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THE ASYMPTOTIC BEHAVIOUR OF CERTAIN INTEGRAL
FUNCTIONS

BY
P. C FENTON

Abstract. Let/(z) be an integral function satisfying
,+   dr/"{logm(r,f) - cos wp log M(r,/)}" -^-¡

and
.     ,.     log M(r,f)
0< hm-< oo

f-»0O *"

for some p: 0 < p < 1. It is shown that such functions have regular
asymptotic behaviour outside a set of circles with centres £¡ and radii t¡ for
which

2 Tf7<00-/-l If/1

1. Introduction. For an integral function/(z) let

M(r,f) = max|/(z)|,       m(r,f) = min |/(z)|

and let n(r,f) be the number of zeros of/in |z| < r. The order p of/is
- log log M (r,/)

p = lim -;-.
/-►oo log r

The following result appears in [6].

Theorem A. Let p be a positive number less than one and let f(z) be an
integral function of order p satisfying the following conditions:

(i) there is a finite constant K such that

lim   fr2{log m(r,f) - cos mp log M(r,f)} —— < K;
r2>rx Jrx rp
/■|-»00

(ii) there are numbers a and ß, with 0 < a < ß < oo, such that, for all large
r,

ar" < n(r,f) < ßr".
Let
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124 P. C. FENTON

Ht}'*
Then there is a curve C: z = re'^r\ where <f>(r) is a continuous function
satisfying

,1/2
(1.2) |*(*i)-*(*2)|-o i     *2l0g^ as min(i?,, R2 ) -» oo,

a function e(t) satisfying m > e(t) > 0 and e(t) -> 0 as t -» oo, and a function
v(t) satisfying 1 > v(t) > 0, r(r) -» 0 as t -» oo and

/•OO j»(0(1.3) J     -y-dt<*>,
for which the following is true. IfÇis any point on C, then the set

[z: k-l\S\<\z\< k\S\and\*xgzrx\> e(|£|)}
contains at most v(\^\)N(\^\) zeros off, where N(\Ç |) is the number of zeros off
in

{«*"fW<W<*W}-
The equation (1.2) is a consequence of the following: there is a constant

A = A(k) and a function A(t) satisfying 77 > A(/) > 0, A(/) -» 0 and
2/•oo A(i)

(1.4) /    —A<oo

for which
A(0

(1.5) |</>'(0| < ^ ——    for all large /.

The reader is referred to [6] for details.
It will be shown here that this result leads to a precise description (outside

a small exceptional set) of the asymptotic behavior of a certain class of
integral functions. To be specific, let p be a positive number less than one and
suppose that/is an integral function satisfying

(i)' with the convention that a+ = max(0, a) for any real number a,

j   {log m(r,f) - cos 77p log M(r,f)}+ -~^ < 00;

(ii)' there is a finite nonzero constant ß such that

log A/(/-,/)
0 < ß = lim -j- < 00.

- rp/■-♦oo

We shall prove here

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ASYMPTOTIC BEHAVIOUR OF INTEGRAL FUNCTIONS 125

Theorem 1. Let p be a positive number less than one and let f(z) be an
integral function satisfying conditions (i)' and (ii)' above. Then f(z) satisfies the
hypotheses of Theorem A and with 4>(r) as in that theorem we have

(1.6) |r-"log|/(/-e'(*w+fl-'r))| -ß cos p0\ = o(l)

as r tends to infinity outside a set of discs with centres {¡¡, radii t¡,for which

(L7) ,1, í\ < "•
The exceptional set of Theorem 1 may be described briefly, following

Hayman [7], as an E-set. Theorem 1 has much in common with results of
Essén [4] and Essén and Lewis [5] on subharmonic functions. In [4] Essén is
concerned with functions subharmonic in the plane slit along the negative
real axis while [5] generalizes the considerations of [4] to functions
subharmonic in ¿-dimensional cones and also establishes an improved esti-
mate of the exceptional set. When restricted to integral functions the result of
[4] combined with the estimate of the exceptional set of [5] may be viewed as
a special case of Theorem 1, when |/(r)| = M(r,f), |/(-r)| = m(r,f) and
log|/(-r)| < cos 7rplog|/(/-)|.

The condition (i)' cannot be replaced with

(1.8) ÏÏnT    ('*{log m(r,f) - cos 77p log M(r,f)} -^- < 0,
/-,, r2-*oo Jrx rp   '

a condition arising in the work of Anderson [1]. For in [1], Anderson shows
that

jH{log|/(-r)| - cos*plog|/(r)|} -^

exists (so that.(1.8) certainly holds) for an integral function/(z) with real
negative zeros if

log/(r)
(1.9) rP      ->¿        (0<>l<oo)

for some p: 0 < p < 1. It will be shown in §9, however, that there exists an
integral function/(z) with real negative zeros satisfying (1.9) and such that,
for some e > 0,

log|/(-/-)| < (A cos TTp - £)/•"

for all r in a set of infinite logarithmic measure. Since an £-set intersects
every ray through the origin in a set of finite logarithmic measure (1.6) cannot
hold outside an is-set.
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126 P. C. FENTON

2. Preliminaries. From (i)' it follows that

lim    (r2{log m(/-,/) - cos 7rp log M(r,f)} —- < 0
r„ r2-»oo •>rl Tp

and from this together with (ii)' and the theorem of Anderson already
mentioned [1, p. 154] we deduce that
(2.1) log M (r,f)~ßr<>,
(2.2) log/,(/•) ~ ßrp,
where

(13> /,w=?(1+w)'
the numbers a„, n = 1, 2, 3,...,  being the nonzero zeros of / arranged in
order of increasing magnitude. A well-known consequence of (2.2) is that

(2.4) n(r,f) = «(/-,/, ) ~ m~xß sin ttP rp,
so that functions satisfying (i)' and (ii)' are of order p and satisfy (i) and (ii) of
Theorem A.

In the course of the proof of Theorem 1 we shall find it convenient to refer
to a result due to Kolomiiceva [9]. A complete discussion of Kolomiiceva's
theorem would involve us in needless complications but a simple consequence
of it is

Lemma 1. Let g(z) be an integral function satisfying

log M(r,g)
hm ---= ß,

r-»oo r

where 0 < p < 1 and 0 < ß < oo, which is such that, for each tj > 0, the
number of zeros of g in

{\z\< /•} D {|argz|<77-Tj}

is o(rp) as r —> oo. Then a necessary and sufficient condition that

\og\g(rei9)\ = (ß cos pO + o(\))rp

outside a set E is the following: given e > 0, there exist 8 = 8(e) > 0 and r(e)
such that for all z outside E satisfying \z\ > r(e),

rSr nJt, g)
(2.5) [   -f±-^-dt<£r»,

Jo        t

where nz(t, g) is the number of zeros of g contained in the open disc with centre
z and radius t.
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ASYMPTOTIC BEHAVIOUR OF INTEGRAL FUNCTIONS 127

3. An auxiliary function. We suppose without loss of generality that
/(0) = 1 so that

As was mentioned before the results of Theorem A hold for functions
satisfying the hypotheses of Theorem 1. Choose

(3.2) k - (1 2),/p

and let C and <f>(t) be as in Theorem A. We relabel C as C„ and for every 9
satisfying — tt < 9 < it we define Cg by

(3.3) Ce:z = re*«r)+'-'\

Let us rearrange the zeros of/in the following way: if a„ is a zero of/lying
on the curve Q say, we transfer it to the point a'„ = \an\ew and define

(3-4) FW.fi(l-i).

Our first concern is to show that log|F(|z|e'9)| and log|/(z)| do not greatly
differ. Later we shall show that log|F(z)| and log|/,(z)| have similar
asymptotic behavior and then, after estimating log|/,(z)|, we shall appeal to
the intermediate character of F to estimate log|/(z)|.

4. Comparison of/and F. We shall prove

Lemma 2. Given any number e > 0, there exists a number R (e) such that, if
m * o,
(4.1) |log|/(z)| - log|F(|z|ei9)|| < erp

whenever |z| > R(e), where 9 satisfies — 7r < 0 < 77 and is such that z lies on

Throughout the proof we suppose that z = re'* is not a zero off. We have,
from (3.1) and (3.4),

(-iX-ff
and we examine the sum of (4.2) in three parts. First, with an = rne'*"
consider, forp > 1,

(4.2) log /(')
F(rei9)

= 2 log
l
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128 P. C. FENTON

sx= Tí log
r„>k"r ('-íX'-S)'

VV-KIK)"'
<2r(l-k-xyl   2   r"'

o n   ¿,-u-1 r" rf"(i)= 2r(l -*   >)     I     ——.
•'A:''/-        '

Integrating by parts we obtain

(4.3) S,= O(^-V).
Next consider

52=    2    log
rn<k-pr

(4.4)

(-íX-í)
«^{Kx-sr
<2r-x(\-k-xyl s

= 2r~1(l - k'1)'1 f     rtdn(t)

= 0(k-p(p+x)rp).

Finally we consider the remaining part of the sum, that for which k ~pr <
r„ < k"r. Since 9 = 77 + $ - <>(/•) and a'„ = rnei(-m+^~'t'M\

J." (-tX-í)"
/,       r\2,4r  .2/^-i- «KO + *(r»)

1-+ — sin2  -r-

Let us write /„ = /•//•„, i> - <¡>„ = fa<¡>(r) - <p(rn) = r„. Then
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\2   ,   a* _:_2/-

129

Jn =
(1 - tnf + 4tnsm2(fa/2)

(1 - tn? + 4tnsm2((tn - v„)/2)

^„sm^-i^sin^,,
= 1 +

Hence

(4.5)

log/„<

<

(1 - t„)2 + 4tnsm2((4>„ - vn)/2)

4tn\SH^n - \Vn) Sin{p„\

(l-02 + 4,„sin>(^pL)

2      J sin^J+ 8/Jsin^,, sin^„|

(\-tn)2 + 4tnsin2(K^)

since, for any real numbers a and b,

[a-\b)  <2sin(I(fl-6) + !*)|sin

< 2 sin -r(a — b) + 2 sin — b\4
Further, from (1.5),

\i>n\ = \<P(r) - <t>(rn)\ <

(4.6)

<

fW(t)\dt
r   A(0 I       r If 1/ A -^ dt « A log —       sup  A(t)\

Jrn t r„  I I t>k-pr >

Akp\X-JL\\   sup A(0).
'« I l t>k~'r '

Substituting (4.6) into (4.5) we obtain

4Akpt
\o%Jn <

yi- Jsm^^y^)

(1 - tny + 4t„ sin ,

+A2k2ptJ   sup A(/)2)

/«Fmat/rcl

<Akptx/2{   sup A(t)) +A2k2ptJ   sup A(t)2}
^t>k~i'r ' ^t>k~'r >

< Axk3pi   sup   A(t)\,
t>k~Pr
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130 P. C. FENTON

where Ax = A + irA2. Hence, since from (2.4) the number of zeros of/ in
\z\ < kpr is at most 2akpprp for large r, where a = /?77_'sin mp,

53 =

(4.7)

2       log
k-fr<.r„<.k'r (-iX-ï)-H
2aAxkp{p+3)rp {   sup A(/)).

^-tPk-Pr '

Given e > 0 we may choose p sufficiently large that Sx + S2 < erp for all
large r and with this p we may choose r0(e) so that S3 < erp for r > r0(e),
since A(i) -» 0 as / -» 00, which proves one half of Lemma 1. The second half,
that

log
f(z) < *r

is proved similarly.

5. The zeros of F(z). We shall prove

Lemma 3. Let 8 be a fixed positive number less than 77 and let nt(t, F, 5) be
the number of zeros of F contained in

(5.1) {?:|arg£|<77-|ö}n{f:|f-2|<f}.

Then given any positive number e < \ there exists a number R(e, 8) such that,
with \z\ = r,

(5.2) f\(/,F,S)^<er"f\(t,F,8)f
for all z outside a set Hx (where Hx depends only on 8) and such that
\z\ > R(e, 8). Moreover Hx is covered by a set of discs C¡, centres £,, radii t„
i - 1,2, 3,..., such that ZfVI&l < 00.

Throughout the proof of Lemma 3 we write nz(t), nz(t, 8) instead of
n2(t, F), n2(t, F, 8).

We shall make use of an argument of Azarin [2] in which the following
lemma is used.

Lemma 4 ([10, Lemma 3.2]). If a set E in the complex plane is covered by
discs of bounded radii such that each point of the set is the centre of a disc, then
from this one may select a subsystem of discs which covers the set, each point of
the plane being covered no more than v times by the discs of this subsystem,
where v is an absolute constant.

Let Rx = Rx(8) be such that, for r > Rx we have e(r) <¿8, where e(r) is
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ASYMPTOTIC BEHAVIOUR OF INTEGRAL FUNCTIONS 131

the function occurring in Theorem A. (We may note that, if z G S (8, Rx),
where

(5.3) S(8, Rx)= {z: \z\> Rx and<|argz|< 77-5},
then nz(t, 8) = nz(t) certainly for 0 < t < \8\z\.) Let Hx be the set of points
z in |z| > Rx at which, for some t — t(z) satisfying 0 < / < \ \z\, we have

(5.4) nz(t,8)> t\z\"-x.

Let E„ be the subset of Hx contained in the annulus
{z: 4n+x >\z\> 4"),       n -0,1,2.

We surround each point z of Hx by a disc of radius t(z) and from the set of
such discs surrounding points of En we select a subsystem Kn which covers
E„, while covering each point of the plane at most v times. This can be done,
by Lemma 4. We note that the members of Km do not intersect the members
of Kn if |« - m| > 2, and therefore K = U^xKn is a set of discs the
members of which cover each point of the plane at most 2v times.

Now, K is a countable set the members of which may be ordered: C¡,
i = 1, 2, 3,..., where C¡ is a disc with centre f,. and radius t,, where
0 < t, <j\S,\,i — 1,2,3,... ; moreover, from (5.4) we have

nSi(ti,8)> t$t\p-\      i -1,2,3.
Hence

00    t-       °°  nt(t¡,8)

Now, if z„ is one of the zeros of F contained in S(¿ 8, Rx) and also in one of
the discs, say C„ then |z„| - |f,| < \zn - ?,| < t, <±%\ so |z„| < f |f,|. Hence,
from (5.5) and the fact that K covers any point in the plane at most 2v times,

where the sum on the right-hand side is taken over those zeros of F which are
contained in S(\ 8, Rx). We proceed to show that this sum is finite.

Let n be a nonnegative integer, and let b„ be a positive number satisfying
k"Rx < bn< kn+xRx at which

(5-7) v(bn)logk<r+\(t)f,

where v(t) is the function occurring in Theorem A and k is given by (3.2).
The number of zeros of F in

{z:k"Rx <\z\< ¿"-»"l^andlargz^ 77-^5}
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132 P. C. FENTON

is no more than v(bn)N(b„), where N(bn) is the number of zeros of F in {z:
k~xb„ < \z\ < kb„}. Hence, making use of (5.7) we have, for some constant
A,

2~V< ïr(bn)N(bn)(k"RxyP

<ï<b„)Abp(k"Rxyp< Ak»fv(b„)
0 0

< Akp(log k)~x f*v(t) — < oo,
JRl t

from Theorem A. The sum on the left-hand side of (5.6) is thus finite.
Suppose that z is a point outside Hx and satisfying \z\ > Rx. Then, given

any positive number e <.\, fflnz(t, 8)dt/t < e|z|p. This proves Lemma 3.

6. The behaviour of fx(z). Let fx(z) be the function (2.3). Since
log m(r,f) - cos 77p log M(r,f) > log m(r,fx ) - cos 77p log M(r,fx )

it follows from (i)' and Kjellberg's Lemma [8, p. 193, formula (21)] that

(6.1) /°°llog m(r>fi ) - cos mP loS M(r>fi )| —Jj < 00.

Given a positive number e > 0, it follows from (6.1) and (2.2) that

log m(r,fx ) > Í ß cos 77p - ^ eV"

for r outside a set E — E(e) of finite logarithmic measure. Hence, for
S - t/2ßp,
(6.2) log]/, (rei9)\ > log m(r,fx ) > (ß cos p9 - e)r"

for 77 > |0| > 77 — 8 and for r outside E.
It is well known (see e.g. [12, p. 272]) that

(6.3) \r-"log\fx (rei9)\ -ß cos p0|-> 0
as r -» 00, uniformly for |0| < 77 — 8. In particular

|/--'log|/, (re'^-^)! -ß cos P(t7 - 5)| ->0
as r -> 00. Hence, for 77 > |ö| > 77 — 5 and for sufficiently large r

r-»\og\fx(rei9)\ < r-»log\fx (re*«-»)\

< ß COS p(77 - 5) +5E

< )8 cos p9 + 2ß sia{p(\9\ - 77 + 5) + |e

< ß COS pö + £.

Taking (6.2) and (6.4) together, and taking account of (6.3) we obtain
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Lemma 5. Let fx(z) be the integral function (2.3). Given e > 0

|r-"log|/, (re*)\ -ß cos p9\<e       (-77 < 0 < 77)
for all large r outside E, a set affinité logarithmic measure.

From this together with Lemma 1 we deduce

Lemma 6. Given any e > 0 there exist positive numbers 8 = 8(e) and r(e)
such that

(6.5) Cn-^'f^T <er"
for all r > r(e) lying outside a set E0 of finite logarithmic measure, where
n_r(t,fx) is the number of zeros of /, in (—r — t, — r + t). Further, E0 is
independent of e and is a union of disjoint intervals each of which contains more
than one point.

We need verify only that E0 may be taken to be a union of disjoint
intervals each containing more than one point; Lemma 6 certainly holds for
some set Ex of finite logarithmic measure and some functions 5 (e), r(e), by
Lemma 1.

To this end, given e > 0, let ij = 5(| e), where 8 is the function known to
exist and suppose that rx and r2 are two points outside Ex with
2rx > r2> rx> r(\i) and such that fx has no zeros in [rx, r2\. Then, for
rx< r < r2,

t      Pr      r. t \dt1=1   n_r(t,fx) —

<6-6> S.      v   ,5.     -v■ Z, log —r— + 2, log —-— ,1        r + x„       x     br+y„

where xx, . . ., x„  are the zeros of fx in (— r, — r + t\r) and y„ . . . , y„2 are
the zeros of/, in (-/• — nr, — /•). Now

r       _ xn x„ r,

r + x„ r + x„ rx + x„      rx + xn

so, in view of Lemma 1 and Lemma 5

2 log —-— < 2 log —T—
1        r + xn      1       rx + x„

<JQ   «-„('>/>)T<3<
Similarly, - r/(r + y„) < - r2/(r2 + yn), so

(6.8) ^7Ty-n <J^-^'./i)7 <i*S <f ^
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134 P. C. FENTON

From (6.6), (6.7) and (6.8),

(6.9) /V,C/i)t <erpx<er»

for r in (rx, r2).
Let F0 be the set obtained by removing from Ex all points which are limit

points both from the left and from the right of the complement of Ex. Then
EQ is a union of disjoint intervals each containing more than one point and is
contained in Ex. Moreover, if r >r(\e) and r lies outside E0, then (6.9)
holds, with ij = 77(e) = 8( j e). This completely proves Lemma 6.

7. Further consideration of the zeros of F. We first observe that the set of
intervals the union of which is E0 is countable since the logarithmic measure
of F0 is finite and the logarithmic measure of each interval is positive. We
may therefore regard each interval as closed without affecting the value of the
logarithmic measure of F0. We write E0 — U f/,-, where

Ji=[ci>di],   c¡+x>di>c¡,   i =1,2,3,-

Let e be any positive number. With Lemmas 3 and 6 in view, let
T = t(e) = min(j, e, 5(e)) (where 5(e) is the function of Lemma 6) and let
r0(e) be a number at least as large as max(/-(e), R(t,\t)) (where r(e), R(x,y)
are respectively the functions of Lemmas 6 and 3) such that r0(e) g E0 (E0 is
the set of Lemma 6) and for which di < (1 + \ t)c, whenever c¡ > r0(e). Since
E0 is of finite logarithmic measure this choice of r0(e) is possible.

Define, for J¡ = [c¡, d¡] where c¡ > r0(e),

5,- {z:\z\Ej,} n {z:77>|argz|>77-ÍT},

D, = (z: \z\E.J¡) n {z:t7 >|argz|> v-\r}\Hl

where Hx is the exceptional set of Lemma 3 corresponding to 5 = \ t.
Hx = Hx(r) = Hx(e).

Let z be any point in D¡. Then, with r = \z\,

0 *
,     ^m+n+p+q

= loe-,
* K7\z - ajlïlïlz - bppx\z - UjWIz - vj\

where the a}, bp uJy v¡ are zeros of F in |f — z| < rr which are respectively in
B¡, in {z: |z| G J¡) \ B¡, in \z\ < c¡ and in \z\ > d¡. Then we have, recalling
Lemma 3 and Lemma 6,
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ASYMPTOTIC BEHAVIOUR OF INTEGRAL FUNCTIONS 135

(rr)m («•)" , (rr)p
<(z)< log „„,,_„, + log n*    /,_,„*   + l08nr|z-a,|     en;.1(r-|«y|)     Dn;.,(|ij|-r)

< log-rT^—rr+ lQg r^r-77—htïï + lQgnr|z - ay|     6 iç.ifo -hD       nuitoM)

™ <*«whi+jcv<w)f+jcv,ft/.)f

<iogjj^r^+J0    *-*M)t+JL    "-4^)7

+/\(r,F,Hf

.m

<l0íirF^í+4erí-

Now, 5, is contained in a rectangle the sides of which have length \rd¡
< f tc(. and d, - c,cos ¿t. Hence for any point z in Z>( the circle \$ — z\ <
t\z\ contains all of B¡ and so all the zeros of F in B¡ (i.e. all the af) appear in
(7.1). We can thus apply Cartan's Lemma [3, p. 75] to estimate (7.1) and
obtain

ñ|z-a,|>{ra^-^)}

outside a set of at most m discs CJ,j = 1, 2,..., m, the sum of the radii of
which is at most A — 2eTd¡exp(—ed¡p/ m). Hence, for all z in D, outside these
discs we have, from (7.1),

(7.2) fnz(t,F)j<4erp + log(j\  + ed? < 6er".

We must have A < 2e(d¡ — c¡). For suppose that A > 2e(d, — c¡). Then
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136 P. C. FENT0N

I(e,di)=JoS^_4(tJx)f>f%_4tJl)f

> log

> log

n;-i(4-N)
M)"

(2erá*,)w
> log     ^w     = edP,

a contradiction, since /(e, d¡) < eay, ^ being a boundary point of F0. Hence
(7.3) A < 2e(di - c,.).

Suppose that CJ has radius tj and centre $j,j = 1, 2,..., m.

BIH^)-
Also, since a] < (1 + \ r)c¡ < 2c, and since, for x > 1, log x > (x - \)/x,

d, - c¡      d¡ d¡- c¡ d¡
-cT = 7i^r<2l0g7r

so
m    t' d

(7.4) 2 -rp:.<4elogf.

We are thus able to prove

Lemma 7. Let e be any positive number, and let t = min(\, e, 5(e)), where
8 (e) is the function of Lemma 6. Let r0(e) be a positive number greater than
max(r(e), R (t, | t)) such that r0(e) G E0 and for which d¡ < (1 + \ t)c¡
whenever c¡ > r0(e), where r(e), R(t, |t) are respectively the functions of
Lemmas 6, 3, and E0 is the set of Lemma 6. Then for all z in

T(\r,r0(e)) = {z: \z\> r0(i)andir >|argz|> 77 - \t)

we have, with \z\ = r,

(7.5) frnz(t,F)^<6erp
•>Q t

except when z belongs to an E-set, H2 = H2(e).

Suppose first that z, in F(|t, r0(e)), lies in U {z: \z\ G /,}, where the
union is over those /,- = [c„ a)] for which c¡ > r0(e). Then for all z outside Hx,
the F-set of Lemma 3, and outside a set of discs centres £, radii t for which
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t d;2 iTi < 4^2 log — < 4e log meas F0 < oo,

(7.5) holds. This follows from (7.2) and (7.4).
Suppose next that z, in T(\r, r0(e)), lies outside U {z: \z\ G /,}. Then,

with \z\ = r, we have from Lemma 6

/"„,(,, F)f </'<%_,(,./,) f<er>.•/q i      Jq t

(7.5) thus holds for z in r(| t, /-0(e)) outside an F-set,and Lemma 7 is proved.
We prove

Lemma 8. Let e be any positive number and let a = a(e) = j¡ r(e), where r(e)
is the function of Lemma 7. There exists a number r,(e) and an E-set,
H3 = H3(e), such that

(7-6) rnz(t, F) ^ < 6er",

whenever \z\ = r > rx(e) and z lies outside H3.

For z in T(\r, r0(e)) and outside H2(e), (7.6) certainly holds, by Lemma 7.
Consider z outside T(\t, rx(e)), where r,(e) — max(r0(e), F(¿t, |t)). Let

H4(e) be the F-set i/i(| t) of Lemma 3. Then, with a = ¿ t and r = |z|, and z
outside H4(e), we have from Lemma 3

frnz(t,F, ¡r)^-<arp<erp.

But for 0 < t < ¿t/- and r > íí(¿t, |t), nz(r, F) = nz(t, F, |t) for z
outside F(|t, /-,(e)). Hence flrnz(t, F)dt/t < er" for z outside F(Ít, r,(e))
and outside H4(e), with |z| = r > ^(¿t, |t).

Lemma 8 then follows with H3(e) = H2(e) u H4(e).
The following is an immediate consequence of Lemma 8.

Lemma 9. Let e be any positive number. There exist positive numbers a(e),
r2(e) and an E-set H5, independent of e, such that

Ç<*(e)r     .     r?\dt    .      „
/      nz(t> f)-t< Er

Jq t

when r = \z\ > r2(e) and z lies outside H5.

For z such that r = \z\ > rx(^) and z lies outside H-¡(\), where rx and H3
are as in Lemma 8, we have, with a = a(|), fornz(t, F)dt/t < rp. Given any
integer n > 1, suppose that H3(\/6n) is covered by the discs C¡(n), radii t¡(n)
and centres £,-(«), / = 1, 2, 3,.... Let /„ = i0(n) be the smallest integer such
that
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(7.7) 2^7<2-"2^T,       « = 2,3,....<=<o |îi(")l        '•=! lü 0)1
Let r2(l) = rx(l) and, supposing r2(m) defined, m > 1, let r2(/n + 1) be the
smallest number which is no less than max{r2(l/m) + 1, rx(l/6(m + 1))}
and such that

C,(m + 1) C {z: \z\ < r2(\/ (m + 1))},       / = 1, 2,..., i0(m + 1) - 1.
Let H4 be given by

#4-f Üc,(i)]uf Ü   Ü c,(«)].
I.     1 ) { »1-2 /-»„(/i) J

From (7.7), /i4 is an F-set.
Given any number e, 0 < e < 1, let m be the integer such that

(7.8) —TT < e < — ;v    ' w + 1 /n
define r2(e) — r2(\/(m + 1)), a(e) = o-(l/6(w + 1)). Let e be any positive
number, 0 < e < 1, and let z be outside H4 and such that r = \z\ > r2(e).
Then, if m is the integer satisfying (7.8), z lies outside H3(l/6(m + 1)) and
r = \z\ > rx(l/6(m + 1)) so by Lemma 8,

(aC\(t,F)f-(Í«^ínÁt,F)%
Jq t        Jq t

«f —-— r" < er".m + 1
Lemma 9 is thus proved.

8. Completion of the proof of Theorem 1. By Lemma 1 and Lemma 9,

(8.1) \r-"log\F(rei9)\ -ß cos p0|->O
as z = re'9 tends to infinity outside H4. From (8.1) and Lemma 2, Theorem 1
follows.

9. A counterexample. Let f(z) be an integral function with real negative
zeros. In [11] Titchmarsh proves that if

— log|/(r)|
(9.1) lim —4-^ = A       (0 < A < oo)

for some p such that 0 < p < 1 then
(i) ilmM00 log|/(-/•)!//■" = A cos 77p; and
(ii) given e > 0,

(9.2) log|/(- r)\ > (A cos 77p - e)rp

for all r outside a set of linear density zero.
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We shall show that the exceptional set of (ii) cannot be replaced with a set
of finite logarithmic measure by constructing an integral function satisfying
(9.1) for which (9.2) fails for some e > 0 on a set of infinite logarithmic
measure. The construction depends on Lemma 1.

Let A be any fixed positive number. Let (Rm) be an increasing sequence of
positive numbers, let rjm = (log m)~x and let 5m = m~x/2, m = 2,3 .... Let
f(z) be an integral function with real negative zeros for which the counting
function n(r,f) satisfies

n(r,f)~Arp.
We introduce an integral function g(z) obtained from f(z) by placing 1 +
[r}mRp] additional zeros at — Rm. It is clear that the sequence (Rm) may be
chosen sparsely enough that n(r, g), the counting function of the zeros of
g(z), satisfies n(r, g) ~ Arp.

With Lemma 1 in view let us consider, for Rm < r < (1 - \/m)~xRm,

Jq *

Since r — Rm < r — r(\ — m~x) < 8mr, each zero at — Rm contributes
\og{8mr/r - Rm} to the integral (9.3). Hence we have, for Rm < r < (1 -
i/m)-xRm,

fsmrn-r(t,g) [     8mr    )

(9-4) >r,mR£l\og(m8m) = 2-Rp

>-4r»

for all large m, taking account of the definitions of t]m and 5m. Further

£"HrÄ"<r<('~») M
is a set of infinite logarithmic measure.

Now we appeal to Lemma 1 to conclude that there must be a number
e > 0 such that

(9.5) log|/(- r)| < (A cos 77p - e)r»

for all large r in E. For suppose that there were a sequence (rn) tending to
infinity through F such that

log|/(-/•„)|   >(/lCOS77p-0(l)K.

From (i) of Titchmarsh's result, then,

(9.6) log|/( -/•„)! = (A cos 77P + o( 1 ))rp
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and so, from Lemma 1, there must exist 5 > 0 such that

rtrmn-r.(.t>g)   J .    „

for all large n, which contradicts (9.4). (9.5) thus holds for all large r in E.
Theorem 1 is an improved version of a result which forms part of a thesis

submitted for the degree of Ph.D at the University of London. It is a pleasure
to express my gratitude to Professor W. K. Hayman of Imperial College,
London, for his generous advice and encouragement.
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