^{2} k^{2 p^{p} t_{n}}\left\{\sup _{t>k^{-p_{r}}} \Delta(t)^{2}\right\} \\
\leqslant & A k^{p_{1} t_{n}^{1 / 2}\left\{\sup _{t>k^{-p_{r}}} \Delta(t)\right\}+A^{2} k^{2 p^{2} t_{n}}\left\{\sup _{t>k^{-p_{r}}} \Delta(t)^{2}\right\}} \\
\leqslant & A_{1} k^{3 p}\left\{\sup _{t>k^{-p_{r}}} \Delta(t)\right\},
\end{aligned}
$$

where $A_{1}=A+\pi A^{2}$. Hence, since from (2.4) the number of zeros of f in $|z| \leqslant k^{p} r$ is at most $2 \alpha k^{p \rho} r^{\rho}$ for large r, where $\alpha=\beta \pi^{-1} \sin \pi \rho$,

$$
\begin{align*}
S_{3} & =\sum_{k^{-p_{r}<r_{n}<k^{p} r}} \log \left|\left(1-\frac{z}{a_{n}}\right)\left(1-\frac{r e^{i \theta}}{a_{n}^{\prime}}\right)^{-1}\right| \tag{4.7}\\
& \leqslant 2 \alpha A_{1} k^{p(\rho+3)} r^{\rho}\left\{\sup _{t>k^{-p_{r}}} \Delta(t)\right\}
\end{align*}
$$

Given $\varepsilon>0$ we may choose p sufficiently large that $S_{1}+S_{2}<\varepsilon r^{\rho}$ for all large r and with this p we may choose $r_{0}(\varepsilon)$ so that $S_{3}<\varepsilon r^{\rho}$ for $r>r_{0}(\varepsilon)$, since $\Delta(t) \rightarrow 0$ as $t \rightarrow \infty$, which proves one half of Lemma 1. The second half, that

$$
\log \left|\frac{F\left(|z| e^{i \theta}\right)}{f(z)}\right|<\varepsilon|z|^{\rho},
$$

is proved similarly.
5. The zeros of $F(z)$. We shall prove

Lemma 3. Let δ be a fixed positive number less than π and let $n_{z}(t, F, \delta)$ be the number of zeros of F contained in

$$
\begin{equation*}
\left\{\zeta:|\arg \zeta| \leqslant \pi-\frac{1}{2} \delta\right\} \cap\{\zeta:|\zeta-z|<t\} \tag{5.1}
\end{equation*}
$$

Then given any positive number $\varepsilon<\frac{1}{2}$ there exists a number $R(\varepsilon, \delta)$ such that, with $|z|=r$,

$$
\begin{equation*}
\int_{0}^{\varepsilon r} n_{z}(t, F, \delta) \frac{d t}{t}<\varepsilon r^{\rho} \tag{5.2}
\end{equation*}
$$

for all z outside a set H_{1} (where H_{1} depends only on δ) and such that $|z|>R(\varepsilon, \delta)$. Moreover H_{1} is covered by a set of discs C_{i}, centres ζ_{i}, radii t_{i}, $i=1,2,3, \ldots$, such that $\sum_{1}^{\infty} t_{i} /\left|\zeta_{i}\right|<\infty$.

Throughout the proof of Lemma 3 we write $n_{z}(t), n_{z}(t, \delta)$ instead of $n_{z}(t, F), n_{z}(t, F, \delta)$.

We shall make use of an argument of Azarin [2] in which the following lemma is used.

Lemma 4 ([10, Lemma 3.2]). If a set E in the complex plane is covered by discs of bounded radii such that each point of the set is the centre of a disc, then from this one may select a subsystem of discs which covers the set, each point of the plane being covered no more than ν times by the discs of this subsystem, where ν is an absolute constant.

Let $R_{1}=R_{1}(\delta)$ be such that, for $r \geqslant R_{1}$ we have $\varepsilon(r)<\frac{1}{2} \delta$, where $\varepsilon(r)$ is
the function occurring in Theorem A. (We may note that, if $z \in S\left(\delta, R_{1}\right)$, where

$$
\begin{equation*}
S\left(\delta, R_{1}\right)=\left\{z:|z| \geqslant R_{1} \text { and }\{\arg z \mid \leqslant \pi-\delta\}\right. \tag{5.3}
\end{equation*}
$$

then $n_{z}(t, \delta)=n_{z}(t)$ certainly for $0<t<\frac{1}{4} \delta|z|$.) Let H_{1} be the set of points z in $|z| \geqslant R_{1}$ at which, for some $t=t(z)$ satisfying $0<t<\frac{1}{2}|z|$, we have

$$
\begin{equation*}
n_{z}(t, \delta) \geqslant t|z|^{\rho-1} \tag{5.4}
\end{equation*}
$$

Let E_{n} be the subset of H_{1} contained in the annulus

$$
\left\{z: 4^{n+1}>|z| \geqslant 4^{n}\right\}, \quad n=0,1,2, \ldots
$$

We surround each point z of H_{1} by a disc of radius $t(z)$ and from the set of such discs surrounding points of E_{n} we select a subsystem K_{n} which covers E_{n}, while covering each point of the plane at most ν times. This can be done, by Lemma 4. We note that the members of K_{m} do not intersect the members of K_{n} if $|n-m| \geqslant 2$, and therefore $K=\bigcup_{n=1}^{\infty} K_{n}$ is a set of discs the members of which cover each point of the plane at most 2ν times.

Now, K is a countable set the members of which may be ordered: C_{i}, $i=1,2,3, \ldots$, where C_{i} is a disc with centre ζ_{i} and radius t_{i}, where $0<t_{i}<\frac{1}{2}\left|\zeta_{i}\right|, i=1,2,3, \ldots$; moreover, from (5.4) we have

$$
n_{\zeta_{i}}\left(t_{i}, \delta\right) \geqslant t_{i}\left|\zeta_{i}\right|^{\rho-1}, \quad i=1,2,3, \ldots
$$

Hence

$$
\begin{equation*}
\sum_{1}^{\infty} \frac{t_{i}}{\left|\xi_{i}\right|} \leqslant \sum_{1}^{\infty} \frac{n_{\xi_{i}}\left(t_{i}, \delta\right)}{\left|\xi_{i}\right|^{\rho}} \tag{5.5}
\end{equation*}
$$

Now, if z_{n} is one of the zeros of F contained in $S\left(\frac{1}{2} \delta, R_{1}\right)$ and also in one of the discs, say C_{i}, then $\left|z_{n}\right|-\left|\zeta_{i}\right| \leqslant\left|z_{n}-\zeta_{i}\right|<t_{i}<\frac{1}{2}\left|\zeta_{i}\right|$ so $\left|z_{n}\right|<\frac{3}{2}\left|\zeta_{i}\right|$. Hence, from (5.5) and the fact that K covers any point in the plane at most 2ν times,

$$
\begin{equation*}
\sum_{1}^{\infty} \frac{t_{i}}{\left|\zeta_{i}\right|} \leqslant 2 v\left(\frac{3}{2}\right)^{\rho} \sum \frac{1}{\left|z_{n}\right|^{\rho}} \tag{5.6}
\end{equation*}
$$

where the sum on the right-hand side is taken over those zeros of F which are contained in $S\left(\frac{1}{2} \delta, R_{1}\right)$. We proceed to show that this sum is finite.

Let n be a nonnegative integer, and let b_{n} be a positive number satisfying $k^{n} R_{1} \leqslant b_{n}<k^{n+1} R_{1}$ at which

$$
\begin{equation*}
\nu\left(b_{n}\right) \log k \leqslant \int_{k^{n} R_{1}}^{k^{n+1} R_{1}} v(t) \frac{d t}{t}, \tag{5.7}
\end{equation*}
$$

where $\nu(t)$ is the function occurring in Theorem A and k is given by (3.2). The number of zeros of F in

$$
\left\{z: k^{n} R_{1} \leqslant|z|<k^{n+1} R_{1} \text { and }|\arg z| \leqslant \pi-\frac{1}{2} \delta\right\}
$$

is no more than $\nu\left(b_{n}\right) N\left(b_{n}\right)$, where $N\left(b_{n}\right)$ is the number of zeros of F in $\{z$: $\left.k^{-1} b_{n} \leqslant|z|<k b_{n}\right\}$. Hence, making use of (5.7) we have, for some constant A,

$$
\begin{aligned}
\sum \frac{1}{\left|z_{n}\right|^{\rho}} & \leqslant \sum_{0}^{\infty} \nu\left(b_{n}\right) N\left(b_{n}\right)\left(k^{n} R_{1}\right)^{-\rho} \\
& \leqslant \sum_{0}^{\infty} \nu\left(b_{n}\right) A b_{n}^{\rho}\left(k^{n} R_{1}\right)^{-\rho} \leqslant A k^{\rho} \sum_{0}^{\infty} \nu\left(b_{n}\right) \\
& \leqslant A k^{\rho}(\log k)^{-1} \int_{R_{1}}^{\infty} \nu(t) \frac{d t}{t}<\infty,
\end{aligned}
$$

from Theorem A. The sum on the left-hand side of (5.6) is thus finite.
Suppose that z is a point outside H_{1} and satisfying $|z| \geqslant R_{1}$. Then, given any positive number $\varepsilon<\frac{1}{2}, \int_{0}^{\ell|z|} n_{z}(t, \delta) d t / t<\varepsilon|z|^{\rho}$. This proves Lemma 3.
6. The behaviour of $f_{1}(z)$. Let $f_{1}(z)$ be the function (2.3). Since
$\log m(r, f)-\cos \pi \rho \log M(r, f) \geqslant \log m\left(r, f_{1}\right)-\cos \pi \rho \log M\left(r, f_{1}\right)$
it follows from (i)' and Kjellberg's Lemma [8, p. 193, formula (21)] that

$$
\begin{equation*}
\int^{\infty}\left|\log m\left(r, f_{1}\right)-\cos \pi \rho \log M\left(r, f_{1}\right)\right| \frac{d r}{r^{\rho+1}}<\infty \tag{6.1}
\end{equation*}
$$

Given a positive number $\varepsilon>0$, it follows from (6.1) and (2.2) that

$$
\log m\left(r, f_{1}\right)>\left(\beta \cos \pi \rho-\frac{1}{2} \varepsilon\right) r^{\rho}
$$

for r outside a set $E=E(\varepsilon)$ of finite logarithmic measure. Hence, for $\delta=\varepsilon / 2 \beta \rho$,

$$
\begin{equation*}
\log \left|f_{1}\left(r e^{i \theta}\right)\right|>\log m\left(r, f_{1}\right)>(\beta \cos \rho \theta-\varepsilon) r^{\rho} \tag{6.2}
\end{equation*}
$$

for $\pi \geqslant|\theta| \geqslant \pi-\delta$ and for r outside E.
It is well known (see e.g. [12, p. 272]) that

$$
\begin{equation*}
\left|r^{-\rho} \log \right| f_{1}\left(r e^{i \theta}\right)|-\beta \cos \rho \theta| \rightarrow 0 \tag{6.3}
\end{equation*}
$$

as $r \rightarrow \infty$, uniformly for $|\theta| \leqslant \pi-\delta$. In particular

$$
\left|r^{-\rho} \log \right| f_{1}\left(r e^{i(\pi-\delta)}\right)|-\beta \cos \rho(\pi-\delta)| \rightarrow 0
$$

as $r \rightarrow \infty$. Hence, for $\pi \geqslant|\theta| \geqslant \pi-\delta$ and for sufficiently large r

$$
\begin{align*}
r^{-\rho} \log \left|f_{1}\left(r e^{i \theta}\right)\right| & \leqslant r^{-\rho} \log \left|f_{1}\left(r e^{i(\pi-\delta)}\right)\right| \\
& \leqslant \beta \cos \rho(\pi-\delta)+\frac{1}{2} \varepsilon \\
& <\beta \cos \rho \theta+2 \beta \sin \frac{1}{2} \rho(|\theta|-\pi+\delta)+\frac{1}{2} \varepsilon \tag{6.4}\\
& <\beta \cos \rho \theta+\varepsilon
\end{align*}
$$

Taking (6.2) and (6.4) together, and taking account of (6.3) we obtain

Lemma 5. Let $f_{1}(z)$ be the integral function (2.3). Given $\varepsilon>0$

$$
\left|r^{-\rho} \log \right| f_{1}\left(r e^{i \theta}\right)|-\beta \cos \rho \theta|<\varepsilon \quad(-\pi<\theta \leqslant \pi)
$$

for all large r outside E, a set of finite logarithmic measure.
From this together with Lemma 1 we deduce
Lemma 6. Given any $\varepsilon>0$ there exist positive numbers $\delta=\delta(\varepsilon)$ and $r(\varepsilon)$ such that

$$
\begin{equation*}
\int_{0}^{\delta r} n_{-r}\left(t, f_{1}\right) \frac{d t}{t}<\varepsilon r^{\rho} \tag{6.5}
\end{equation*}
$$

for all $r>r(\varepsilon)$ lying outside a set E_{0} of finite logarithmic measure, where $n_{-r}\left(t, f_{1}\right)$ is the number of zeros of f_{1} in $(-r-t,-r+t)$. Further, E_{0} is independent of ε and is a union of disjoint intervals each of which contains more than one point.

We need verify only that E_{0} may be taken to be a union of disjoint intervals each containing more than one point; Lemma 6 certainly holds for some set E_{1} of finite logarithmic measure and some functions $\delta(\varepsilon), r(\varepsilon)$, by Lemma 1.

To this end, given $\varepsilon>0$, let $\eta=\delta\left(\frac{1}{3} \varepsilon\right)$, where δ is the function known to exist and suppose that r_{1} and r_{2} are two points outside E_{1} with $2 r_{1} \geqslant r_{2}>r_{1}>r\left(\frac{1}{3} \varepsilon\right)$ and such that f_{1} has no zeros in $\left[r_{1}, r_{2}\right]$. Then, for $r_{1}<r<r_{2}$,

$$
\begin{align*}
I & =\int_{0}^{\eta r} n_{-r}\left(t, f_{1}\right) \frac{d t}{t} \\
& =\sum_{1}^{n_{1}} \log \frac{\eta r}{r+x_{n}}+\sum_{1}^{n_{2}} \log \frac{-\eta r}{r+y_{n}} \tag{6.6}
\end{align*}
$$

where $x_{1}, \ldots, x_{n_{1}}$ are the zeros of f_{1} in $(-r,-r+\eta r)$ and $y_{1}, \ldots, y_{n_{2}}$ are the zeros of f_{1} in $(-r-\eta r,-r)$. Now

$$
\frac{r}{r+x_{n}}=1-\frac{x_{n}}{r+x_{n}}<1-\frac{x_{n}}{r_{1}+x_{n}}=\frac{r_{1}}{r_{1}+x_{n}}
$$

so, in view of Lemma 1 and Lemma 5

$$
\begin{align*}
\sum_{1}^{n_{1}} \log \frac{\eta r}{r+x_{n}} & <\sum_{1}^{n_{1}} \log \frac{\eta r_{1}}{r_{1}+x_{n}} \\
& \leqslant \int_{0}^{\eta r_{1}} n_{-r_{1}}\left(t, f_{1}\right) \frac{d t}{t}<\frac{1}{3} \varepsilon r_{1}^{\rho} \tag{6.7}
\end{align*}
$$

Similarly, $-r /\left(r+y_{n}\right)<-r_{2} /\left(r_{2}+y_{n}\right)$, so

$$
\begin{equation*}
\sum_{1}^{n_{2}} \log \frac{-\eta r}{r+y_{n}} \leqslant \int_{0}^{\eta r_{2} n_{-r_{2}}\left(t, f_{1}\right) \frac{d t}{t}<\frac{1}{3} \varepsilon r_{2}^{\rho}<\frac{2}{3} \varepsilon r_{1}^{\rho} . . . ~} \tag{6.8}
\end{equation*}
$$

From (6.6), (6.7) and (6.8),

$$
\begin{equation*}
\int_{0}^{\eta r} n_{-r}\left(t, f_{1}\right) \frac{d t}{t}<\varepsilon r_{1}^{\rho}<\varepsilon r^{\rho} \tag{6.9}
\end{equation*}
$$

for r in $\left(r_{1}, r_{2}\right)$.
Let E_{0} be the set obtained by removing from E_{1} all points which are limit points both from the left and from the right of the complement of E_{1}. Then E_{0} is a union of disjoint intervals each containing more than one point and is contained in E_{1}. Moreover, if $r>r\left(\frac{1}{3} \varepsilon\right)$ and r lies outside E_{0}, then (6.9) holds, with $\eta=\eta(\varepsilon)=\delta\left(\frac{1}{3} \varepsilon\right)$. This completely proves Lemma 6.
7. Further consideration of the zeros of F. We first observe that the set of intervals the union of which is E_{0} is countable since the logarithmic measure of E_{0} is finite and the logarithmic measure of each interval is positive. We may therefore regard each interval as closed without affecting the value of the logarithmic measure of E_{0}. We write $E_{0}=\cup_{1}^{\infty} J_{i}$, where

$$
J_{i}=\left[c_{i}, d_{i}\right], \quad c_{i+1}>d_{i}>c_{i}, \quad i=1,2,3, \ldots
$$

Let ε be any positive number. With Lemmas 3 and 6 in view, let $\tau=\tau(\varepsilon)=\min \left(\frac{1}{2}, \varepsilon, \delta(\varepsilon)\right)$ (where $\delta(\varepsilon)$ is the function of Lemma 6) and let $r_{0}(\varepsilon)$ be a number at least as large as $\max \left(r(\varepsilon), R\left(\tau, \frac{1}{8} \tau\right)\right)$ (where $r(\varepsilon), R(x, y)$ are respectively the functions of Lemmas 6 and 3) such that $r_{0}(\varepsilon) \notin E_{0}\left(E_{0}\right.$ is the set of Lemma 6) and for which $d_{i}<\left(1+\frac{1}{4} \tau\right) c_{i}$ whenever $c_{i}>r_{0}(\varepsilon)$. Since E_{0} is of finite logarithmic measure this choice of $r_{0}(\varepsilon)$ is possible.

Define, for $J_{i}=\left[c_{i}, d_{i}\right]$ where $c_{i}>r_{0}(\varepsilon)$,

$$
\begin{aligned}
& B_{i}=\left\{z:|z| \in J_{i}\right\} \cap\left\{z: \pi \geqslant|\arg z|>\pi-\frac{1}{8} \tau\right\}, \\
& D_{i}=\left\{z:|z| \in J_{i}\right\} \cap\left\{z: \pi \geqslant|\arg z|>\pi-\frac{1}{8} \tau\right\} \backslash H_{1}
\end{aligned}
$$

where H_{1} is the exceptional set of Lemma 3 corresponding to $\delta=\frac{1}{8} \tau$. $H_{1}=H_{1}(\tau)=H_{1}(\varepsilon)$.

Let z be any point in D_{i}. Then, with $r=|z|$,

$$
\begin{aligned}
I(z) & =\int_{0}^{\tau r} n_{z}(t, F) \frac{d t}{t} \\
& =\log \frac{(\tau r)^{m+n+p+q}}{\Pi_{1}^{m}\left|z-a_{j}\right| \Pi_{1}^{n}\left|z-b_{j}\right| \Pi_{1}^{p}\left|z-u_{j}\right| \Pi_{i}^{q}\left|z-v_{j}\right|}
\end{aligned}
$$

where the $a_{j}, b_{j}, u_{j}, v_{j}$ are zeros of F in $|\zeta-z|<\pi r$ which are respectively in B_{i}, in $\left\{z:|z| \in J_{i}\right\} \backslash B_{i}$, in $|z|<c_{i}$ and in $|z|>d_{i}$. Then we have, recalling Lemma 3 and Lemma 6,

$$
\begin{aligned}
I(z) \leqslant & \log \frac{(\tau r)^{m}}{\Pi_{1}^{m}\left|z-a_{j}\right|}+\log \frac{(\tau r)^{n}}{\Pi_{j=1}^{n}\left(r-\left|u_{j}\right|\right)}+\log \frac{(\tau r)^{p}}{\prod_{j=1}^{p}\left(\left|v_{j}\right|-r\right)} \\
& +\int_{0}^{\tau r} n_{2}\left(t, F, \frac{1}{8} \tau\right) \frac{d t}{t} \\
\leqslant & \log \frac{(\tau r)^{m}}{\Pi_{1}^{m}\left|z-a_{j}\right|}+\log \frac{\left(\tau c_{i}\right)^{n}}{\Pi_{j=1}^{n}\left(c_{i}-\left|u_{j}\right|\right)}+\log \frac{\left(\tau d_{i}\right)^{p}}{\Pi_{j=1}^{p}\left(\left|v_{j}\right|-d_{i}\right)} \\
& +\int_{0}^{\tau r} n_{2}\left(t, F, \frac{1}{8} \tau\right) \frac{d t}{t}
\end{aligned}
$$

(7.1) $<\log \frac{(\tau r)^{m}}{\prod_{1}^{m}\left|z-a_{j}\right|}+\int_{0}^{\tau c_{i}} n_{-c_{i}}\left(t, f_{1}\right) \frac{d t}{t}+\int_{0}^{\tau d_{i}} n_{-d_{i}}\left(t, f_{1}\right) \frac{d t}{t}$

$$
\begin{aligned}
& +\int_{0}^{\tau r} n_{z}\left(t, F, \frac{1}{8} \tau\right) \frac{d t}{t} \\
\leqslant & \log \frac{(\tau r)^{m}}{\Pi_{1}^{m}\left|z-a_{j}\right|}+\int_{0}^{\delta(\varepsilon) c_{i}} n_{-c_{1}}\left(t, f_{1}\right) \frac{d t}{t}+\int_{0}^{\delta(\varepsilon) d_{i}} n_{-d_{i}}\left(t, f_{1}\right) \frac{d t}{t} \\
& +\int_{0}^{\tau r} n_{z}\left(t, F, \frac{1}{8} \tau\right) \frac{d t}{t}
\end{aligned}
$$

$$
<\log \frac{(\tau r)^{m}}{\Pi_{1}^{m}\left|z-a_{j}\right|}+\varepsilon\left[c_{i}^{\rho}+d_{i}^{\rho}\right]+\tau r^{\rho}
$$

$$
<\log \frac{(\tau r)^{m}}{\Pi_{1}^{m}\left|z-a_{j}\right|}+4 \varepsilon r^{\rho}
$$

Now, B_{i} is contained in a rectangle the sides of which have length $\frac{1}{4} \tau d_{i}$ $<\frac{3}{8} \tau c_{i}$ and $d_{i}-c_{i} \cos \frac{1}{8} \tau$. Hence for any point z in D_{i} the circle $|\zeta-z|<$ $\tau|z|$ contains all of B_{i} and so all the zeros of F in B_{i} (i.e. all the a_{j}) appear in (7.1). We can thus apply Cartan's Lemma [3, p. 75] to estimate (7.1) and obtain

$$
\prod_{1}^{m}\left|z-a_{j}\right| \geqslant\left\{\tau d_{i} \exp \left(-\frac{\varepsilon d_{i}^{\rho}}{m}\right)\right\}^{m}
$$

outside a set of at most m discs $C_{j}^{\prime}, j=1,2, \ldots, m$, the sum of the radii of which is at most $A=2 e \tau d_{i} \exp \left(-\varepsilon d_{i}^{\rho} / m\right)$. Hence, for all z in D_{i} outside these discs we have, from (7.1),

$$
\begin{equation*}
\int_{0}^{\tau r} n_{z}(t, F) \frac{d t}{t}<4 \varepsilon r^{\rho}+\log \left(\frac{r}{d_{i}}\right)^{m}+\varepsilon d_{i}^{\rho}<6 \varepsilon r^{\rho} \tag{7.2}
\end{equation*}
$$

We must have $A \leqslant 2 e\left(d_{i}-c_{i}\right)$. For suppose that $A>2 e\left(d_{i}-c_{i}\right)$. Then

$$
\begin{aligned}
I\left(\varepsilon, d_{i}\right) & =\int_{0}^{\delta(\varepsilon) d_{i}} n_{-d_{i}}\left(t, f_{1}\right) \frac{d t}{t} \geqslant \int_{0}^{\tau d_{i} n_{-d_{i}}\left(t, f_{1}\right) \frac{d t}{t}} \\
& \geqslant \log \frac{\left(\tau d_{i}\right)^{m}}{\prod_{j=1}^{m}\left(d_{i}-\left|a_{j}\right|\right)} \\
& \geqslant \log \frac{\left(\tau d_{i}\right)^{m}}{\left(d_{i}-c_{i}\right)^{m}} \\
& >\log \frac{\left(2 e \tau d_{i}\right)^{m}}{A^{m}}=\varepsilon d_{i}^{\rho}
\end{aligned}
$$

a contradiction, since $I\left(\varepsilon, d_{i}\right) \leqslant \varepsilon d_{i}^{\rho}, d_{i}$ being a boundary point of E_{0}. Hence

$$
\begin{equation*}
A \leqslant 2 e\left(d_{i}-c_{i}\right) \tag{7.3}
\end{equation*}
$$

Suppose that C_{j}^{\prime} has radius t_{j}^{\prime} and centre $\zeta_{j}^{\prime}, j=1,2, \ldots, m$.

$$
\sum_{j=1}^{m} \frac{t_{j}^{\prime}}{\left|\zeta_{j}^{\prime}\right|} \leqslant \frac{1}{c_{i}} \sum_{j=1}^{m} t_{j}^{\prime} \leqslant 2 e\left(\frac{d_{i}-c_{i}}{c_{i}}\right)
$$

Also, since $d_{i}<\left(1+\frac{1}{4} \tau\right) c_{i}<2 c_{i}$ and since, for $x \geqslant 1, \log x \geqslant(x-1) / x$,

$$
\frac{d_{i}-c_{i}}{c_{i}}=\frac{d_{i}}{c_{i}} \frac{d_{i}-c_{i}}{d_{i}}<2 \log \frac{d_{i}}{c_{i}},
$$

so

$$
\begin{equation*}
\sum_{j=1}^{m} \frac{t_{i}^{\prime}}{\left|\zeta_{j}^{\prime}\right|^{.}}<4 e \log \frac{d_{i}}{c_{i}} \tag{7.4}
\end{equation*}
$$

We are thus able to prove
Lemma 7. Let ε be any positive number, and let $\tau=\min \left(\frac{1}{2}, \varepsilon, \delta(\varepsilon)\right)$, where $\delta(\varepsilon)$ is the function of Lemma 6. Let $r_{0}(\varepsilon)$ be a positive number greater than $\max \left(r(\varepsilon), R\left(\tau, \frac{1}{8} \tau\right)\right)$ such that $r_{0}(\varepsilon) \notin E_{0}$ and for which $d_{i}<\left(1+\frac{1}{4} \tau\right) c_{i}$ whenever $c_{i}>r_{0}(\varepsilon)$, where $r(\varepsilon), R\left(\tau, \frac{1}{8} \tau\right)$ are respectively the functions of Lemmas 6, 3, and E_{0} is the set of Lemma 6. Then for all z in

$$
T\left(\frac{1}{8} \tau, r_{0}(\varepsilon)\right)=\left\{z:|z| \geqslant r_{0}(\varepsilon) \text { and } \pi \geqslant|\arg z| \geqslant \pi-\frac{1}{8} \tau\right\}
$$

we have, with $|z|=r$,

$$
\begin{equation*}
\int_{0}^{\pi r} n_{z}(t, F) \frac{d t}{t}<6 \varepsilon r^{\rho} \tag{7.5}
\end{equation*}
$$

except when z belongs to an E-set, $H_{2}=H_{2}(\varepsilon)$.
Suppose first that z, in $T\left(\frac{1}{8} \tau, r_{0}(\varepsilon)\right)$, lies in $\cup\left\{z:|z| \in J_{i}\right\}$, where the union is over those $J_{i}=\left[c_{i}, d_{i}\right]$ for which $c_{i}>r_{0}(\varepsilon)$. Then for all z outside H_{1}, the E-set of Lemma 3, and outside a set of discs centres ζ, radii t for which

$$
\sum \frac{t}{|\xi|}<4 e \sum \log \frac{d_{i}}{c_{l}}<4 e \log \text { meas } E_{0}<\infty
$$

(7.5) holds. This follows from (7.2) and (7.4).

Suppose next that z, in $T\left(\frac{1}{8} \tau, r_{0}(\varepsilon)\right)$, lies outside $\cup\left\{z:|z| \in J_{i}\right\}$. Then, with $|z|=r$, we have from Lemma 6

$$
\int_{0}^{\pi r} n_{z}(t, F) \frac{d t}{t} \leqslant \int_{0}^{\delta(\varepsilon) r} \eta_{-r}\left(t, f_{1}\right) \frac{d t}{t}<\varepsilon r^{\rho}
$$

(7.5) thus holds for z in $T\left(\frac{1}{8} \tau, r_{0}(\varepsilon)\right)$ outside an E-set, and Lemma 7 is proved. We prove

Lemma 8. Let ε be any positive number and let $\sigma=\sigma(\varepsilon)=\frac{1}{32} \tau(\varepsilon)$, where $\tau(\varepsilon)$ is the function of Lemma 7. There exists a number $r_{1}(\varepsilon)$ and an E-set, $H_{3}=H_{3}(\varepsilon)$, such that

$$
\begin{equation*}
\int_{0}^{\sigma r} n_{z}(t, F) \frac{d t}{t}<6 \varepsilon r^{\rho} \tag{7.6}
\end{equation*}
$$

whenever $|z|=r>r_{1}(\varepsilon)$ and z lies outside H_{3}.
For z in $T\left(\frac{1}{8} \tau, r_{0}(\varepsilon)\right)$ and outside $H_{2}(\varepsilon),(7.6)$ certainly holds, by Lemma 7.
Consider z outside $T\left(\frac{1}{8} \tau, r_{1}(\varepsilon)\right)$, where $r_{1}(\varepsilon)=\max \left(r_{0}(\varepsilon), R\left(\frac{1}{32} \tau, \frac{1}{8} \tau\right)\right)$. Let $H_{4}(\varepsilon)$ be the E-set $H_{1}\left(\frac{1}{8} \tau\right)$ of Lemma 3. Then, with $\sigma=\frac{1}{32} \tau$ and $r=|z|$, and z outside $H_{4}(\varepsilon)$, we have from Lemma 3

$$
\int_{0}^{\sigma r} n_{z}\left(t, F, \frac{1}{8} \tau\right) \frac{d t}{t}<\sigma r^{\rho}<\varepsilon r^{\rho}
$$

But for $0<t<\frac{1}{32} \tau r$ and $r \geqslant R\left(\frac{1}{32} \tau, \frac{1}{8} \tau\right), n_{z}(t, F)=n_{z}\left(t, F, \frac{1}{8} \tau\right)$ for z outside $T\left(\frac{1}{8} \tau, r_{1}(\varepsilon)\right)$. Hence $\int_{0}^{\sigma} n_{z}(t, F) d t / t<\varepsilon r^{\rho}$ for z outside $T\left(\frac{1}{8} \tau, r_{1}(\varepsilon)\right)$ and outside $H_{4}(\varepsilon)$, with $|z|=r>R\left(\frac{1}{32} \tau, \frac{1}{8} \tau\right)$.

Lemma 8 then follows with $H_{3}(\varepsilon)=H_{2}(\varepsilon) \cup H_{4}(\varepsilon)$.
The following is an immediate consequence of Lemma 8.
Lemma 9. Let ε be any positive number. There exist positive numbers $\alpha(\varepsilon)$, $r_{2}(\varepsilon)$ and an E-set H_{5}, independent of ε, such that

$$
\int_{0}^{\alpha(\varepsilon) r} n_{z}(t, F) \frac{d t}{t}<\varepsilon r^{\rho}
$$

when $r=|z|>r_{2}(\varepsilon)$ and z lies outside H_{5}.
For z such that $r=|z|>r_{1}\left(\frac{1}{6}\right)$ and z lies outside $H_{3}\left(\frac{1}{6}\right)$, where r_{1} and H_{3} are as in Lemma 8, we have, with $\sigma=\sigma\left(\frac{1}{6}\right), \int_{0}^{a r} n_{z}(t, F) d t / t<r^{\rho}$. Given any integer $n \geqslant 1$, suppose that $H_{3}(1 / 6 n)$ is covered by the discs $C_{i}(n)$, radii $t_{i}(n)$ and centres $\zeta_{i}(n), i=1,2,3, \ldots$ Let $i_{0}=i_{0}(n)$ be the smallest integer such that

$$
\begin{equation*}
\sum_{i=i_{0}}^{\infty} \frac{t_{i}(n)}{\left|\zeta_{i}(n)\right|} \leqslant 2^{-n} \sum_{i=1}^{\infty} \frac{t_{i}(1)}{\left|\zeta_{i}(1)\right|}, \quad n=2,3, \ldots \tag{7.7}
\end{equation*}
$$

Let $r_{2}(1)=r_{1}\left(\frac{1}{6}\right)$ and, supposing $r_{2}(m)$ defined, $m \geqslant 1$, let $r_{2}(m+1)$ be the smallest number which is no less than $\max \left\{r_{2}(1 / m)+1, r_{1}(1 / 6(m+1))\right\}$ and such that

$$
C_{i}(m+1) \subset\left\{z:|z| \leqslant r_{2}(1 /(m+1))\right\}, \quad i=1,2, \ldots, i_{0}(m+1)-1
$$

Let H_{4} be given by

$$
H_{4}=\left\{\bigcup_{1}^{\infty} C_{i}(1)\right\} \cup\left\{\bigcup_{n=2}^{\infty} \bigcup_{i=i_{0}(n)}^{\infty} C_{i}(n)\right\} .
$$

From (7.7), H_{4} is an E-set.
Given any number $\varepsilon, 0<\varepsilon<1$, let m be the integer such that

$$
\begin{equation*}
\frac{1}{m+1}<\varepsilon \leqslant \frac{1}{m} \tag{7.8}
\end{equation*}
$$

define $r_{2}(\varepsilon)=r_{2}(1 /(m+1)), \alpha(\varepsilon)=\sigma(1 / 6(m+1))$. Let ε be any positive number, $0<\varepsilon<1$, and let z be outside H_{4} and such that $r=|z|>r_{2}(\varepsilon)$. Then, if m is the integer satisfying (7.8), z lies outside $H_{3}(1 / 6(m+1))$ and $r=|z|>r_{1}(1 / 6(m+1))$ so by Lemma 8 ,

$$
\begin{aligned}
\int_{0}^{\alpha(\varepsilon) r} n_{2}(t, F) \frac{d t}{t} & =\int_{0}^{\sigma}\left(\frac{1}{6(m+1)}\right)^{\prime} n_{2}(t, F) \frac{d t}{t} \\
& <\frac{1}{m+1} r^{\rho}<\varepsilon r^{\rho}
\end{aligned}
$$

Lemma 9 is thus proved.
8. Completion of the proof of Theorem 1. By Lemma 1 and Lemma 9,

$$
\begin{equation*}
\left|r^{-\rho} \log \right| F\left(r e^{i \theta}\right)|-\beta \cos \rho \theta| \rightarrow 0 \tag{8.1}
\end{equation*}
$$

as $z=r e^{i \theta}$ tends to infinity outside H_{4}. From (8.1) and Lemma 2, Theorem 1 follows.
9. A counterexample. Let $f(z)$ be an integral function with real negative zeros. In [11] Titchmarsh proves that if

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{\log |f(r)|}{r^{\rho}}=A \quad(0<A<\infty) \tag{9.1}
\end{equation*}
$$

for some ρ such that $0<\rho<1$ then
(i) $\overline{\lim }_{r \rightarrow \infty} \log |f(-r)| / r^{\rho}=A \cos \pi \rho$; and
(ii) given $\varepsilon>0$,

$$
\begin{equation*}
\log |f(-r)|>(A \cos \pi \rho-\varepsilon) r^{\rho} \tag{9.2}
\end{equation*}
$$

for all r outside a set of linear density zero.

We shall show that the exceptional set of (ii) cannot be replaced with a set of finite logarithmic measure by constructing an integral function satisfying (9.1) for which (9.2) fails for some $\varepsilon>0$ on a set of infinite logarithmic measure. The construction depends on Lemma 1.

Let A be any fixed positive number. Let (R_{m}) be an increasing sequence of positive numbers, let $\eta_{m}=(\log m)^{-1}$ and let $\delta_{m}=m^{-1 / 2}, m=2,3 \ldots$ Let $f(z)$ be an integral function with real negative zeros for which the counting function $n(r, f)$ satisfies

$$
n(r, f) \sim A r^{\rho}
$$

We introduce an integral function $g(z)$ obtained from $f(z)$ by placing $1+$ [$\eta_{m} R_{m}^{\rho}$] additional zeros at $-R_{m}$. It is clear that the sequence $\left(R_{m}\right)$ may be chosen sparsely enough that $n(r, g)$, the counting function of the zeros of $g(z)$, satisfies $n(r, g) \sim A r^{\rho}$.

With Lemma 1 in view let us consider, for $R_{m}<r<(1-1 / m)^{-1} R_{m}$,

$$
\begin{equation*}
\int_{0}^{\delta_{m} r} \frac{n_{-r}(t, g)}{t} d t \tag{9.3}
\end{equation*}
$$

Since $r-R_{m}<r-r\left(1-m^{-1}\right)<\delta_{m} r$, each zero at $-R_{m}$ contributes $\log \left\{\delta_{m} r / r-R_{m}\right\}$ to the integral (9.3). Hence we have, for $R_{m}<r<(1-$ $1 / m)^{-1} R_{m}$,

$$
\begin{align*}
\int_{0}^{\delta_{m} r} \frac{n_{-r}(t, g)}{t} d t & \geqslant \eta_{m} R_{m}^{\rho} \log \left\{\frac{\delta_{m} r}{r-R_{m}}\right\} \\
& \geqslant \eta_{m} R_{m}^{\rho} \log \left(m \delta_{m}\right)=\frac{1}{2} R_{m}^{\rho} \tag{9.4}\\
& >\frac{1}{4} r^{\rho}
\end{align*}
$$

for all large m, taking account of the definitions of η_{m} and δ_{m}. Further

$$
E=\bigcup_{m=3}^{\infty}\left\{r: R_{m}<r<\left(1-\frac{1}{m}\right)^{-1} R_{m}\right\}
$$

is a set of infinite logarithmic measure.
Now we appeal to Lemma 1 to conclude that there must be a number $\varepsilon>0$ such that

$$
\begin{equation*}
\log |f(-r)|<(A \cos \pi \rho-\varepsilon) r^{\rho} \tag{9.5}
\end{equation*}
$$

for all large r in E. For suppose that there were a sequence $\left(r_{n}\right)$ tending to infinity through E such that

$$
\log \left|f\left(-r_{n}\right)\right| \geqslant(A \cos \pi \rho-o(1)) r_{n}^{\rho}
$$

From (i) of Titchmarsh's result, then,

$$
\begin{equation*}
\log \left|f\left(-r_{n}\right)\right|=(A \cos \pi \rho+o(1)) r_{n}^{\rho} \tag{9.6}
\end{equation*}
$$

and so, from Lemma 1, there must exist $\delta>0$ such that

$$
\int_{0}^{\delta r_{n}} \frac{n_{-r_{n}}(t, g)}{t} d t<\frac{1}{4} r_{n}^{\rho}
$$

for all large n, which contradicts (9.4). (9.5) thus holds for all large r in E.
Theorem 1 is an improved version of a result which forms part of a thesis submitted for the degree of Ph.D at the University of London. It is a pleasure to express my gratitude to Professor W. K. Hayman of Imperial College, London, for his generous advice and encouragement.

References

1. J. M. Anderson, Asymptotic properties of integral functions of genus zero, Quart. J. Math. Oxford Ser. (2) 16 (1965), 151-164.
2. V. Azarin, Generalization of a theorem of Hayman on subharmonic functions in an n-dimensional cone, Amer. Math. Soc. Transl. (2) 80 (1969), 119-138.
3. M. L. Cartwright, Integral functions, Cambridge Univ. Press, London and New York, 1956.
4. M. Essen, A generalization of the Ahlfors-Heins theorem, Trans. Amer. Math. Soc. 142 (1969), 331-344.
5. M. Essen and J. Lewis, The generalized Ahlfors-Heins theorem in certain d-dimensional cones, Math. Scand. 33 (1973), 113-129.
6. P. C. Fenton, The distribution of the Riesz mass of certain subharmonic functions, Ark. Mat. 14 (1976), 259-276.
7. W. K. Hayman, Slowly growing integral and subharmonic functions, Comment. Math. Helv. 34 (1960), 75-84.
8. B. Kjellberg, On the minimum modulus of entire functions of order less than one, Math. Scand. 8 (1960), 189-197.
9. T. A. Kolomiiceva, The asymptotic behaviour of an entire function with regular root distribution, Teor. Funkcii Funkcional. Anal. i Priložen. Vyp. 15 (1972), 35-43. (Russian)
10. N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, Berlin and New York, 1972.
11. E. C. Titchmarsh, On integral functions with real negative zeros, Proc. London Math. Soc. (2) 26 (1927), 185-200.
12. \qquad The theory of functions, Oxford Univ. Press, London and New York, 1939.

Department of Mathematics, Universitỳ of Otago, Dunedin, New Zealand

[^0]: Received by the editors March 28, 1976 and, in revised form, April 1, 1977.
 AMS (MOS) subject classifications (1970). Primary 30A64.

