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The Asymptotic Complexity of Merging Networks *
(Extended Abstract)
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Abstract

Let M(m,n) be the minimum number of comparators in a comparator
network that merges two ordered chains 1 <z < ... < zp and y3 < yg...<
Yn, Where n > m. Batcher’s odd-even merge yields the following upper bound:

| —

M(m,n) < =(m+ n)logy(m+ 1)+ O(n), e.g., M(n,n) < nlogyn + O(n).

~—~ Do

Floyd (for M(n,n)), and then Yao and Yao (for M(m,n)) have shown the
following lower bounds:

1 1
M(m,n) > inlogZ(m +1); M(n,n)> inlog2 n+ O(n).
We prove a new lower bound that matches the upper bound asymptotically:
1
M(m,n) > §(m + n)logy(m+1) — O(m), e.g., M(n,n) > nlogyn — O(n).

Our proof technique extends to give similarly tight lower bounds for the size of
monotone Boolean circuits for merging, and for the size of switching networks
capable of realizing the set of permutations that arise from merging.

1 Introduction and Overview

Merging networks (for a definition, see Section 2) together with sorting networks,
have been studied extensively. ([Knu73, pages 220-246] is a good reference on the
subject.)

Let M(m,n) denote the minimum number of comparators in a comparator network
that merges two input sequences 21 < 29 < ... < 2, and 1 < ¥ < o0 < Yy
into the sequence z; < z3 < ... < Zpu4n. Batcher’s odd-even merge [Knu73, pp.
224-226] provides the best known upper bound for M (m,n) for all values of m,
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n > 1. Throughout the paper we assume n > m, and all logarithms have base 2. If
C(m,n) denotes the number of comparators in Batcher’s network for (m,n) then

M(m,n) < C(m,n) = %(m + n)logm + O(n),

and, in particular,

M(n,n) < nlogn+ O(n).

The previous best lower bounds for M(n,n) and M(m,n) are due to Floyd [Knu73,
pp. 230-232] and to Yao and Yao [YY76] who proved, respectively,

1 1
M(n,n) > §n10g n+0(n) and M(m,n) > §n10g(m +1).
We close this long-standing factor-of-two gap between the previous best lower and

upper bounds for M(n,n) and show that the asymptotic value of M(n,n) is nlogn,
by proving the following lower bound:

M(m,n) > =(m+ n)log(m+1)—0.73m.

DN | —

Our lower bound arguments only involve the total path length, and thus we
can extend the result to the general framework considered by Pippenger and
Valiant [PV76], showing that any graph with in-degree two, which is capable of
realizing all the merging patterns, has many vertices. In particular, our lower bound
for merging networks also holds for the number of switches in a switching network
that can realize all the connections from inputs to outputs that arise from merging.
We also obtain a tight lower bound for the size of monotone Boolean circuits for
merging, improving the best previous lower bound essentially by a factor of two, in
the same way that our lower bound for M (n,n) improves Floyd’s lower bound.

1.1 Overview of Proof

The main ideas involved in the proof of our main theorem (Theorem 1) are first
described informally. For simplicity, we explain our arguments in terms of merging
networks.

Assume that two input sequences 1 < 23 < ... < Ty, and ¥y < Y2 < ... < ¥, are
given and that z; # y; forall 1 <i <m,1 < j < n.Imagine the 2;’s and y;’s actually
moving through a merging network to their destination z;’s. Let Merge(m,n) be
the set of (m:;n) possible merging patterns. We define a probability distribution on
Merge(m,n) such that the expected total path length, which equals the sum over
the zp’s of the expected length of the path reaching 2, can be shown to be large.
It follows that there exists a merging pattern under which the total path length is
large and, since only two inputs go through each comparator, there must be many
comparators. For each z; there is a certain probability distribution on the set of
z;’s and y;’s that arrive at 2y, and the exzpected length of the path reaching zj is at

least the entropy of this distribution.

There is the natural bijection from Merge(m,n) onto the set of up-or-right paths
from (0,0) at the lower-left corner to (m,n) at the upper-right corner of the n x m
grid, and the probability distribution on Merge(m, n) can be thought of as a unit flow
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Figure 1: Batcher’s odd-even network for m = n =2

on the grid. Conversely, a unit flow on the grid can be converted to a probability
distribution on Merge(m,n) by considering a Markov random walk on the grid
according to the flow. Which z; or y; reaches zj; is determined by which edge is
traversed at the diagonal corresponding to z.

We would like to determine the unit flow F on the grid which maximizes the sum
of the entropies, H(F'). First we consider the flow U that maintains the uniform
distribution on the vertices along each diagonal, and evaluate H(U). All the lower
bounds in this extended abstract are based on H(U). We can show that there is
a unique optimal flow Z maximizing the total entropy. The improvement of H(Z)
over H(U)is only in terms of reducing the coefficient of the linear term in Theorem 1
and its corollaries, i.e., we can get about —1.3m instead of —1.45m in Theorem 1.
Let Z,, be the optimal flow on the n x n grid. We have no closed formula for Z,, or
h(n) = H(Z,), but we can establish two recurrence inequalities for h(n), bounding
it rather accurately from above and below. Detailed discussions of the optimal flow
and h(n) are omitted from this extended abstract.

1.2 Outline of Paper

In Section 2 we explain the general framework in which we work, state the main
theorem (Theorem 1), and explain how our lower bounds follow as its corollaries.
In Section 3 we prove the main theorem. In Section 4 we discuss the optimal flow
and the slight improvement of lower bounds that it yields. Finally in Section 5 we
state some open problems related to this work.

2 Results
A comparator network is a directed graph in which there are k vertices s1,..., sk
of in-degree 0 and out-degree 1 called inputs and k vertices tq,...,#; of in-degree

1 and out-degree 0 called outputs, and the rest of the vertices, called comparators,
have in-degree two and out-degree two. (See Figures 1 and 2.)

We shall denote by s; (t;) both an input (output) vertex and the value assigned
to s; as input (or to t; as output). For an arbitrary totally ordered set D and
$1,...,58k € D, each edge in a comparator network, and hence each of ¢1,... t,
can be assigned some value in D in the natural way: if ¢ and b are the values
computed by the two incoming edges of a comparator C, one outgoing edge of C



computes max{a, b} and the other computes min{a,b}. An (m,n)-merging network
is a comparator network with m+n inputs z1,...,2m, ¥1,. .., ¥, and m+n outputs
Z1yevvyZmen such that if 9 < 29 < -+ < 2, and 93 < yp < -+ < gy, then
1 SZZ S "'Szm—l—n-

Our main theorem is in terms of the following general framework considered by
Pippenger and Valiant [PV76].

Let G = (V, E) be a directed graph, and S = {s1,...,s,} and T = {t1,...,t,} be
disjoint sets of vertices. We say that G realizes a set M of bijections from T onto 5
if for each 7 € M there are k vertex-disjoint paths py,...,pr in G, where p; is from
7(t;) to t;, for 1 <7 < k.

IfS =A{e1,...,2m,v1,-. Yoy and T = {z1,..., Zm4n}, then Merge(m,n) is the
set of (m;;n) bijections from T onto § that arise in the following way. If D is a
totally ordered set and f : S — D is an injective map assigning values to vertices
so that f(z1) < -+ < f(om) and f(y1) < -+ < f(yn), then we get a bijection
T € Merge(m,n) defined by: 7(z;) =the unique w € § with rank(w) = ¢. A graph
G together with S, T C V (SUT = 0,15 = |T| = m + n) is an (m,n)-merging
graph if it realizes Merge(m,n).

We can now state our main theorem.

Theorem 1. IfG = (V, E) together with S, T CV is an (m, n)-merging graph with
m-degree at most two, then
V=38 > (m+4mn)logy(m+1)— (logy e)m

> (m+n)logy(m+1) —1.45m.

Applications of our main theorem become obvious when we consider min-max
circuits. A min-maz circuit is a combinatorial circuit with gates of fan-in two and
of unbounded fan-out, where each gate is either a MIN gate or a MAX gate that
computes the minimum or the maximum of two inputs respectively. A min-max
circuit with inputs x1,...,2, and y1,...,y, and outputs z1,..., Zy,4n 15 said to
(m,n)-merge if it computes the merge of the z;’s and the y;’s at the z’s.

The following observations are easy.

Lemma 1. If a min-maz circuit (m,n)-merges, then its underlying graph is an
(m, n)-merging graph with in-degree at most 2.

Proof : Omitted from this abstract.

Fact 1. A merging network N can be converted to a min-max merging circuit C by
replacing each comparator by a MIN and a MAX gate. (See Figure 2.) The number
of gates in C is twice the number of comparators in N.

From Lemma 1 and Fact 1, we get our lower bound for merging networks as a
corollary of Theorem 1.

Corollary 1.

M(m,n) > =(m+ n)log(m+ 1) — 0.73m.

N —

The same bound holds even when we allow outgoing edges of comparators to branch.



x min(z,y) MIN

>

y max(z,y) MAX

Figure 2: A comparator and an equivalent pair of MIN/MAX gates

2.1 Monotone Circuit Complexity of Merging

Consider a monotone Boolean circuit with m + n inputs and m + n outputs that
computes the merge of two sequences of lengths m and n. The following two
observations vield a lower bound on the number of AND and OR gates needed.

Fact 2. If C is a monotone Boolean circuit for Boolean merging, we can transform
C to a min-maz circuit of the same size that merges Boolean inputs, by replacing
each AND or OR gate with a MIN or MAX gate respectively.

The next lemma is the “0-1 principle” for merging.

Lemma 2. If a min-mazx circuit merges every pair of Boolean sequences of length
m and n, then it is an (m, n)-merging min-maz circuit.

Using Fact 2, Lemma 2, and Lemma 1, we obtain the following as a corollary of
Theorem 1.

Corollary 2. Any monotone Boolean circuit that computes the merge of two
Boolean sequences of length m and n has at least (m 4+ n)logm — 1.45m gates.

The previous best lower bounds are due to Lamagna [Lam] and, independently, to
Pippenger and Valiant [PV76]. Their bounds are essentially half our bounds when
m = n, as in the case of merging networks.

3 Proof of Theorem 1

In this section we prove Theorem 1 by relating merging graphs with a network flow
problem.

3.1 Entropies

Suppose that G = (V. E) with S = {a1,...,2m,¥1,-- s Yn} and T = {21, ..., Zmein}
is an (m,n)-merging graph, and let M = Merge(m,n). For each 7 € M, fix a
sequence (PT :¢=1,...,m+ n) of m + n vertex-disjoint paths in G, where P is a
path from 7(z;) to z;, for 1 < ¢ < m + n. For each vertex of in-degree two in G, fix
arbitrarily which incoming edge is “left” and which is “right.” For each 7 € M and
i € {1,...,m + n}, encode PT by following the path in the reverse direction from
zi to m(z;) and using, say, 0 for left and 1 for right. Let CT be the binary code for
PT obtained this way. For each ¢ € {1,...,m + n}, the set {C7 : 7 € M} gives an
instantaneous decipherable binary coding for {7(z;) : 7 € M}. (There may be more
than one code for some ; or yx.) Let a probability distribution on M be given and



(4,5)

(0,0)
Figure 3: The merge 21 < 11 < y2 < 22 < 23 < ys < yq < y5 < &4

consider 7(z;) and P7, for 1 < ¢ < m + n, as random variables accordingly. For
a random variable X, let H(X) denote the entropy of X measured in bits, and let
E[X] denote its expectation. For a path P in a graph and a binary code C, let | P|
and |C| denote their lengths. Then

m+n m+n m+n m+n
S H(x(z) < Y EICT) < Y E(P| = E[Zwm]

m—+n

Pr|l < _
ggﬁglzl < V-5l

IN

where the first inequality is by the well-known Shannon’s Theorem for a noiseless
channel and a discrete memoryless source (see any textbook on information theory),
and the equality is by the linearity of expectations.

We obtain our lower bound for |V — S| by defining a certain distribution on M and
evaluating 71" H(n(z;)) with respect to it.

3.2 Unit Flow on a Grid

Consider the grid with coordinates as shown in Figure 3, and let M’ be the set of
directed paths from (0,0) to (m, n) of length m + n that move right or upward from
each vertex. We will simply say ‘path’ when we mean such a path from (0,0) to
(m,n). The natural bijection from M onto M’ is illustrated in Figure 3.

Any distribution on M induces a distribution on M’. Under this induced distribution
on M, define o, ; for 1 < i < m, 0 < j < n, to be the probability that path p passes
through the edge from (i — 1,j) to (¢,7), and similarly define f; ;, for 0 < i < m,
1 < j < n, to be the probability that p passes through the edge from (¢,7 — 1)
o (¢,7). (See Figure 4.) For convenience, we define a; ; = 0 for ¢ = 0,m + 1 and
0<j<mn,and B;; =01for j =0,n+1 and 0 <7 < m. Jointly a; ; and f3; ; define
a unit flow from (0,0) to (m,n), that is, the following equations are satisfied:

a1+ Bo1 =1 mnt Bmn =1

@ij+ Bij = aiy1y+ Bijr for (4,7) # (0,0), (m,n).

The equations above express the fact that one unit goes out of the source (0,0), one
unit goes into the sink (m,n), and the flow is conserved at the other vertices.

We define v, ;, the flow through vertex (¢, j), as follows:

Yi; =0+ Bi; for (i,7)#(0,0), and oo =1.



Yi-1,5 a;; Vi,
9.

Bi-1,; Bij

Yi-1,5—-1 Yi, -1

Figure 4: Names of edge- and vertex-flows

Note that:
a;; = Prob[n(zi4;) = 2;];  fBi; = Prob[n(ziy;) = y;l;

Yi; =Prob[{m(zx) : 1 <k <i+j}={21,..., 25,0, ...y}
From the first two equations we get:

m—+n m—+n

SN H(w(z) = =3, > aijloga;+ Bi;log i
k=1 k=1 i+j=k
= —ZZamlog o5 — ZZﬁi,jlogﬁm'
=1 7=0 1=0 7=1

(As usual we take zloga to be 0 when z = 0.) For a unit flow F = (a,f) from
(0,0) to (m,n), define the entropy, H(F'), to be the quantity expressed above.

Above we have described the map I' from the set of distributions on the paths of
the grid to the set of unit flows. To see that this map I is surjective, let F = (a, )
be any unit flow. Consider a random walk from (0,0) to (m,n) that behaves as
follows. At vertex (¢,j), visited with probability 7; ;, move right with probability
q¢ = a;q15/(ai41,5 + Bij+1) and move upward with probability 1 — ¢. It is easy to
see that the distribution on paths defined by this random walk gets mapped by T
to the original flow F.

Thus sup{H(F) : F unit flow} is a lower bound for [{v € V : in-degree(v) = 2}|.
There exists in fact a unique optimal flow Z that attains the supremum. In this
extended abstract, we obtain our lower bound from U, a nice near-optimal flow, such
that H(U) and H(Z) differ only in the coefficient of the linear term. In Section 4
we sketch the additional arguments needed to determine H(Z) for the n x n grid.

3.3 Diagonally Uniform Flow

Consider the following flow U = (a, ). From (0,0), U maintains a uniform
distribution on the diagonals ¢ +j = 1,2,.. ., 1le, a;; + 3 ; = vi; = 1/(i+j+ 1),
until the diagonal ¢ + 7 = m. Then U maintains the flow of 1/(m + 1) along each
vertical line until the diagonal i+ j = n. U “converges” to (m,n) from this diagonal
in the same way that U “diverges” from (0,0) to the diagonal ¢ + j = m. (See
Figure 5.)



7(0)=1/4

4 v(e) =1/7

s =7

Figure 5: The flow U on the 8 x 6 grid.

More precisely U can be expressed as follows:

?
G+
a; ; =0, ﬁiﬂ‘:l/(m—l—l), form <i+j < n.

;5= Bi = Qmii—in—j = Bm—jnti—i = for 1 <i+ 5 < my

It is easy to verify that these equations do indeed define a unit flow. By symmetry,

m d
1 1
H = 4 —Bid-ilog Bia—i) — (n — 1 1
(0) dz::l;( Bia—ilog Bia—i) — (n — m)(m + )m—|—10gm—|-1
m d . .
i
= 4 —m)l 1
;;ddu 8 qasy (T mleslm D)
= dz::l(logd—l—log (d+1)) 42(12 delogz—l— n—m)log(m+ 1)
m 1 d
= 410g(m—|—1)!—|—(n—m—2)10g(m—|—1)—4;d2—+d;210g2.

Evaluating the summation, we get

1 d
———> ilogi
d? +d =

1 GG+ i, i1 d(i—1), i
1 - log —
d2+d;< 2 Og\/E 2 Ogﬁ)

moo1 P 4d. d+1
= 2 log
d2+d 2 Ve

1
= —log(m+1)! - Zmlog e.

Pz

IA
o

M»—tﬁ
—

So, using Stirling’s formula, we bound H(U) as follows:
HU) > 2log(m+ 1)+ (n—m—2)log(m+ 1)+ mloge
> 2(m+ 1)(log(m + 1) —loge) 4 log(27(m + 1))
+(n—m —2)log(m+ 1)+ mloge
(m+n)log(m+ 1) — mloge for m > 1.

v

The proof of Theorem 1 is complete.



Figure 6: Squares where U does not satisfy the local condition on the 5 x 5 grid.
4 Optimal Flow

4.1 Characterization of Optimal Flow

By analytic arguments, we can show the following.

Proposition 1. A flow F = («, 3) is optimal if and only if F = («, 3) satisfies the
following local conditions: for 1 <i1<m,1<j<n,

i j-1fij = PBio1,j0-
There is a unique optimal unit flow U such that H(U) = sup{H(F): F unit flow}.

Proof sketch : Here we only prove “only if”, our main intention being to explain
where the local condition above comes from. Let F' = (a, ) be an optimal flow. We
can show that F has nonzero value on every edge. Suppose that 1 < i < m and
1 < jo < m,andlet F(t) = (a(t),5(t)) be the flow defined as follows: o, ;(t) = oy ;
and 3; ;(t) = B, ; for all (i, ) except the following four pairs, where

i o (1) = g jo — 1, g jo—1(1) = g jo—1 + 1,
Bioo (1) = Big jo + 1, Bio—1,5o (1) = Big—1,5o — 1.
F(t) is defined for |¢t| < min{oy, j,,Bio.j0s Qigjo—15 Fig—1,jo }» and corresponds to a

local change by t of the flow around the cell with (ig, jo) at its upper-right corner
(see Figure 4).

Since F is optimal, the derivative of H(F(t)) with respect to t at 0 must be 0. But

dH(F(t
%(0) = —log i, jo—1 —log Biy s, +10g Bip—1,5, +1og asg o,
and so F satisfies the local condition above for each ¢ and j. |

4.2 Improvement by Optimal Flow

Let Z,, be the unique optimal flow on the nxn grid, and let h(n) = H(Z,). Let U, be
the uniform flow considered in Section 3.3, and recall that H(U,,) ~ 2nlogn—1.45n.
The flow U, is not optimal since it does not satisfy the local condition above for the
cells on the main diagonal, where ¢ + j = n. The condition s satisfied at all the
other cells. (See Figure 6.)

Although we have no closed formula for Z,, or h(n), we can show that h(n) =
2nlogn — en + o(n), where ¢ &~ 1.3. Thus using Z instead of U, we can slightly
improve our lower bound in Theorem 1 and its corollaries.



5 Conclusion and Open Problems

It has been conjectured that Batcher’s (m, n)-network exactly optimal for all m, n.
Yao and Yao [YY76] have shown that M(2,n) = C(2,n), and so Batcher’s networks
are optimal for m = 2, however the ezact behavior of M(m,n) for m > 2 remains
an open problem.

The results proved in this paper take a major step towards establishing the
conjecture. We have shown that the asymptotic value of M (m,n)is (m+n)log(m+
1), and hence that Batcher’s networks are asymptotically optimal.
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