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THE ASYMPTOTIC BEHAVIOUR OF THE SAMPLE 

AUTOCOVARIANCE FUNCTION FOR AN 

AUTOREGRESSIVE INTEGRATED 

MOVING AVERAGE PROCESS

Junji Nakano* and Shigemi Tagami*

We derive the first two asymptotic moments of the sample autocovariance func

tion of a time series generated from an autoregressive d-th integrated moving average 

process for any positive integer d. The obtained results show that the sample auto
covariance function is a random variable of order N2d-1, where N is the observed length 

of data.

1. Introduction

Box and Jenkins [2] used an autoregressive integrated moving average model to 

describe a homogeneous nonstationary time series. At the first stage of their three-step 

procedure, i.e., identification, estimation and diagnostic checking, the sample autocovari

ance function of the data is computed as one of the key statistics. In this paper, asymptotic 

values of the mean and the covariance of the sample autocovariance function of the data 

generated from an autoregressive integrated moving average process are obtained.

Some authors dealt with the parameter estimation problem for once integrated proces

ses (e.g., see White [12], Fuller [4], Rao [10], Dickey and Fuller [3]). Hasza and Fuller [5] 

considered this problem for an autoregressive twice integrated process. Kawashima [8] 

studied the least square parameter estimation of autoregressive integrated moving average 

processes of arbitrary orders. Hasza [6] studied the asymptotic distribution of the sample 

autocorrelation function for an autoregressive once integrated moving average process. 

Wichern [13] and Roy [11] obtained the mean and the asymptotic covariance of the sample 

autocovariance function for an once integrated first order moving average process. Nakano 

and Tagami [9] calculated higher order terms for Roy's result. 

We extend Wichern and Roy's results for an autoregressive integrated moving average 

process of arbitrary orders. Section 2 describes definitions and basic lemmas. The mean 

and the covariance of the sample autocovariance function are calculated in Sections 3 

and 4, respectively. Some parts of calculations in these sections are verified by means of 

the algebraic programming system REDUCE (Hearn [7]). Simulation results and discus

sions are given in Section 5.

2. Preliminaries 

Let y0, y1, •c, yN-1 be N consecutive observations generated from an autoregressive 

integrated moving average process of order (p, d, q), which is denoted as ARIMA (p, d, q)
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process, defined by the difference equation

(2.1) 

where 

(2.2) 

(2.3)

and B is a backward shift operator defined by Byt=yt-1. It is assumed that the absolute

values of the roots of the equationsφ(z)=O andθ(z)=0 are greater than one and{ａt}is a

sequence of uncorrelated random variables with mean zero and varianceσ2. The sample

autocovariance function{Ck}of the data{yt}is defined by

(2.4)

where y=(y0十 … 十ZfN_1)/N is the sample mean.

Let xt be d times backward difference of yt, i.e., xt=(1-B)dyt. The autocovariance

 function of the stationary process{xt}is given by

(2.5) 

where 

(2.6)

Kawashima [8] gave the following lemma for decomposing yt into the summation of xt's 

and remainder terms.

LEMMA 1. For d≦t≦N-1, yt has a unique representation given by

(2.7) 

where 

(2.8) 

(2.9)

In the next section, we use LEMMA 8.3.3. of Anderson [1] (p. 462) for evaluating 

integrals. Next lemma is a extension of Anderson's lemma and is required for the same 

purposes in Section 4. The proof is not difficult and is omitted.

LEMMA 2. If h(λ,μ)is bounded and is continuous at(λ,μ)=(0,0),if for some N0

(2.10)

if there is a number K, and integer N1 such that

(2.11)
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if there is a number K2 and integer N2 such that

(2.12)

for every a＞0. and f(a)ｉs monotonically nonincreasing function of a for o≦a<π, and if for

 some N3

(2.13)

for every a＞0, and g(a) is monotonically nonincreasing function of a for 0＜a＜ π, and mN→

O as N→ ∞,then

(2.14)

3. Asymptotic mean of the sample autocovariance function

In this section, we obtain the highest order term of the expectation of Ck, which is 

rewritten as

(3.1)

By the Lemma 1 of Section 2, the expectation of the first term of the right-hand side 

of this equation is expanded as

(3.2)

Through this paper, the condition about the initial data,

(3.3)

is assumed. Then we have the constant and the first 

term of the right-hand side of (3.2) is shown to be

(3.4)

where C2 is a constant. 

By (2.5), the second term of the right-hand side of (3.2) is written as

(3.5)
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The order of the second term of the right-hand side of this equation is lower than that of 

the first term. To have the asymptotic value of the first term, we define

(3.6)

After some algebra, we obtain

(3.7)

where the symbol O denotes ”order”(e.g.,see Fuller [4], p.179), and for some constant C3

(3.8)

These results imply that we can utilize the Lemma 8.3.3,of Anderson [1] by defining 

Then we obtain

(3.9)

where the symbol o denotes”smaller order”.

Considering (3.4) and (3.9), orders of the remaining terms of (3.2) are shown to be less 

than N2d-1.

   In the same way, we can evaluate the expectation of the second term of the right

hand side of (3.1) as

(3.10)

   We can easily show that orders of the expectations of the remaining terms of the right

hand side of (3.1) are less than N2d-1. Combining these results, we obtain the asymptotic 

value of the expectation of ck as follows:

(3.11)

4. Asymptotic covariance of the sample autocovariance function 

The asymptotic covariance of the sample autocovariance function can be evaluated

 by the similar but more formidable calculations. In this section, we assume that{ac}

consists of idenpendent N(0, σ2)random variables. Considering a basic relation

(4.1)

and results obtained in the previous section, we need to calculate the first term of the right

hand side of this equation. The term can be expanded as

(4.2)
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We need some calculations to prove that orders of the”lower order terms”are lower

than those of other terms, but they are omitted. From Lemma 1 of Section 2, the first

term of the right-hand side of (4.2)is shown to be

(4.3)

where we assume that k≧k'.

From (2.5), the first term is written as

(4.4)

Let us define

(4.5)

After some tedious algebra, we find

(4.6)

 (4.7) 

and 

 (4.8)

where is the binomial coefficient defined by B(p,q)is the beta func

tion defined by B(p,q)= , and C4 and C5 are constants.

Therefore we define and apply Lemma 2 of Sec

tion 2 to (4.4), we obtain
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(4.9)

The highest order term of the second term of (4.3) is easily shown to be same as that 
of the first term. The third term is evaluated in the same way, and the result is

(4.10)

After same kind of calculations, we have the results for the remaining terms of the 

right-hand side of (4.2) as follows:

 (4.11) 

and 

 (4.12)

From the results above, we have the final evaluation, i.e.,

(4.13)

5. Discussion

   In this section, we assume the normality of{at}. For a special case of ARIMA(0,1,1)

model

(5.1)  yt-yt-1=at-θat-l,

(3.11) and (4.13) are reduced to

(5.2) 

(5.3)
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respectively, where λ=1-θ. They naturally coincide with the results of Wichern[13]and

 Roy[ll].

   Some simulations were done to investigate the adequacy of the asymptotic results. 

Five thousands sets of observations of length N=100 were generated from the ARIMA 

(0, d, 1) model

(5.4)  (1-B)dyt=(1+0.8B)at

for d=1, 2, 3 and Q2=1. For each set, sample autocovariance of lag 0 divided by N2a-1 were 

computed, then means and sample variances of them were calculated. Repeating these 

experiments fifty times, means and standard deviations of both of them were obtained. 

Table 1 gives the results, together with asymptotic values calculated by the first terms of 

the right-hand sides of (3.11) and (4.13). For expectations and variances of co/N2d-1, three 
numbers in a group denote the asymptotic value, the sample mean and the sample standard 

deviation. As expected, it is found that asymptotic values and sample means give close 

values. 

     Table 1. Values of the asymptotic value, the sample mean and the sample standard deviation 
for expectations and variances of the sample autocovariances at lag 0 of time series of 
length 100 generated from ARIMA(O, d, 1) processes.

   From (3.11) and (4.13), it follows that 

 (5.5) E[ck]=0(N2d-1) ,

 (5.6) Var[ck] =0 (N4d-2)

therefore 

  (5.7) ck=0p(N2d-1)

where Op denotes”order in probability”(e.g., see Fuller[4], p.181). This property is very

different from that of stationary processes in which ck approaches to autocovariance func

tion as N becomes large. So, as was suggested by Roy [ll], it may be useful to compute

the sample autocovariance function of the first N observations for various increasing values

of N in order to detect the integration order of the obtained time series at the model identi-

fication stage. Some examples are shown in Figure 1. For the model (5 .4) and d=1,2,3,

three sets of observations of length N=400 were generated . Then sample autocovariances

 of lag O were calculated for first 50,100,150,…,400 observations and plotted in comlnon

logarithmic forms . Equation(5.7)suggests that these points fall about the straight line

whose slope is 2d-1. Figure l shows this tendency and we can distinguish the difference of

values of d.
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Fig. 1. Examples of plots of the sample autocovariances at lag 0 of time series 

generated from ARIMA (0, d, 1) processes for various increasing values 
of N.
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