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THE ASYMPTOTIC BEHAVIOUR OF

q-DIFFERENCE EQUATIONS WITH MULTIPLE

DELAYS

Jan Čermák

ABSTRACT. We investigate asymptotic properties of solutions of a class of lin-
ear q-difference equations. We relate their behaviour to the asymptotics of some
q-exponential functions and mention possible connections with the corresponding
continuous case.

1. Introduction and preliminaries

The discretization of ordinary differential equations is an important process
associated with essential problems such as discussions on numerical solutions
of these equations or the study of corresponding discrete models. Although the
standard way of the discretization utilizes grid points based on an arithmetic
progression, a lot of attention has been paid also to q-discretizations related to
geometric progressions. This approach forms the background for the theory of
q-difference equations which are studied in the frame of quantum calculus. This
type of calculus has a long history and the survey of its basic notions, results and
methods is summarized, e.g., in [14]. Apart from the traditionality of quantum
calculus, many interesting questions and problems either remain open or were
answered only recently. Among those related to the discussions on q-analogy of
some topics in differential equations we can mention, e.g., papers [3] or [19].

The fundamental set forming the base for our next investigations is the geo-
metric progression

qZ := {qn, n ∈ Z}, or more generally, qZ := qZ ∪ {0} ,
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where q > 1 is a real number. If t ∈ qZ and y : qZ → R is a function, then we
define the q-derivative (or the Jackson derivative) of y at t by

Δqy(t) :=

⎧⎪⎪⎨
⎪⎪⎩

y(qt)−y(t)
(q−1)t if t ∈ qZ,

lim
s→0

y(s)−y(0)
s if t = 0

provided the limit exists. By a q-difference equation we understand an equation

that contains q-derivatives of an unknown function defined on qZ (or its subsets).

Similarly we can recall the notion of q-integral. If a, b ∈ qZ, a < b, then we
define the q-integral (or the Jackson integral) by

b∫
a

f(t)Δqt :=
∑

t∈[a,b)∩qZ

(q − 1) tf(t).

Letting b → ∞ we can arrive at the definition of the corresponding improper
integral.

The set qZ is a typical example of a time scale (a nonempty closed subset
of real numbers). The previous definitions (as well as many other notions and
properties) follow from the general theory of calculus on time scales as particular
cases (see [1] and [2]). To illustrate this we recall here the introduction of the
q-exponential function which is of great importance in our next investigations.

The q-exponential function is usually defined in quantum calculus as the q-
-analogy of the classical exponential function. However, it may not be quite obvi-
ous what this q-analogy actually means (for two types of q-exponential functions
see, e.g., [14]). The key property of such a function y that will be required in
the next sections is the relation

Δqy(t) = y(t), t ∈ qZ . (1.1)

If we add the initial condition

y(0) = 1, (1.2)

we arrive at the initial value problem (1.1), (1.2). It follows from the time scale
theory that this problem has the unique solution ([1]). We denote it by expq(t)
and called it the q-exponential function. The form of expq(t) can be given via the
cylinder transformation method. However, we prefer here to find this solution
by means of the theory of functional equations in a single variable. We rewrite
the equation (1.1) as

y
(
q−1t

)
=

y(t)

1 + (1− q−1)t

and consider it as a functional equation with a non-negative continuous time.
Then applying Theorem 3.1.13 of [15] we can confirm the existence of the unique
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solution of (1.1), (1.2) and, moreover, find its explicit form

expq(t) =
(
1 + (q − 1)q−1t

)∞
q−1

, (1.3)

where (1 + x)∞q−1 :=
∏∞

i=0(1+ xq−i) is the q−1-Pochhammer symbol for shifting

factorials known from quantum calculus. Note that there are some equivalent
expressions for expq(t) (see [14]), but in the sequel we utilize the form (1.3).

Now we outline the subject matter of this contribution. We shall be interested
in asymptotic investigations of the q-difference equation

Δqy(t) =

m∑
j=0

ajt
αjy

(
t

qβj

)
, t ∈ qZ, (1.4)

where aj �= 0 and αj are real scalars, βj(j = 0, . . . ,m) are integers with 0 =
β0 < β1 < · · · < βm, and q > 1. This equation can be taken for q-analogy of the
delay differential equation

y′(t) =
m∑
j=0

ajt
αjy(λjt), t > 0 , (1.5)

where aj , αj, λj are real scalars such that aj �= 0 (j = 0, . . . ,m), λ0 = 1 and
0 < λj < 1 (j = 1, . . . ,m), which appears along with its modifications in many
interesting applications (see, e.g., [16] or [18]). The qualitative investigation of
some particular and modified forms of the equation (1.5) has been started in
[9, 12, 13, 17, 20] or [4]; other results related directly to the equation (1.5) with
polynomial coefficients can be found in [7, 8] and [6].

The equation (1.4) is a q-difference equation with multiple delays. The quali-
tative investigation of delay difference equations is, in general, much less devel-
oped than the corresponding theory for delay differential equations. Moreover,
it is focused almost entirely in the study of “standard” delay difference equa-
tions, i.e., those defined on the time scale with a constant stepsize (see, e.g., [10]
and [11]). Our aim is to extend these investigations also to quantum calculus and
present not only some qualitative results on the equation (1.4), but also discuss
comparisons with the continuous (differential) case.

2. The q-exponential behaviour of solutions

The aim of this section is to formulate conditions under which the equa-
tion (1.4) admits solutions asymptotically comparable to solutions of a non-
delayed q-difference equation

Δqy(t) = a0t
α0y(t) . (2.1)
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First we state the explicit form of a solution of (2.1). Repeating the procedure
outlined in Section 1 and assuming that α0 > −1 we can check that the function

expa0,α0
q (t) :=

(
1 + a0(q − 1)q−(α0+1)tα0+1

)∞
q−(α0+1)

, t ∈ qZ (2.2)

defines a solution of (2.1) such that expa0,α0
q (0) = 1. Notice that expa0,0

q (t) =
expq(a0t). If α0 ≤ −1, then the infinite product involved in (2.2) diverges. In such
a case we consider t0 = qn for a given n ∈ Z and introduce this q-exponential
function by use of the corresponding finite product, namely

expa0,α0
q (t) :=

∏
s∈[t0,t)∩qZ

(
1 + a0(q − 1)sα0+1

)
, t ∈ qZ, t > t0 . (2.3)

The initial condition now becomes expa0,α0
q (t0) = 1. Of course, this introduction

of expa0,α0
q is possible for any real α and, in our next ideas, it is not necessary

to discriminate between (2.2) and (2.3).

The important requirement we impose on this q-exponential function is the
property

expa0,α0
q (t) �= 0, t ∈ qZ, t ≥ t0 (2.4)

which is equivalent to

1 + a0(q − 1)tα0+1 �= 0, t ∈ qZ, t ≥ t0 . (2.5)

Now we are in a position to present the statement relating the asymptotics
of (1.4) to the asymptotics of (2.1).

������� 2.1� Consider the equation (1.4), where aj �= 0 and αj are real scalars
(j = 0, . . . ,m), 0 = β0 < β1 < · · · < βm are integers and 1+αj < (1+α0)(1+βj)
(j = 1, . . . ,m). Further, let (2.5) hold. Then for any solution y of (1.4) there
exists a constant L such that

lim
t→∞

y(t)

expa0,α0
q (t)

= L . (2.6)

P r o o f. Let y be a solution of (1.4). We introduce the change of the dependent
variable

z(t) =
y(t)

expa0,α0
q (t)

.

Then (1.4) becomes

Δqz(t) =

m∑
j=1

ajt
αj

expa0,α0
q

(
t

qβj

)
expa0,α0

q (qt)
z

(
t

qβj

)
, t ∈ qZ, (2.7)

where we have used the q-product rule property

Δq

(
f(t)g(t)

)
= Δqf(t)g(t) + f(qt)Δqg(t) .

For a given n ∈ Z now we set tk := qn+k and Sk := sup
{|z(tkq−p)|, p =

0, 1, . . . , k + βm
}
, k = 0, 1, . . .
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Using (2.7) we can write

z(tk+1) = z(tk) + (q − 1)

m∑
j=1

ajt
αj+1
k

expa0,α0
q

(
tk
qβj

)
expa0,α0

q (tk+1)
z

(
tk
qβj

)
,

i.e.,

|z(tk+1)| ≤ Sk

⎛
⎝1 + (q − 1)

m∑
j=1

|aj |tαj+1
k

∣∣∣∣∣∣
expa0,α0

q

(
tk
qβj

)
expa0,α0

q (tk+1)

∣∣∣∣∣∣
⎞
⎠ .

Now calculate the ratio of corresponding q-exponential functions as∣∣∣∣∣∣
expa0,α0

q

(
tk
qβj

)
expa0,α0

q (tk+1)

∣∣∣∣∣∣ ≤
βj∏
p=0

1∣∣1 + a0(q − 1)q−p(α0+1)tα0+1
k

∣∣
= O

(
q−k(βj+1)(α0+1)

)
as k → ∞ .

(2.8)

Since (βj + 1)(α0 + 1) > αj + 1, we can deduce that

|z(tk+1)| ≤ Sk

(
1 +O

(
q−ωk

))
as k → ∞ ,

where ω > 0 is a suitable constant. Hence

Sk+1 ≤ Sk

(
1 +O

(
q−ωk

))
as k → ∞

and the sequence (Sk) is bounded as k → ∞. Thus |z(t)| ≤ K for a suitable
positive real K and all t ∈ qZ.

To prove the statement it is enough to show that z has a (finite) limit. Let
ε > 0 be arbitrarily small and let tr, ts ∈ qZ, t0 < tr < ts. Rewrite (2.7) as

z(ts)− z(tr) =

ts∫
tr

m∑
j=1

ajt
αj

expa0,α0
q

(
t

qβj

)
expa0,α0

q (qt)
z

(
t

qβj

)
Δqt ,

i.e.,

|z(ts)− z(tr)| ≤ K

ts∫
tr

m∑
j=1

|aj |tαj

∣∣∣∣∣∣
expa0,α0

q

(
t

qβj

)
expa0,α0

q (qt)

∣∣∣∣∣∣Δqt .

Estimating the corresponding Jackson integral by use of (2.8), we can observe its
convergency as ts → ∞. Hence, considering tr, ts large enough, we can guarantee
that

ts∫
tr

m∑
j=1

|aj |tαj

∣∣∣∣∣∣
expa0,α0

q

(
t

qβj

)
expa0,α0

q (qt)

∣∣∣∣∣∣Δqt <
ε

K

which implies that |z(ts)− z(tr)| < ε, hence z is tending to a finite limit. �
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����		
�� 2.2� Consider the equation

Δqy(t) =

m∑
j=0

ajy

(
t

qj

)
, t ∈ qZ, (2.9)

where aj �= 0 are real scalars. Then for any solution y of (2.9) there exists
a constant L such that

lim
t→∞

y(t)

expq(a0t)
= L .

3. Other types of asymptotics of solutions

In this section we wish to extend the asymptotic description of solutions
of (1.4) also to other choices of entry parameters. In particular, throughout this
section we assume that a0 < 0 and either αj > α0 or αj ≥ α0, a0+

∑m
j=1 |aj | ≥ 0

(j = 1, . . . ,m). Another requirement we are going to employ in this section is
positivity of corresponding q-exponential functions. To guarantee this property
we have to modify the relation (2.4) as

expa0,α0
q (t) > 0, t ∈ qZ, t ≥ t0 ,

i.e.,

1 + a0(q − 1)tα0+1 > 0, t ∈ qZ, t ≥ t0 . (3.1)

Keeping in mind the possible analogy with the continuous case, we consider
the auxiliary relation

a0t
α0ϕ(t) +

m∑
j=1

|aj |tαjϕ

(
t

qβj

)
≤ 0, t ∈ qZ. (3.2)

It is known that functional equations and inequalities of this type are of great
importance in qualitative investigations of delay equations. There exist several
methods of their solving (methods of invariants, Mellin transform method). Ap-
plying these procedures and assuming that the above stated conditions on aj
and αj are valid we can find the solution of (3.2) in the form

ϕ(t) = exp

{
(α− α0)

(
log2 t+ β1 log q log t

)− 2 log
(−a0

a

)
log t

2β1 log q

}
, (3.3)

where α := max(α1, . . . , αm) and a :=
∑m

j=1 |aj |.
The significance of the inequality (3.2) in the asymptotic investigation of (1.4)

presents the following
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������� 3.1� Consider the equation (1.4), where aj �= 0 and αj are real
scalars, a0 < 0 and 0 = β0 < β1 < · · · < βm are integers. Further, let ei-
ther αj > α0 or αj ≥ α0, a0 +

∑m
j=1 |aj | ≥ 0 (j = 1, . . . ,m), let (3.1) hold and

let ϕ be given by (3.3). Then

y(t) = O
(
ϕ(t)

)
as t → ∞ (3.4)

for any solution y of (1.4).

P r o o f. Let y be a solution of (1.4) and let z(t) = y(t)/ϕ(t). Then

Δqz(t)ϕ(t) + z(qt)Δqϕ(t) =

m∑
j=0

ajt
αjϕ

(
t

qβj

)
z

(
t

qβj

)
,

hence

Δq

[
z(t)ϕ(t)

expa0,α0
q (t)

]
=

m∑
j=1

ajt
αjϕ

(
t

qβj

)
z
(

t

qβj

)
expa0,α0

q (qt)

by use of the q-quotient rule property

Δq

(
f(t)

g(t)

)
=

Δqf(t)g(t)− f(t)Δqg(t)

g(t)g(qt)
.

Let the symbols tk and Sk have the same meaning as in the proof of Theorem 2.1,
i.e., tk := qn+k and Sk := sup

{|z(tkq−p)|, p = 0, 1, . . . , k+ βm
}
, k = 0, 1, . . . for

an positive integer n. Then

z(tk+1) =
ϕ(tk) exp

a0,α0
q (tk+1)

ϕ(tk+1) exp
a0,α0
q (tk)

z(tk)

+ (q − 1)tk
expa0,α0

q (tk+1)

ϕ(tk+1)

m∑
j=1

ajt
αj

k ϕ
(

tk
qβj

)
z
(

tk
qβj

)
expa0,α0

q (tk+1)

and taking absolute values we get

|z(tk+1)| ≤ Sk

ϕ(tk) exp
a0,α0
q (tk+1)

ϕ(tk+1) exp
a0,α0
q (tk)

+ Sk(q − 1)tk

m∑
j=1

|aj |tαj

k ϕ
(

tk
qβj

)
ϕ(tk+1)

. (3.5)

Now we employ the inequality (3.1) and accomplish the direct calculations of
the corresponding q-exponential functions. Then

(q − 1)tk

m∑
j=1

|aj |tαj

k ϕ
(

tk
qβj

)
ϕ(tk+1)

≤ −a0(q − 1)tα0+1
k ϕ(tk)

ϕ(tk+1)
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and substituting into (3.5) we arrive at the estimate

|z(tk+1)| ≤ Sk
ϕ(tk)

ϕ(tk+1)

[
a0(q − 1)tα0+1

k + 1− a0(q − 1)tα0+1
k

]

= Sk
ϕ(tk)

ϕ(tk+1)

by use of the positivity of corresponding q-exponential functions. The properties
imposed on coefficients αj and aj now imply that ϕ must be nondecreasing,
hence |z(tk+1)| ≤ Sk and Sk+1 ≤ Sk, k = 1, 2, . . . The boundedness of z now
yields the asymptotic property (3.4). �

Remark 3.2� The conditions of Theorem 3.1 do not involve the case when ϕ is
decreasing. We show that the estimate (3.4) actually need not be valid in such
a case.

Example 3.3� Consider the equation (1.4) with q = 2, m = β1 = 1, a0 = −1/2
and α0 = α1 = −1, i.e., we are given by the equation

Δ2y(t) = − 1

2t
y(t) +

a1
t
y

(
t

2

)
, t ∈ 2Z (3.6)

and assume that a1 > 0. Then the inequality (3.2) can be simplified as

− ϕ(t)

2
+ a1ϕ

(
t

2

)
≤ 0 (3.7)

which is the Schröder inequality. The formula (3.3) yields the function

ϕ(t) = tγ , γ =
log a1
log 2

+ 1

satisfying (3.7) in the form of the equality. However, (3.6) admits the solution

y(t) = tδ , δ =
log(1 +

√
1 + 16a1)

log 2
− 2

and it is easy to check that δ ≤ γ if and only if a1 ≥ 1/2. In other words, the
asymptotic result (3.4) fails provided a1 < 1/2 (i.e., in the asymptotic stable
case).

4. Concluding remarks

In previous sections we described some types of asymptotics of q-difference
equation (1.4). Its asymptotic behaviour was related (under given conditions on
parameters) to the behaviour of a special q-exponential function as well as to
the behaviour of some other functions (in a particular case also algebraic).
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The natural question concerning discrete analogues of originally continuous
models is the problem of possible similarities or discrepancies in the qualitative
behaviour of continuous and discretized equations. As we have remarked in the
introductory section, basic results on the asymptotics of solutions of the differen-
tial equation (1.5) are already known. It is perhaps not surprising that this equa-
tion admits the solutions with asymptotics of exponential type (in other words,
q-exponential function becomes the “classical” exponential function as q → 1
from the right). However, this type of the behaviour of solutions is restricted
on equations (1.5) with a positive coefficient a0. We recall that Theorem 2.1
discussing the q-exponential behaviour of (1.4) does not require any condition
of this type. On the other hand, the condition (2.5) involved in Theorem 2.1 has
no analogy in the continuous case.

The second type of asymptotics of (1.4), stated in Section 3, has been for-
mulated (among others) under the condition a0 < 0. Note that the same sign
condition as well as the same majorant function ϕ appear also in the asymp-
totic investigation of (1.5). However, there is no assumption of the type (3.1)
in the relevant results on the equation (1.5). The intuitive explanation is clear:
the “classical” exponential function is positive and any additional assumptions
of this type are useless.

These questions can be generalized also to other discrete settings of the dif-
ferential equation (1.5). It is just the time scale theory which turns out to be an
efficient tool in these investigations. We recall that some of the above sketched
discrepancies between (1.4) and (1.5) can be formulated (and partly explained)
using this general approach (in particular: assumptions (2.5) and (3.1) are noth-
ing else, but the conditions of regressivity and positive regressivity, guaranteeing
that the corresponding exponential function has a nonzero and positive sign, re-
spectively). For some preliminary results of this type see [5].

Of course, our investigations can be extended also in the frame of q-difference
equations. The possible extensions of our results may concern other choices of
entry parameters (in particular, the case when the upper bound function ϕ
from (3.4) is decreasing) or the precision of the above formulated asymptotic
results.
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[3] BOHNER, M.—ÜNAL, M.: Kneser’s theorem in q-calculus, J. Phys. A 38 (2005),

6729–6739.

49



JAN ČERMÁK
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