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The cointegrated model considered here is a nonstationary vec-
tor autoregressive process in which some linear functions are sta-
tionary and others are random walks. The first difference of the
process (the “error-correction form”) is stationary. Statistical in-
ference, such as reduced rank regression estimation of the coeffi-
cients of the process and tests of hypotheses of dimensionality of
the stationary part, involves the canonical correlations between
the difference vector and the relevant vector of the past of the
process. The asymptotic distributions of the canonical correlations
and the canonical vectors under the assumption that the process
is Gaussian are found.

1. Introduction

A relatively new multivariate time series model, which has be-
come very important in econometrics, is the cointegrated

autoregressive process, which includes stationary and nonsta-
tionary aspects. Some linear combinations of the variables are
stationary, and some linear combinations are nonstationary. A
crucial statistical problem is to distinguish these two sets of lin-
ear combinations.

A general mathematical model that is used for these data is an
autoregressive model. One set of statistical variables consisting
of the present elements of the process is predicted or “caused”
by another set consisting of earlier observations. The relations
between these two sets can be clarified by canonical correlation
analysis. See ref. 1, for example.

A method of handling nonstationary elements in a process,
such as trends, is to difference the process (2). The discovery
of cointegrating relations involves the differencing of the vector
series and using the canonical correlations between the differ-
ences and lags of the original series. The nonzero canonical cor-
relations correspond to the cointegrating relations and the zero
correlations, to the nonstationary relations.

When some canonical correlations are zero, the reduced rank
regression estimator introduced by Anderson (3), which is based
on the sample canonical correlations and variates, is a more ef-
ficient estimator of the regression or autoregression than the
least squares estimator. Here the estimation is of the regression
of the differenced series on the lagged variables, which implies
estimation of the regression of the original series on the lagged
series. The sample canonical correlations may be used to de-
termine the number of process canonical correlations different
from 0, which is the rank of the regression of the difference se-
ries on the lagged series. Inference is based on the large-sample
distribution of the sample canonical correlations and variates.

The model we study is similar to that of Johansen (4). How-
ever, we focus on the first-order case, indicating later how it
generalizes to higher order.

2. The Model
A general cointegrated model is an autoregressive process

Yt = BYt−1 + Zt ; [2.1]

where Zt is unobserved with %Yt−1Z′t = 0, %ZtZ
′
t = çZZ . If the

eigenvalues of B, that is, the roots λ1; : : : ; λp of �B − λI� = 0,
satisfy �λj� + 1, j = 1; : : : ; p, a stationary process can be defined

with Yt =
∑:

s=0 BsZt−s, t = : : : ;−1; 0; 1; : : : : If some or all of
the eigenvalues are 1, the process will be nonstationary. In this
paper, we treat processes �Yt� with Y0 = 0 such that some roots,
say n roots, are 1, λi = 1, i = 1; : : : ; n �+ p�, and the other
k = p − n roots satisfy �λi� + 1. The first difference of the
process is

1Yt = æYt−1 + Zt ; [2.2]

where æ = B − I has characteristic roots λi − 1, i = 1; : : : ; p,
since �B−λI� = �æ−�λ− 1�I�. Of these roots n are 0 and k are
not 0. The form 2.2 is known as the error-correction form (5).
As we shall see some linear combinations of Yt are stationary.
Granger (6) called such models “cointegrated.” If a process �Yt�
is stationary, we say it is integrated of order 0 (�Yt� � I�0�). If
�Yt� is not stationary, but 1Yt = Yt − Yt−1 is stationary, we say
it is integrated of order 1 (�Yt� � I�1�).

A sample consists of T observations: y1; : : : ; yT . An estima-
tor of B can be obtained from an estimator of æ by adding I to
the estimator of æ. Under the assumptions that n of the eigen-
values of B are 1 and k satisfy �λi� + 1 and that ¶′B = 0 has n
linearly independent solutions, æ has rank k and is to be esti-
mated by the reduced rank regression estimator introduced by
Anderson in ref. 3. It involves the sample canonical correlations
and vectors between 1Yt and Yt−1. One form of the estimator is

æ̂k = S1Y;Ȳ á̂ á̂ ′ ; [2.3]

where S1Y;Ȳ = T−1 ∑T
t=1 1YtY

′
t−1, etc., and the k columns of á̂

satisfy

SȲ ;1YS−1
1Y;1YS1Y;Ȳ ¢̂ = r2SȲ Ȳ ¢̂ [2.4]

and ¢̂ ′SȲ ;Ȳ ¢̂ = 1 for the k largest values of r2 satisfying

�SȲ ;1YS−1
1Y;1YS1Y;Ȳ − r2SȲ Ȳ � = 0 : [2.5]

The estimator æ̂k is the product of a p 3 k matrix and a k 3 p
matrix. This paper is devoted to finding the asymptotic distribu-
tion of the k larger roots of 2.5 and the corresponding vectors ¢̂ .

2.1. Transformation of Coordinates. To study the properties of the
estimators, tests, and canonical correlations and variables, we
transform Yt so that the first n coordinates are I�1� and the
other k coordinates are I�0�.

Lemma 1. Given that n roots of æ are 0 and k = p − n roots
are different from 0; the rank of æ is k if and only if there exists
a p 3 n matrix ë1 of rank n such that

ë′1æ = 0 : [2.6]

Proof: Since k roots of æ are different from 0 and 2.6 holds,
the rank of æ is k. Conversely, if the rank of æ is k, there exist
p 3 k matrices A and C of rank k such that æ = AC′. (C′ is
composed of any k linearly independent rows of æ.) Then any
p 3 n matrix ë1 such that ë′1A = 0 satisfies 2.6.
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In the rest of this paper, it is assumed that a matrix ë1 of
rank n satisfying 2.6 exists. Define ë2 = C and ë = �ë1;ë2�.
Further define è2 = C′A (of rank k). Then

ë′2æ = è2ë
′
2 : [2.7]

The columns of ë1 are left-sided characteristic vectors of æ and
B associated with the roots of 0 and 1, respectively.

Define

ë′Yt = Xt =
[

X1t
X2t

]
; ë′Zt = Wt =

[
W1t
W2t

]
; [2.8]

ê = ë′B�ë′�−1 =
[

I 0
0 ê2

]
: [2.9]

Then X1t =
∑t−1

s=0 W1;t−s is a random walk, and X2t =
∑t−1

s=0 ês
2 ·

W2;t−s converges to the stationary process
∑:

s=0 ês
2W2;t−s. We

say that X2t = ë′2Yt are the cointegrating relations (6). The
characteristic roots of ê2 are λi for �λi� + 1 because the trans-
formation 2.9 leaves the roots invariant.

Then, let è2 = ê2 − I and è = diag�0;è2�. The model in
terms of 1Xt and Xt−1 is

1Xt = èXt−1 +Wt : [2.10]

3. Process Parameters
From the definitions of X1t and X2t we find

%X1;t−1X′1;t−1 = �t − 1�ç11
WW ;

%X2;t−1X′1;t−1 =
t−1∑
s=0

ês
2ç

21
WW

→ �I−ê2�−1ç21
WW = −è−1

2 ç21
WW

as t → :, which we define as ç21
−−,

%X2;t−1X′2;t−1 =
t−1∑
s=0

ês
2ç

22
WW ê′s2 →

:∑
s=0

ês
2ç

22
WW ê′s2 ;

which we define as ç22
−−. Then

%1XtX
′
t−1 → èç−− =

[
0 0

è2ç
21
−− è2ç

22
−−

]
= ç1−

%1Xt1X′t →
[

0 0
0 è2ç

22
−−è ′2

]
+çWW = ç11 :

Define ç11
−−�T � = T−1 ∑T

t=1 %X1;t−1X1;t−1 = 1
2 �T − 1�ç11

WW ,
and

ç−−�T � =
[

ç11
−−�T � ç12

−−
ç21
−− ç22

−−

]
:

We use subscripts 1 and − for 1Xt and Xt−1. Matrices are par-
titioned into n and k rows and columns.

The canonical correlations and variables for 1Xt and Xt−1 are
defined by [−ρç11 ç1−

ç−1 −ρç−−�T �
] [

 
¢

]
= 0 :

Elimination of   yields

ç1−ç−1
11ç1−¢ = ρ2ç−−�T �¢ ; [3.1]

where ρ2 (which may depend on T ) satisfies

�ç−1ç−1
11ç1− − ρ2ç−−�T �� = 0 : [3.2]

Algebraic calculation yields

ç−1ç−1
11ç1− =

[
ç12
−−è ′2

ç22
−−è ′2

]
�è2ç

22
−−è ′2 +ç22·1

WW �−1

· �è2ç
21
−−;è2ç

22
−−� ; [3.3]

where ç22·1
WW = ç22

WW − ç21
WW �ç11

WW �−1ç12
WW . The determinantal

equation 3.2 has n roots of 0 and the corresponding vectors
¢ = �¢ ′1; ¢ ′2�′ satisfy ç21

−−¢1 + ç22
−−¢2 = 0. There are n linearly

independent solutions to this equation.
Multiplication of 3.1 on the left by �I;−ç12

−−�ç22
−−�−1� gives

0 = ρ2
[

1
2
Tç11

WW − ç12
−−�ç22

−−�−1ç21
−−

]
¢1 : [3.4]

For T � 3, the matrix in 3.3 is nonsingular; hence, ¢1 = 0 for
ρ2 , 0. The second submatrix equation in 3.1 is

ç22
−−è ′2�è2ç

22
−−è ′2 +ç22·1

WW �−1è2ç
22
−−¢2 = ρ2ç22

−−¢2 : [3.5]

For a nontrivial solution to 3.4 ρ2 must satisfy∣∣ç22
−−è ′2�è2ç

22
−−è ′2 +ç22·1

WW �−1è2ç
22
−− − ρ2ç22

−−
∣∣ = 0 : [3.6]

We normalize ¢2 by ¢ ′2ç
22
−−¢2 = 1. (Since ¢1 = 0, an equivalent

normalization is ¢ ′ç−−�T �¢ = 1.)

4. Sample Statistics
The observable sample covariance matrices S11, S1−, S−− are
linear functions of S−−, S−W and SWW . The matrix SWW is com-
posed of independently identically distributed vectors; SWW

p→
çWW . We assume the fourth-order moments are finite; hence,
T

1
2 �SWW − çWW � has a limiting normal distribution. Since 1Xt

depends only on X2;t−1 and Wt and X2t is stationary, S11
p→ ç11

and T
1
2 �S11 −ç11� has a limiting normal distribution.

The lower left-hand corner of S1− is

S21
1− =

1
T

T∑
t=1

�X2t − X2;t−1�X′1;t−1

= 1
T

[ T∑
t=2

X2t�X′1;t−1 − X′1t� + X2TX′1T − X21X′11

]

= 1
T

[
−

T∑
t=2

�è2X2;t−1 +W2t�W′1t + X2TX′1T − X21X′11

]
p→−ç21

WW ; [4.1]

because the first term on the right-hand side of 4.1 converges
stochastically to −%W2tW

′
1t = −ç21

ZZ and the second term
converges stochastically to 0. Note that the sum of squares
of the elements of T−1X2TX′1T is T−2 tr X2TX′1T �X2TX′1T �′ =
T−3/2X′1TX1T · T−1/2X′2TX2T ; each of the two factors converges
in probability to 0.

To obtain the limit of S1− in distribution, we need to use
the vector Brownian motion process. Let V1;V2; : : : be indepen-
dently identically distributed with %Vt = 0, %VtV

′
t = ç. Then

T−
1
2
∑�Tu�

t=1 Vt
w→ V�u�, 0 � u � 1, the Brownian motion pro-

cess. If ç = I, we term V�u� the standard Brownian motion.
For more detail see ref. 4, appendix B.7, or ref. 7.

Define J11 and J21 by

Sj1W− =
1
T

T∑
t=1

WjtX
′
1;t−1

d→
∫ 1

0
dWj�u�W′1�u� = Jj1; j = 1; 2: [4.2]
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Then

S1− =
[

0 0
è2S21

−− è2S22
−−

]
+
[

S11
W− S12

W−
S21
W− S22

W−

]
d→
[

J11 0
−ç21

WW è2ç
22
−−

]
:

Let Q = S−1S−1
11S1−. Then

Q
d→
[

J′11 −ç12
WW

0 ç22
−−è ′2

]
ç−1
11

[
J11 0
−ç21

WW è2ç
22
−−

]
:

From S21
1− = è2S21

−− + S21
W− , we have

S21
−− = è−1

2 �S21
1− − S21

W−�
d→−è−1

2 �ç21
WW + J21� :

Then[ 1
T

S11
−− S12

−−
S21
−− S22

−−

]
d→
[

I11 −�ç12
WW + J′21�è ′−1

2

−è−1
2 �ç21

WW + J21� ç22
−−

]
;

where I11 is defined as follows:

1
T

S11
−− =

1
T 2

T∑
t=1

X1;t−1X′1;t−1

d→
∫ 1

0
W1�u�W′1�u�du = I11 : [4.3]

5. Asymptotic Distribution of the Smaller Roots
We are interested in the asymptotic distribution of the eigenval-
ues and eigenvectors satisfying Qg = r2S−−g. First consider the
roots of �Q− r2S−−� = 0. Multiplication of this determinant on
the left and right by the determinant of diag�T− 1

2 I; I� yields∣∣∣∣[ 1
T

Q11
1√
T

Q21
1√
T

Q21 Q22

]
− r2

[ 1
T

S11
−−

1√
T

S12
−−

1√
T

S21
−− S22

−−

]∣∣∣∣ = 0 : [5.1]

Since T−1Q11
p→ 0, T−

1
2 Q21

p→ 0, Q22
p→ �ç−1ç−1

11ç1−�22,

T−1S11
−−

d→ I11, T−
1
2 S12
−−

p→ 0, and S22
−−

p→ ç22
−−, the n smaller

roots of 5.1 converge in probability to 0 and the k larger roots
converge to the roots of 3.5.

To study the behavior of the smaller roots let Tr2 = d to
obtain the equation �Q− dT−1S−−� = 0. The n smaller roots of
this equation converge in distribution to the roots of the limit
in distribution of

0 =
∣∣∣∣[Q11 Q12

Q21 Q22

]
− d

[
I11 0
0 0

]∣∣∣∣
= �Q22� · �Q11·2 − dI11� ; [5.2]

where Q11·2 = Q11 −Q12Q−1
22 Q21. Some algebra shows that 5.2 is

asymptotically

�J′11�ç11
WW �−1J11 − dI11� = 0 : [5.3]

We can write W1�u� = �ç11
WW �

1
2 B1�u�, where B1�u� is standard

Brownian motion with %B1�u�B′1�u� = uI. Then the zeros of 5.3
are the zeros of∣∣∣∣∫ 1

0
B1�u�dB′1�u�

∫ 1

0
dB1�v�B′1�v� − d

∫ 1

0
B1�u�B′1�u�du

∣∣∣∣ :
The distribution does not depend on any parameters nor does
it require normality of Zt .

The likelihood ratio criterion for testing rank è = k found by
Anderson (3) is

−2 logλ = −T
p−k∑
i=1

log�1− r2
i �

= T
p−k∑
i=1

r2
i + op�1� =

p−k∑
i=1

di + op�1�

= tr
∫ 1

0
dB1�v�B′1�v�

[∫ 1

0
B1�u�B′1�u�du

]−1

·
∫ 1

0
B1�v�dB′1�v� + op�1� y [5.4]

see Johansen (4, 8). The roots are ordered r2
1 + · · · + r2

p:
Let the p solutions to Qg = r2S−−g be G = �g1; : : : ; gp� and

R̂2 = diag�r2
1 ; : : : ; r

2
p� with the normalization of the columns

of G to be determined. Then the partitioned form of QG =
S−−GR̂2 is[

Q11 Q12
Q21 Q22

] [
G11 G12
G21 G22

]
=
[

S11
−− S12

−−
S21
−− S22

−−

] [
G11 G12

G21 G22

] [
R̂2

1 0
0 R̂2

2

]
: [5.5]

Since T R̂2
1 = D1 has a limiting distribution, the weak limits of

the first n columns of 5.5 give[
Q11G11 +Q12G21
Q21G11 +Q22G21

]
=
[

I11G11D1
0

]
+ op�1� : [5.6]

The last k rows of 5.6 give G21 = −Q−1
22 Q21G11+op�1�. Insertion

of this in the first n rows of 5.6 yields

Q11·2G11 = I11G11D1 + op�1� : [5.7]

The columns of G11 are the characteristic vectors of Q11·2 in the
metric of I11; the diagonal elements of D1 are the ordered roots
of 5.2.

Now multiply 5.7 on the left by �ç11
WW �

1
2 and define

�ç11
WW �−

1
2 G11 = L to obtain∫ 1

0
B1�u�dB′1�u�

∫ 1

0
dB1�v�B′1�v�L

=
∫ 1

0
B1�u�B′1�u�duLD1 : [5.8]

At this point we normalize L by L′I11L = I. The distribution
of the integrals is invariant with respect to multiplying on the
left by an arbitrary orthogonal matrix and on the right by the
transpose of that matrix. This fact implies that the distribution
of L is invariant with respect to multiplication on the left by an
arbitrary orthogonal matrix. It has the Haar uniform measure in
the space of orthogonal matrices.

6. Asymptotic Distribution of the Larger Roots
Let r2∗

i =
√
T �r2

i −ρ2
i �, i = n+1; : : : ; p. We shall find the limit-

ing normal distribution of r2∗
n+1; : : : ; r

2∗
p from the limiting normal

distribution of
{√
T �Q22 − �ç−1ç−1

11ç1−�22�;
√
T �S22

−− −ç22
−−�

}
.

To carry out this program, we make a series of transformations
to bring �ç−1ç−1

11ç1−�22 and ç22
−− to diagonal forms.
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The last k columns of 5.5 can be written

1
T

Q11

√
T G12 +

1√
T

Q12G22

=
(

1
T

S11
−−
√
T G12 +

1√
T

S12
−−G22

)
R̂2

2 ; [6.1]

1√
T

Q21

√
T G12 +Q22G22

=
(

1√
T

S21
−−
√
T G12 + S22

−−G22

)
R̂2

2 : [6.2]

We normalize G12 and G22 by

I = �G′12;G′22�
[

S11
−− S12

−−
S21
−− S22

−−

] [
G12

G22

]

= �
√
T G′12;G′22�

[ 1
T

S11
−−

1√
T

S12
−−

1√
T

S21
−− S22

−−

][√
T G12

G22

]
: [6.3]

Since the second matrix in 6.3 is positive definite with probabil-
ity 1 and converges in distribution to diag�I11;ç

22
−−�,
√
T G12 =

Op�1� and G22 = Op�1�. The probability limit of 6.1 shows that√
T G12

p→ 0 and

Q22G22 = S22
−−G22R̂2

2 + op�1� : [6.4]

Then the probability limit of 6.3 and S22
−−

p→ ç22
−− shows

G′22ç
22
−−G22 = I+ op�1�. This and 6.4 imply that G22

p→ á22.
When plimT→:

√
T G12 = 0 is put into 6.2, we obtain√

T Q22G22 =
√
T S22

−−G22R̂2
2 + op�1�. This justifies expanding

6.4 to terms Op�1/
√
T �.

Now we want to expand
√
T �Q22 − �ç−1ç−1

11ç1−�22�. Define
S∗1− =

√
T �S1− − ç1−�, S∗22

−− =
√
T �S22

−− − ç22
−−�, S∗2;2·1−W =

T−
1
2
∑T

t=1 X2;t−1W′2·1;t , and S∗2·1;2·1WW = T−
1
2
∑T

t=1�W2·1;tW
′
2·1;t −

ç22·1
WW �, where W2·1;t = W2t −ç21

WW �ç11
WW �−1W1t . Then

è2�B−1S∗1−�22è
′
2

= è2ç
22
−−è ′2ä

−1�è2S∗22
−−è ′2 + S∗2·1;2W− è ′2� ;

è2�B−1S∗11B′−1�22è
′
2

= è2ç
22
−−è ′2ä

−1

· �è2S∗22
−−è ′2 + è2S∗2;2·1−W + S∗2·1;2W− è ′2 + S∗2·1;2·1WW �

·ä−1è2ç
22
−−è ′2 ;

where ä = (è2ç
22
−−è ′2 +ç22·1

WW

)
and B−1 = ç−1ç−1

11. Then

√
Tè2�Q22 − �ç−1ç−1

11ç1−�22�è ′2 + op�1�
= è2

(
S∗−1B′−1 − B−1S∗11B′−1 + B−1S∗1−

)
22è

′
2

= −è2ç
22
−−è ′2ä

−1S∗2·1;2·1WW ä−1è2ç
22
−−è ′2

+ è2ç
22
−−è ′2ä

−1S∗2·1;2W− è ′2ä
−1ç22·1

WW

+ç22·1
WW ä−1è2S∗2;2·1−W ä−1è2ç

22
−−è ′2

+ è2ç
22
−−è ′2ä

−1è2S∗22
−−è ′2

+ è2S∗22
−−è ′2ä

−1è2ç
22
−−è ′2

− è2ç
22
−−è ′2ä

−1è2S∗22
−−è ′2ä

−1è2ç
22
−−è ′2 : [6.5]

Let å be a k 3 k matrix such that å′�è2ç
22
−−è ′2�å = ã,

å′ç22·1
WW å = I, where ã = diag�θn+1; : : : ; θp� = R2

2�I − R2
2�−1,

R2
2 = diag�ρ2

n+1; : : : ; ρ
2
p� and ρ2

i is a root of 3.6. Let U2t = å′X2t ,
V2t = å′W2t , V1t = W1t . Then U2t satisfies

U2t = â2U2;t−1 + V2t ; 1U2t =M2U2;t−1 + V2t ; [6.6]

where â2 = å′ê2�å′�−1, and M2 = â2 − I = å′è2�å′�−1. Note
that å′äå = ã + I. From 3.3 we obtain å′è2

(
ç−1ç−1

11ç1−
)

22 ·
è ′2å = ã�ã+ I�−1ã. Multiplication of 6.5 on the left by å′ and
the right by å gives

√
T
[
M2�SŪ;1US−1

1U;1US1U;Ū�22M′2 −ã�ã+ I�−1ã
]

= −ã�I+ã�−1S∗2·1;2·1V V �ã+ I�−1ã

+ã�I+ã�−1S∗2·1;2
V Ū

M′2�ã+ I�−1

+ �I+ã�−1M2S∗2;2·1
ŪV
�ã+ I�−1ã

+ã�I+ã�−1M2S∗22
ŪŪ

M′2 +M2S∗22
ŪŪ

M′2ã�I+ã�−1

−ã�I+ã�−1M2S∗22
ŪŪ

M′2�I+ã�−1ã+ op�1� : [6.7]

Let M2U2;t−1 = å′è2X2;t−1 = L2;t−1. Then 6.7 transforms to

√
T
[
�SL̄;1US−1

1U;1US1U;L̄�22 −ã2�I+ã�−1
]

= − R2
2 S∗2·1;2·1V V R2

2 + R2
2 S∗2·1;2

V L̄
�I− R2

2�
+ �I− R2

2�S∗2;2·1L̄V
R2

2 + R2
2 S∗22

L̄L̄

+ S∗22
L̄L̄

R2
2 − R2

2 S∗22
L̄L̄

R2
2 + op�1� :

Let H22 = �M′2�−1å−1G22 = å−1�è ′2�−1G22. Then Q22G22 =
S22
−−G22R̂2

2 transforms to(
SL̄;1US−1

1U;1US1U;L̄
)

22
H22 = S22

L̄L̄
H22R̂2

2 ; [6.8]

and G′22S22
−−G22 = I transforms to

H′22S22
L̄L̄

H22 = I : [6.9]

Then 6.8 converges in probability to ã2�I+ã�−1H22 = ãH22R2
2 ,

which implies plim H22 is diagonal (since the diagonal elements
of ã are distinct). Then the probability limit of 6.9 and hii , 0
implies H22

p→ ã−
1
2 .

Define H∗22 =
√
T �H22−ã−

1
2 � and R̂2∗

2 =
√
T �R̂2

2 −R2
2�. Then

6.8 is

ã−1
[
−R2

2 S∗2·1;2·1V V R2
2 + R2

2 S∗2·1;2
V L̄
�I− R2

2� + �I− R2
2�S∗2;2·1L̄V

R2
2

+ R2
2 S∗22

L̄L̄
�I− R2

2�
]
ã−

1
2

= ã−
1
2 R̂2∗

2 +H∗22R2
2 − R2

2 H∗22 + op�1� ; [6.10]

and 6.9 is

H∗′22ã
1
2 +ã

1
2 H∗′22 = −ã−

1
2 S∗22

L̄L̄
ã−

1
2 + op�1� : [6.11]

Define the left-hand side of 6.10 as ã−1Pã−
1
2 . To find the lim-

iting distribution of R̂2
2 and H∗22, we use the limiting distribution

of P. To describe the limiting distributions of matrices, we use
the vec notation: vec�a1; : : : ; am� = �a′1; : : : ; a′m�′ and the rela-
tion vec ABC = �C′ ⊗ A� vec B, where ⊗ denotes the Kronecker
product. K is the permutation matrix such that K vec A = vec A′.
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Theorem 2. If the Vt values are independently normally
distributed; the limiting distribution of S∗2·1;2·1V V = √T �S2·1;2·1

V V − I�,
S∗2·1;2
V Ū
= √T S2·1;2

V Ū
, and S∗22

ŪŪ
= √T �S22

ŪŪ
− ç22

ŪŪ
� is normal with

means 0, 0, and 0 and covariances

% vec S∗22
ŪŪ

(
vec S∗22

ŪŪ

)′
→ �I− �â2 ⊗â2��−1�I+K�
· [�ç22

ŪŪ
⊗ç22

V V � + �ç22
V V ⊗ç22

ŪŪ
� − �ç22

V V ⊗ç22
V V �

]
· [I− �â′2 ⊗â′2�

]−1
; [6.12]

% vec S∗2·1;2
V Ū

(
vec S∗2·1;2

V Ū

)′ = ç22
ŪŪ
⊗ I ;

% vec S∗2·1;2·1V V

(
vec S∗2·1;2·1V V

)′ = �I+K��I⊗ I� ;
% vec S∗22

ŪŪ

(
vec S∗2·1;2

V Ū

)′
→ �I− �â2 ⊗â2��−1�I+K��â2ç

22
ŪŪ
⊗ I� ;

% vec S∗22
ŪŪ

(
vec S∗2·1;2·1V V

)′ → �I− �â2 ⊗â2��−1�I+K��I⊗ I� ;
% vec S∗2·1;2

V Ū

(
vec S∗2·1;2·1V V

)′ = 0 ;

% vec S∗2·1;2
V Ū

(
vec S∗2;2·1

ŪV

)′ = K�I⊗ç22
ŪŪ
� :

Proof: These asymptotic covariances are adaptations of theo-
rem 1 from ref. 9 with %V2·1;tV

′
2t = %

[
V2t−ç21

V V �ç11
V V �−1V1t

]
V′2t =

ç22·1
V V = I. The details of the proof are left to the reader.
Since L2;t−1 =M2U2;t−1, S∗2·1;2

V L̄
= S∗2·1;2

V Ū
M′2, S∗2;2·1

L̄V
=M2S∗2;2·1

ŪV
,

and S∗22
L̄L̄
=M2S∗22

ŪŪ
M′2, the vec of the left-hand side of 6.10 mul-

tiplied on the left by ã and the right by ã
1
2 is

vec P = −�R2
2 ⊗ R2

2� vec S∗2·1;2·1V V + ��I− R2
2� ⊗ R2

2 � vec S∗2·1;2
V L̄

+ �R2
2 ⊗ �I− R2

2�� vec S∗2;2·1
L̄V
+ ��I− R2

2� ⊗ R2
2 � vec S∗22

L̄L̄
:

Algebraic calculation shows that the covariance matrix of the
limiting distribution of vec P is

�I+K��R4
2 ⊗ R4

2� + ��I− R2
2� ⊗ R2

2 ��I+K�[I− �â2 ⊗â2�
]−1

· [�ã⊗ã� − �â2 ⊗â2��ã⊗ã��â′2 ⊗â′2�
]

· [I− �â′2 ⊗â′2�
]−1��I− R2

2� ⊗ R2
2 �

= �I+K��R4
2 ⊗ R4

2� + ��I− R2
2� ⊗ R2

2 ��I+K�
·
{[

I− �â2 ⊗â2�
]−1�ã⊗ã�

+ �ã⊗ã�[I− �â′2 ⊗â′2�
]−1 − �ã⊗ã�

}
· ��I− R2

2� ⊗ R2
2 � : [6.13]

Each matrix in 6.13 is diagonal except K and �I− �â2 ⊗â2��−1,
which we define as é = �I− �â2 ⊗â2��−1. Then the asymptotic
covariance matrix of vec P is

�I+K��R4
2 ⊗ R4

2� + ��I− R2
2� ⊗ R2

2 ��I+K�
·
[
é�ã⊗ã� + �ã⊗ã�é′ − �ã⊗ã�

]
· ��I− R2

2� ⊗ R2
2 � : [6.14]

From 6.10, we see that r2∗
i is the ith diagonal element of

ã−
1
2 Pã−

1
2 and the i; ith element of vec�ã− 1

2 Pã−
1
2 � = �ã− 1

2 ⊗
ã−

1
2 � vec P. Hence the asymptotic covariance of r2∗

i and r2∗
j is

θ−1
i θ
−1
j times the ii; jjth element of 6.14, that is,

2
[
�1− ρ2

i �28ii;jjρ4
j + ρ4

i 8jj;ii�1− ρ2
j �2
]
: [6.15]

We can put this into matrix form by use of Ẽ = ∑k
i=1 ¤i�¤′i ⊗

¤′i�, where ¤i is the k-vector with 1 in the ith position and 0s
elsewhere. The matrix Ẽ has 1 in the ith row and i; ith column,
i = 1; : : : ; k, and 0s elsewhere. Define r2∗ = �r2∗

n+1; : : : ; r
2∗
p �′.

Theorem 3. If the Vt vectors are independently normally dis-
tributed and the diagonal elements of ã are different, the limiting
distribution of r2∗ is normal with mean 0 and covariance matrix

2�I− R2
2�2ẼéẼ′R4

2 + 2R4
2Ẽé′Ẽ′�I− R2

2�2: [6.16]

Hansen and Johansen (10) have independently developed the
asymptotic distribution of the larger roots; their method is dif-
ferent and the result is expressed differently, including a more
general model. The development here has benefited by compar-
ison with their work.

In the limiting distribution of r2∗, the components of r2∗

are correlated in contrast to the asymptotic distribution of the
canonical correlations between a dependent vector Yt and an
independent vector Xt . Although the distribution of the sta-
tionary part of Yt (namely, X2t) depends directly on the lagged
stationary part (X2;t−1), the limiting distribution in Theorem 3
depends indirectly on the nonstationary part (through W1t).

From 6.10 and 6.11 we can derive the limiting distribution of
H∗22. Let H∗22 = H∗d + H∗n, where H∗d = diag�h∗n+1;n+1; : : : ; h

∗
pp�.

Note that vec H∗22R2
2 = �R2

2 ⊗ I� vec H∗22 and R2
2 H∗22 = �I ⊗ R2

2� ·
vec H∗22. Then vec�H∗22R2

2 − R2
2 H∗22� = N vec H∗22 = NH∗n, where

N = �R2
2 ⊗ I� − �I⊗ R2

2�
= diag�0; ρ2

n+1 − ρ2
n+2; : : : ; ρ

2
n+1 − ρ2

p; 0; : : : ; ρ2
p − ρ2

p−1; 0�:
[6.17]

The Moore–Penrose generalized inverse of N is N+, which has
0 in the i; ith position, i = 1; : : : ; k, and 1/�ρ2

j −ρ2
i � as a typical

diagonal element. Note ẼN = 0 and NN+ = �I⊗ I�− Ẽ′Ẽ. From
6.8, we obtain vec H∗n = N+�ã− 1

2 ⊗ã−1� vec P. Then

% vec H∗n�vec H∗n�′ = N+�I+K�[�I− R2
2�R2

2 ⊗ �I− R2
2�2
]
N+

+ N+
[
R

1
2

2 �I− R2
2�

3
2 ⊗ �I− R2

2�
]�I+K�[

é�ã⊗ã� + �ã⊗ã�é′ − �ã⊗ã�][
R

1
2

2 �I− R2
2�

3
2 ⊗ �I− R2

2�
]
N+ : [6.18]

From 6.11, we obtain H∗d = − 1
2 ã−

3
2 diag�S∗22

L̄L̄
� + op�1�, where

diag�S∗22
L̄L̄
� is the diagonal part of S∗22

L̄L̄
=M′2S∗22

ŪŪ
M2. The asymp-

totic covariance of vec S∗22
ŪŪ

is given in 6.12.
Since G22 = è ′2åH22, the asymptotic covariance of vec G22 can

be found from the asymptotic covariance of H22.

7. Higher-Order Processes
Now we consider an autoregressive process of order m

Yt =
m∑
j=1

BjYt−j + Zt : [7.1]

If the roots λ1; : : : ; λpm of

�λmI− λm−1B1 − · · · − Bm� = 0 [7.2]

satisfy �λj� + 1, j = 1; : : : ; pm, 7.1 defines a stationary process.
In a cointegrated process λj = 1 for one or more values of j.
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Suppose �Yt � � I�1� and �1Yt � � I�0�. The model can be put
in a error-correction form

1Yt = æYt−1 +
m−1∑
j=1

æj1Yt−j + Zt ; [7.3]

where æ =∑m
j=1 Bj− I and æi = −

∑m
j=i+1 Bj , i = 1; : : : ;m−1.

Note that æ is the matrix in 7.2 for λ = 1. Suppose that the mul-
tiplicity of the root λ = 1 is n, that there are n linearly indepen-
dent solutions of ¶′æ = 0, say ¶1; : : : ;¶n, and that the other
pm − n roots of 7.2 satisfy �λi� + 1. Define ë1 = �¶1; : : : ;¶n�
and let ë2 be a p 3 k matrix, where k = p − n, such that
ë′2æ = è2ë

′
2. Then 1Yt and ë′2Yt can be given initial distribu-

tions such that they are stationary.

Define Xt and Wt by 2.8, è by ë′æ�ë′�−1 and èi by
ë′æi�ë′�−1. Then the model 7.3 is transformed to

1Xt = èXt−1 + è̄1X̄t−1 +Wt ; [7.4]

where è̄ = �è1; : : : ;èm−1� and 1X̄t−1 = �1X′t−1; : : : ; 1X′t−m+1�′.
The reduced rank regression estimator for the form 7.4 was
found by Anderson (3). By writing 7.4 in terms of 1X̄t−1 and
the residual of Xt−1 regressed on 1X̄t−1, the estimator, eigenval-
ues, eigenvectors, and their asymptotic distributions follow from
the preceeding developments.

I am indebted to Naoto Kunitomo and Soren Johansen for assistance in
preparing this paper.
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