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The cointegrated model considered here is a nonstationary vec-
tor autoregressive process in which some linear functions are sta-
tionary and others are random walks. The first difference of the
process (the “error-correction form”) is stationary. Statistical in-
ference, such as reduced rank regression estimation of the coeffi-
cients of the process and tests of hypotheses of dimensionality of
the stationary part, involves the canonical correlations between
the difference vector and the relevant vector of the past of the
process. The asymptotic distributions of the canonical correlations
and the canonical vectors under the assumption that the process
is Gaussian are found.

1. Introduction

A relatively new multivariate time series model, which has be-
come very important in econometrics, is the cointegrated
autoregressive process, which includes stationary and nonsta-
tionary aspects. Some linear combinations of the variables are
stationary, and some linear combinations are nonstationary. A
crucial statistical problem is to distinguish these two sets of lin-
ear combinations.

A general mathematical model that is used for these data is an
autoregressive model. One set of statistical variables consisting
of the present elements of the process is predicted or “caused”
by another set consisting of earlier observations. The relations
between these two sets can be clarified by canonical correlation
analysis. See ref. 1, for example.

A method of handling nonstationary elements in a process,
such as trends, is to difference the process (2). The discovery
of cointegrating relations involves the differencing of the vector
series and using the canonical correlations between the differ-
ences and lags of the original series. The nonzero canonical cor-
relations correspond to the cointegrating relations and the zero
correlations, to the nonstationary relations.

When some canonical correlations are zero, the reduced rank
regression estimator introduced by Anderson (3), which is based
on the sample canonical correlations and variates, is a more ef-
ficient estimator of the regression or autoregression than the
least squares estimator. Here the estimation is of the regression
of the differenced series on the lagged variables, which implies
estimation of the regression of the original series on the lagged
series. The sample canonical correlations may be used to de-
termine the number of process canonical correlations different
from 0, which is the rank of the regression of the difference se-
ries on the lagged series. Inference is based on the large-sample
distribution of the sample canonical correlations and variates.

The model we study is similar to that of Johansen (4). How-
ever, we focus on the first-order case, indicating later how it
generalizes to higher order.

2. The Model

A general cointegrated model is an autoregressive process
Y, =BY,  +Z, [2.1]

where Z, is unobserved with £Y,_,Z, =0, £Z,Z, = %.,,. If the
eigenvalues of B, that is, the roots A, ..., A, of |B— AIl =0,
satisfy |A;] <1, j=1,..., p, a stationary process can be defined
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withY, =", BZ,_,t=...,—-1,0,1,.... If some or all of
the eigenvalues are 1, the process will be nonstationary. In this
paper, we treat processes {Y,} with Y, = 0 such that some roots,
say n roots, are 1, A; =1, i=1,...,n (< p), and the other
k = p — n roots satisfy |A;| < 1. The first difference of the
process is

AY, =11Y, ,+Z,, [2.2]
where Il = B — I has characteristic roots A; — 1, i=1,..., p,
since |B — AI| = [Il — (A — 1)I|. Of these roots n are 0 and k are
not 0. The form 2.2 is known as the error-correction form (5).
As we shall see some linear combinations of Y, are stationary.
Granger (6) called such models “cointegrated.” If a process {Y, }
is stationary, we say it is integrated of order 0 ({Y,} € 1(0)). If
{Y,} is not stationary, but AY, =Y, —Y,_; is stationary, we say
it is integrated of order 1 ({Y,} € I(1)).

A sample consists of T observations: yj, ..., yr. An estima-
tor of B can be obtained from an estimator of II by adding I to
the estimator of II. Under the assumptions that » of the eigen-
values of B are 1 and k satisfy |A;] < 1 and that @'B = 0 has n
linearly independent solutions, IT has rank k and is to be esti-
mated by the reduced rank regression estimator introduced by
Anderson in ref. 3. It involves the sample canonical correlations
and vectors between AY, and Y,_;. One form of the estimator is

M, = S,y 1T, [2.3]

where S,yy = 7' Y1 AY,Y, |, etc., and the k columns of T
satisfy

Sv.avSavaySavy¥ = r’Syy¥ [2.4]
and 9'Sy y¥ = 1 for the k largest values of r? satisfying
ISy avSavaySary — *Syy| =0. [2.5]

The estimator flk is the product of a p X k matrixanda k X p
matrix. This paper is devoted to finding the asymptotic distribu-
tion of the k larger roots of 2.5 and the corresponding vectors .

2.1. Transformation of Coordinates. To study the properties of the
estimators, tests, and canonical correlations and variables, we
transform Y, so that the first n coordinates are I(1) and the
other k coordinates are 7(0).

LEMMA 1. Given that n roots of Il are 0 and k = p — n roots
are different from 0, the rank of Il is k if and only if there exists
a p X n matrix £, of rank n such that

QII=0. [2.6]

Proof: Since k roots of II are different from 0 and 2.6 holds,
the rank of II is k. Conversely, if the rank of II is k, there exist
p X k matrices A and C of rank k such that Il = AC'. (C' is
composed of any k linearly independent rows of II.) Then any
p X n matrix £, such that QA = 0 satisfies 2.6. |
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In the rest of this paper, it is assumed that a matrix ; of
rank n satisfying 2.6 exists. Define Q, = C and Q = (Q,, Q,).
Further define Y, = C’'A (of rank k). Then

QI = Y, 0. [2.7]

The columns of €, are left-sided characteristic vectors of II and
B associated with the roots of 0 and 1, respectively.
Define

, , w
QY, =X, = [th]’ QOZ, =W, = [WZ] [2.8]

W= QBQ) ! = [I 0 ]

0 W, [2.9]

Then X, = Z;]O W, ,_, is a random walk, and X,, = Z;;g v -
W, ,_, converges to the stationary process ) ., WiW, .. We
say that X,, = Q}Y, are the cointegrating relations (6). The
characteristic roots of W, are A; for |A;| < 1 because the trans-
formation 2.9 leaves the roots invariant.

Then, let Y, = ¥, — I and Y = diag(0, Y,). The model in
terms of AX, and X,_; is

AX, =YX, | +W,. [2.10]

3. Process Parameters
From the definitions of X;, and X,, we find

EXp Xl = (= Dy,

-1
5X2,171X§,z—1 = Z‘Pizﬁw

s=0
- (I-¥,)'3}, =-Y; '3,
as t — %, which we define as 32! ,

-1 w

/ _ S §22 ’s 5§22 /s

EXo Xy = E W2y Wy — 2 L DI S
s=0 s=0

which we define as 3% . Then
EAXX > YS =] 0 -3
12-1 - Y, 32 Y, 32 A-

/ 0 0
(‘:AXIAX[ — |:0 Y222_2_Y2/] + EWW = EAA .

Define X! (T) = T~ ZtT=l EXy i Xpmr = 3(T = Dy,
31 (T)

and
312
32 32 ]
We use subscripts A and — for AX, and X,_;. Matrices are par-
titioned into n and k rows and columns.

The canonical correlations and variables for AX, and X,_; are
defined by

3 (T)= [

e ol
2y 2 (D]|y
Elimination of e yields

3 ZuSy =02 _(T)y, [3.1]
where p? (which may depend on T) satisfies

2,303 -0’2 (D)) =0. [3.2]
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Algebraic calculation yields
32y
32,
(L3, Y32, [3.3]
where 33, = 33, — X3y (Sipw) ' 2ify. The determinantal
equation 3.2 has n roots of 0 and the corresponding vectors
v = (7, v) satisfy 3% y, + 32 5, = 0. There are n linearly

independent solutions to this equation.
Multiplication of 3.1 on the left by [I, —2!2 (2% )] gives

s 3%, = [ ] (32 Yy + 33)!

0= pZBTz;;W - 212,(221)-1231}% : [3.4]

For T = 3, the matrix in 3.3 is nonsingular; hence, y; = 0 for
p* > 0. The second submatrix equation in 3.1 is

Eiz,Yﬁ(YzzziYﬁ + 2%{%1/%/ _IYQEZ,Z,'}’Z = pzzziw . [3.5]

For a nontrivial solution to 3.4 p> must satisfy
152 V(L322 Y; + 320)7 1,32 — pP32 | =0. [3.6]

We normalize y, by ¥,3* v, = 1. (Since ¥, = 0, an equivalent
normalization is ¥y'>__(T)y =1.)

4. Sample Statistics

The observable sample covariance matrices Sy, S,_, S__ are
linear functions of S__, S_;, and S;;;,. The matrix Sy, is com-

posed of independently identically distributed vectors; Sy, 5
3 w. We assume the fourth-order moments are finite; hence,

T%(SWW — 3,y) has a limiting normal distribution. Since AX,

——

depends only on X, , ; and W, and X, is stationary, S, £ DIV

and T%(SM — 3,4) has a limiting normal distribution.
The lower left-hand corner of S,_ is

1 ¢ ,
Si = T Z(XZt =X )X
=1

1 ! ’ ! ’ !
=7 [Z Xo/(Xh,m1 — Xq) + Xor Xy — X21X11]
=2

1

T
= ? |:_ Z(szz,z—l + WZI)WEt + XZTX%T - X21Xili|
=2

P 21
= =Xy,

[4.1]

because the first term on the right-hand side of 4.1 converges
stochastically to —EW, Wj, = —3%, and the second term
converges stochastically to 0. Note that the sum of squares
of the elements of T7'X,; X, is T2tr Xor X (X7 X)) =
T372X,; X7 - T7V2X5: X, 7; each of the two factors converges
in probability to 0.

To obtain the limit of S,_ in distribution, we need to use
the vector Brownian motion process. Let V,,V,, ... be indepen-
dently identically distributed with £V, = 0, &V,V, = 3. Then

7-: Yy, % V(u), 0 = u = 1, the Brownian motion pro-
cess. If 3 = I, we term V(u) the standard Brownian motion.
For more detail see ref. 4, appendix B.7, or ref. 7.

Define J;; and J,; by
T
il 1 ,
Sw- =72 WXl

=1
1

d , .

— /o AW, (W)Wi(u) = J;, j=1,2. [4.2]
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Then
s _[ 0 N S Si2
AT Y8 Y82 Si. S22

_d) Ji 0
_E%W Y32 |

Let Q =S_,S;1S,_. Then

d J/“ _E%W -1 Jll 0
Q- [ ap :
0 I2Y[TM -3, Y32
From 83 = Y,8?" + 8%, we have

S =Y (SE - S ) S Y5 (B +0)
Then
|:;Sl_1_ Sl_z_] K |: I; —(Ziw + Jél)Y{l}
s sz Y5 ' (Ziw +J1) 32 ’
where I, is defined as follows:

T

1 !/
= ﬁ ZX1,1—1X1,r71
=1

1
7511
T -

1
4 / W, ()W, (u)du =1, . [4.3]
0
5. Asymptotic Distribution of the Smaller Roots

We are interested in the asymptotic distribution of the eigenval-
ues and eigenvectors satisfying Qg = r?S__g. First consider the
roots of |Q — rS__| = 0. Multiplication of this determinant on

the left and right by the determinant of diag(T*%I, I) yields

1 1 lgit g2
‘[ T ﬁQ“]frz[ i ﬁzz__:HZO. [5.1]
ﬁQZl Q22 TS,, 877

Since T7'Qy ) Tﬁ%QZl ) Qx o (B_AZAZs )
T-1st 4 I, 7282 % 0, and 82 5 32 | the n smaller
roots of 5.1 converge in probability to 0 and the k larger roots
converge to the roots of 3.5.

To study the behavior of the smaller roots let Tr?> = d to
obtain the equation |Q — dT~'S__| = 0. The n smaller roots of
this equation converge in distribution to the roots of the limit
in distribution of

_ 11 Qu Qup _ I, 0
0—‘[% sz] "[0 0”
= |Q22| : \Qn.z - d111|,

where Q;1, = Q;; — Q1,Q%' Q,;. Some algebra shows that 5.2 is
asymptotically

[5.2]

I )™ Iy — dly| = 0. [5.3]
We can write W, (u) = (E%W)%Bl(u), where B, (u) is standard
Brownian motion with €B,(u#)B) () = ul. Then the zeros of 5.3
are the zeros of

'/Olgl(u)dBi(u)/OldBl(v)B’l(v)_d/OIBl(u)B/l(u)du

The distribution does not depend on any parameters nor does
it require normality of Z,.
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The likelihood ratio criterion for testing rank Y = k found by
Anderson (3) is

p—k

—2log A = —TZlog(l )

i=1

p—k p—k
=TY ri4o0,(1)=) di+o0,1)
i=1 i=1

= tr/(;1 dBl(v)B’l(v)|:/(;1 B, (u)B(u) du]l

1
[ B i)+ o,0); (5.4
0
see Johansen (4, 8). The roots are ordered r? < ... <72,
Let the p solutions to Qg =r*S__gbe G = (g,,...,8,) and

R? = diag(s2,...,r2) with the normalization of the columns
of G to be determined. Then the partitioned form of QG =
S__GR?is

|:Q11 QIZ] |:G11 G12:|

QZl Q22 G21 G22
_ s S22 171G, Gy, ﬁ% 0
T[S 82 |Gy Gnpllo RIS

Since Tﬁlz = D, has a limiting distribution, the weak limits of
the first n columns of 5.5 give

Q11G11 + Q12G21 _ IllGllDl 1
|:Q21G11 +QpGy | 0 +0,(1). [5.6]

[5.5]

The last k rows of 5.6 give Gy, = —Q3,'Qy,Gy; +0,(1). Insertion

of this in the first n rows of 5.6 yields
Q112G =1;;G;D; +0,(1). [5.7]

The columns of G;; are the characteristic vectors of Q,;, in the

metric of I,;; the diagonal elements of D, are the ordered roots
of 5.2.

Now multiply 5.7 on the left by ( %}W)% and define
(24,)72Gy, =L to obtain
1 1
[ B api [ amomor
1
:/ B,(u)B|(u) duLD; . [5.8]
0

At this point we normalize L by L'I;;L = I. The distribution
of the integrals is invariant with respect to multiplying on the
left by an arbitrary orthogonal matrix and on the right by the
transpose of that matrix. This fact implies that the distribution
of L is invariant with respect to multiplication on the left by an
arbitrary orthogonal matrix. It has the Haar uniform measure in
the space of orthogonal matrices.

6. Asymptotic Distribution of the Larger Roots
Let 77 = /T (r? — p?), i =n+1, ..., p. We shall find the limit-

ing normal distribution of %, ..., rﬁ* from the limiting normal

distribution of {ﬁ[sz — (3 3313, ], VT(S2 — 22_2_)}.
To carry out this program, we make a series of transformations
to bring (2_,3;i%4 ) and 3% to diagonal forms.
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The last k columns of 5.5 can be written

%QllﬁGIZ + %Qu(}zz
( ;s‘j,f Gy, + &Sl{%)ﬁg, [6.1]
%Qzﬁ/? G, +QxGy,
( fsz_l_ﬁ G, + sz_z_Gzz)fzg ) [6.2]
We normalize G, and G,, by
=[5 & |[e]
= (VT G}, Gl) [ ;SS: 1;25212} [‘/z;}”} . 1631

Since the second matrix in 6.3 is positive definite with probabil-
ity 1 and converges in distribution to diag(I;;, 32 ), VT G, =
0,(1) and G,, = O,(1). The probability limit of 6.1 shows that

VTG, 5 0 and

Q1Gy = 2GR +0,(1). [6.4]
Then the probability limit of 6.3 and S2 5 32 shows
G53% Gy, =1+ 0,(1). This and 6.4 imply that G, > I,

When phmT%m«/TG12 = 0 is put into 6.2, we obtain
VT QyGy = VT S2 G,R} + 0,(1). This justifies expanding
6.4 to terms O (1/f)

Now we want to expand vT[Qy — (2_,25 3, )] Define

= VT(Sy = %y), 2 = VT(S2 - 32), 857 =
-1 / 21,21 °1 /
T1Y Xy, W, ,, and SWW =T ZzT:1(W2-1,:Wz.1,t -

3320), where Wy, = W,, — W(z;w)flw“. Then

Y2(B_sS3 ) Y;

=Y,32 A (L8 2Y; + S5, 0%Y)),
Y,(B_ySi B )nY;
— YZEZZ Y/A—l
C(LS2Y; + Y8+ 8 4 St
ATY,E2 Y],
where A = (Y,22 Y} + 23;;) and B_y = 3_,331. Then

VTY,[Qy — (A3 2 nlY + o,(1)
=Y,(S",B , —B_,Si,B", +B_,Si ),,
= -Y,32 VJATIS AT 32 Y

+Y,32 VATIS YA

+3BIATYS 1A*1Y2223,Y2'

+Y,32 AT, 82,

+ Y, 2YA Y, 32 Y]

- Y,32 VAT, 82 YA

Y,32 Y. [6.5]

Let E be a k X k matrix such that
E'32LE =1, where @ = diag(0,.4, ...,

E(LE2Z Y)E = 0,
0]7) = R%(I - R§)717

Anderson

R; = diag(p;, ;. ..., p3) and p; is a root of 3.6. Let Uy, = E'X,,
V,, = E'W,,, V,, =W,,. Then U,, satisfies

Uy =AU, +Vy, AUy =MU,,  +V,, [6.6]

where Ay = EW,(E) L, and M, = A, -1 = E’YZ(E/)’l. Note
that Z'AE = O + I From 3.3 we obtain EY, (2 435030 ),
Y,E =0(0 +0)” '@. Multiplication of 6.5 on the left by &’ and
the right by E gives
ﬁ[Mz(SD,AUSELIJ,AUSAU 0)nM; — O(0 + 1)719]
= -—0I+0)'s7 ' O+1)'0
+0O(I+0) IS*leM’(®+I) !
+(I+0) M8 (O +1)!
+ 01+ 0) 'M,S; i M, + MZS*Z% M,0(I+ 0)™!

—O(1+0)'MSHEM(I+0)'0+0,(1). [6.7]

Let M,U, , ; = E'Y;X,, ; =L,, ;. Then 6.7 transforms to
ﬁ[(sL,AUSEtlJ swSaui)n — @1+ ®)71]
_ R%S*z 1,2 1R2 + R%S*Z 1, Z(I _ R%)

+(I-R3)S;'RS + RISHZ
+ Si¥R; —RIS;TR 4 0,(1).

Let Hy = (M) 'E'Gy, = =~
§?2 G,,R3 transforms to

'(Y;)"'Gy. Then QpGy =

(SL,AUSKLIJ,AUSAU,L> H), = S szRz ) [6.8]
and G5,S* Gy, =I transforms to
H,S2 H,y, =1. [6.9]

Then 6.8 converges in probability to @*(I+0)~'H,, = OH,,RZ,
which implies plim H,, is diagonal (since the diagonal elements
of @ are distinct). Then the probability limit of 6.9 and A; > 0

implies Hy, > ©~2

Define Hj, = v/T(Hy, —
6.8 is

©-2) and R¥ = vT(R? —R?). Then

o [ RZS*“ZIRZ—I—R%S;ZLQI 2(I—R2)+(I—R§)S*221R2

4+ R? S*ZZ(I _ Rz)]

= @ :R¥ + Hy,R? — RZH3, +0,(1), [6.10]
and 6.9 is
H;,0! + O1H, = -0 1872071 +0,(1).  [6.11]

Define the left-hand side of 6.10 as @~ 'PO2. To find the lim-
iting distribution of R3 and H3,, we use the 11m1t1ng distribution
of P. To describe the limiting distributions of matrices, we use
the vec notation: vec(ay, ..., a,) = (aj,...,a),) and the rela-
tion vecABC = (C' ® A) vec B, where ® denotes the Kronecker
product. K is the permutation matrix such that Kvec A = vecA'.
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THEOREM 2. If the V, values are independently normally

distributed, the ltmltmg distribution of S*szl Ao T (S21 o,
S fS , and S = VT(SZ, — X2, is normal with

means 0,0, and 0 and covariances

Evec S (vec S22
> [1-(A® Az)]’l(I +K)
[CF ©37) + (3, © %
[I-(ay® A/z)]7 :
Evec S*le‘z(vec S*Z’—l’z)’ =3 ®I,
c8; ) =1+ K)Iel),
Evec 82 (vee S} %)
- [I- (A, @A) "I+ K)(Azz%;z(/ ®I),
Evec S (vec Si ") = [1— (A, @ A" A+ K)ART),
Evec S 2 (vee S P =0,

Evec S 2 (veeSg ) = KA ® 3%)).

vo) — (B

VV ]
[6.12]

21,21
Evec Sy, (vee

Proof: These asymptotic covariances are adaptations of theo-
rem 1 from ref. 9 with £V, V5, = E[V,, — 2P, (2)},) 71V, [V), =
3221 — 1. The details of the proof are left to the reader. |

Since L,, , = M,U,,_,, S*Zl 2 _ S*21 ZM’ S*Z 21 _ MZS*—Z’N

ov
and §;7 = M,S;72M, the vec " of the left-hand side of 6.10 mul-

tiplied on the left by ® and the right by 0 is
*2:1,2-1 [(I—R2)®R2] ecS*le

%2,21

vecP = —(R} ® R?)vec S},
+[R; ® I-Rj)]vecS;;” +[(I—Rj) @ R3]vec Si7.

Algebraic calculation shows that the covariance matrix of the
limiting distribution of vecP is

(I+K)(RS @ RY) + [(1- R}) @ R](I + K)[I — (4, ® A,)]
(0 0) - (4,8 A,)(0®0)(A;® AY)]
[1- (A A)] ' [I-R}) @ R3]
=(I+K)(R®R;) +[(I-R3) @ RI](I+K)
Ai-@,ea)] " (020)
+(020)1- (A, ®A))] —(®®®)}
JAI-R}HRR3]. [6.13]

Each matrix in 6.13 is diagonal except K and [I — (A, ® A,)]™!
which we define as ® = [I — (A, ® A,)]~". Then the asymptotic
covariance matrix of vecP is

(I+K)(R} @ R}) +[(I-R?) @ R (1 +K)
: [q)(@ 20)+(0R0)D — (08 @)]
JAI-R}HRR3]. [6.14]

From 6.10, we see that r2* is the ith diagonal element of
© :PO? and the i, ith element of vec(@‘%P(D‘%) = ((9‘% ®
9’%)Vec P. Hence the asymptotic covariance of r?* and rjz* is
6[101-’1 times the ii, jjth element of 6.14, that is,

2[(1 — P} @y 5] 4 pi @1 — P?)z] . [6.15]
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We can put this into matrix form by use of E = Y, ¢€,(¢; ®
€;), where ¢; is the k-vector with 1 in the ith position and Os
elsewhere. The matrix E has 1 in the ith row and i, ith column,
i=1,...,k, and Os elsewhere. Define r** = (r2%, ..., Y.

THEOREM 3. If the V, vectors are independently normally dis-
tributed and the dlagonal elements of O are different, the limiting
distribution of ¥** is normal with mean 0 and covariance matrix

2(1 - R)’E®PER; + 2RED'E'(I — R})*. [6.16]

Hansen and Johansen (10) have independently developed the
asymptotic distribution of the larger roots; their method is dif-
ferent and the result is expressed differently, including a more
general model. The development here has benefited by compar-
ison with their work.

In the limiting distribution of r*, the components of r*
are correlated in contrast to the asymptotic distribution of the
canonical correlations between a dependent vector Y, and an
independent vector X,. Although the distribution of the sta-
tionary part of Y, (namely, X,,) depends directly on the lagged
stationary part (X,, ;), the limiting distribution in Theorem 3
depends indirectly on the nonstationary part (through W;,).

From 6.10 and 6.11 we can derive the limiting distribution of
Hj;,. Let H;, = H, + H;, where H), = dlag(hn+1 it oo M)
Note that vec H3,R3 = (RZ ® I)vecH3, and R3H;, = (I® R3) -
vec Hj,. Then vec(H:,R; — R3H3,) = Nvec H, = NH, where

=(R;®) - (I®R])
= diag(0, pi+1 - Pi,l, 0).
[6.17]

2 2 2 2
pn+2?'°-7pn+1_pp70)"‘7pp_

The Moore-Penrose generalized inverse of N is N*, which has

0 in the i, ith position, i =1, ..., k, and 1/(p} — p) as a typical

diagonal element. Note EN = 0 and NN* = (I®I) — E'E. From

6.8, we obtain vec H: = N*(@~? ® ®!)vecP. Then
EvecH;(vecH;) = NT(I1+K)[(I-RJ)R; ® (I - R})*|N*

1

+N*[R; (1-R2)? ® (1 - R})|(1+K)

[P(ORO)+(0®0)D — (0 0)]
1

[R; (1-R2)} ® (I-R3)N* [6.18]

From 6.11, we obtain Hj = —10~ 3 diag(S;%) + 0,(1), where

diag(S;%) is the diagonal part of Si2 =M, S"22 7M,. The asymp-

totic covariance of vec S*ng is given in 6.12.

Since G,, = Y;EH,,, the asymptotic covariance of vec G, can
be found from the asymptotic covariance of H,,.

7. Higher-Order Processes
Now we consider an autoregressive process of order m

Y, =) BY +Z,.
j=1

[7.1]

If the roots Ay, ..., A, of

[A"T—A"'B; — ... —B,|=0 [7.2]
satisfy [A;| <1, j=1,..., pm, 7.1 defines a stationary process.

In a cointegrated process A; = 1 for one or more values of .

Anderson



Suppose {Y, } € I(1) and { AY, } € I(0). The model can be put
in a error-correction form
m—1
AY, =TI, + Y LAY, ;+Z,,
j=1

where 1 =3"" B;—Tand I, =—>"" B, i=1,...,m—1
Note that II is the matrix in 7.2 for A = 1. Suppose that the mul-
tiplicity of the root A = 1 is n, that there are n linearly indepen-
dent solutions of @'Il = 0, say w,, ..., ®,, and that the other
pm — n roots of 7.2 satisfy |A;| < 1. Define Q, = (w, ..., »,)
and let Q, be a p X k matrix, where k = p — n, such that

S =Y, Q). Then AY, and Q4Y, can be given initial distribu-
tions such that they are stationary.

[7.3]
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Anderson

Define X, and W, by 2.8, Y by QII(Q)! and Y, by
Q'T,(Q)~!. Then the model 7.3 is transformed to

AX, =YX, ; + YAX, ; +W,, [7.4]

where Y = (Y, ..., Y,,_;) and AX, | = (AX|_,,...,AX ...
The reduced rank regression estimator for the form 7.4 was
found by Anderson (3). By writing 7.4 in terms of AX,_; and
the residual of X,_; regressed on AX,_;, the estimator, eigenval-
ues, eigenvectors, and their asymptotic distributions follow from
the preceeding developments.

I am indebted to Naoto Kunitomo and Soren Johansen for assistance in
preparing this paper.

. Engle, R. E. & Granger, C. W. J. (1987) Econometrica 55, 251-276.

. Granger, C. W. J. (1981) J. Econ. 16, 121-130.

. Billingsley, P. (1968) Convergence of Probability Measures (Wiley, New York).
. Johansen, S. (1988) J. Econ. Dyn. Control 12, 231-254.

. Anderson, T. W. (2000) Ann. Statist., in press.

. Hansen, H. & Johansen, S. (2000) Econ. J., in press.

O O 0N

—_

PNAS | June 20,2000 | vol.97 | no.13 | 7073

ECONOMIC

STATISTICS

SCIENCES



