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THE ASYMPTOTIC EQUIVALENCE OF THE SAMPLE TRISPECTRUM

AND THE NODAL LENGTH FOR RANDOM SPHERICAL HARMONICS

DOMENICO MARINUCCI, MAURIZIA ROSSI AND IGOR WIGMAN

Abstract. We study the asymptotic behaviour of the nodal length of random 2d-spherical
harmonics fℓ of high degree ℓ → ∞, i.e. the length of their zero set f−1

ℓ (0). It is found that the

nodal lengths are asymptotically equivalent, in the L2-sense, to the ”sample trispectrum”, i.e.,
the integral of H4(fℓ(x)), the fourth-order Hermite polynomial of the values of fℓ. A particular
by-product of this is a Quantitative Central Limit Theorem (in Wasserstein distance) for the
nodal length, in the high energy limit.

• AMS Classification: 60G60, 62M15, 53C65, 42C10, 33C55.
• Keywords and Phrases: Nodal Length, Spherical Harmonics, Sample Trispectrum,
Berry’s Cancellation, Quantitative Central Limit Theorem

1. Introduction and Main Results

1.1. Background. Let S
2 be the unit 2d sphere and ∆S2 be the Laplace-Beltrami operator

on S
2. It is well-known that the spectrum of ∆S2 consists of the numbers λℓ = ℓ(ℓ + 1) with

ℓ ∈ Z≥0, and the eigenspace corresponding to λℓ is the (2ℓ+1)-dimensional linear space of degree
ℓ spherical harmonics. For ℓ ≥ 0 let {Yℓm(.)}m=−ℓ,...,ℓ be an arbitrary L2-orthonormal basis of
real valued spherical harmonics

Yℓm : S2 → R

satisfying

∆S2Yℓm + λℓYℓm = 0 , Yℓm : S2 → R.

On S
2 we consider a family of Gaussian random fields (defined on a suitable probability space

(Ω,F ,P))

(1.1) fℓ(x) =

√
4π

2ℓ+ 1

ℓ∑

m=−ℓ

aℓmYℓm(x),

where the coefficients {aℓm}m=−ℓ,...,ℓ are i.i.d. standard Gaussian random variables (zero mean

and unit variance); it is immediate to see that the law of the process {fℓ(.)} is invariant with
respect to the choice of a L2-orthonormal basis {Yℓm}. The random fields {fℓ(x), x ∈ S

2} are
centred, Gaussian and isotropic, satisfying

∆S2fℓ + λℓfℓ = 0;

these are the random degree-ℓ spherical harmonics. From the addition formula for spherical
harmonics [13, (3.42)], the covariance function of fℓ is given by

E[fℓ(x) · fℓ(y)] = Pℓ(cos d(x, y)),

where Pℓ are the Legendre polynomials, and d(x, y) is the spherical geodesic distance between
x and y, d(x, y) = arccos(〈x, y〉). The random spherical harmonics naturally arise from the
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2 DOMENICO MARINUCCI, MAURIZIA ROSSI AND IGOR WIGMAN

spectral analysis of isotropic spherical random fields (e.g. [4, 7, 6]), and Quantum Chaos (e.g.
[13, 27]); their geometry is of significant interest.

In this paper, we shall focus on the nodal length of the random fields {fℓ(.)} , i.e. the length
of the nodal line:

Lℓ := len
{
f−1
ℓ (0)

}
.

Here {Lℓ}ℓ≥0 is a sequence of random variables; Yau’s conjecture [28], asserts that the nodal
volume of Laplace eigenfunctions on smooth n-manifolds is commensurable with the square root
of the eigenvalue. An application of Yau’s conjecture, established [9] for all analytic manifolds,
on the sample functions fℓ implies that one has, for some absolute constants C ≥ c > 0

(1.2) c
√
λℓ ≤ Lℓ ≤ C

√
λℓ for all ℓ ≥ 1.

The lower bound in (1.2) was recently established [12] for all smooth manifolds.
While the expected value of Lℓ was computed [18] by a standard application of the Kac-Rice

formula to be

E [Lℓ] =
{
λℓ
2

}1/2

× 2π;

evaluating the variance proved to be more subtle, and was shown [26] to be asymptotic to

(1.3) Var {Lℓ} =
log ℓ

32
+O(1).

It follows that the ”generic” (Gaussian) spherical eigenfunctions obey a stronger law than (1.2),

with normalised nodal length Lℓ

ℓ converging (in mean square and hence in probability) to a
positive constant.

1.2. Main Results. In this work, we take our random eigenfunctions to be defined on a suitable
probability space {Ω,F,P} and we are interested in the analysis of the fluctuations of the nodal
length around its expected value; in particular a (quantitative) central limit theorem will be
established for the (centred and standardized) fluctuations of Lℓ. This convergence is a rather
straightforward corollary of a deeper result, namely the asymptotic equivalence (in the L2(Ω)
sense) of the nodal length and the sample trispectrum of {fℓ} , i.e., the integral of H4(fℓ(x)),
where H4 is the fourth-order Hermite polynomial; we recall that

H4(u) = u4 − 6u2 + 3.

More precisely, let us define the sequence of centred random variables

Mℓ := −1

4

√
ℓ(ℓ+ 1)

2

1

4!

∫

S2

H4(fℓ(x))dx = −1

4

√
ℓ(ℓ+ 1)

2

1

4!
hℓ;4 ,(1.4)

hℓ;4 :=

∫

S2

H4(fℓ(x))dx , ℓ = 1, 2, ....;(1.5)

the sequence {hℓ;4} (which we call the sample trispectrum of fℓ) was studied earlier, and indeed
building upon [15, Lemma 3.2], it is immediate to establish the following:

Lemma 1.1. As ℓ→ ∞, we have

(1.6) Var {Mℓ} =
1

32
log ℓ+O(1).
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By means of Kac-Rice formula [1, 2, 26], the spherical nodal length Lℓ can be formally written
as

(1.7) Lℓ =
∫

S2

‖∇fℓ(x)‖ δ(fℓ(x))dx,

where δ(.) denotes the Dirac delta function and ‖·‖ the standard Euclidean norm in R
2; this

representation can be shown to hold almost surely in Ω, and it is shown in the Appendix that

it also holds in L2(Ω). Denote by L̃ℓ the standardized nodal length, i.e.,

(1.8) L̃ℓ :=
Lℓ − ELℓ√
Var(Lℓ)

.

Note that the variance of Mℓ is asymptotic to the one of Lℓ, i.e.
Var {Lℓ}
Var {Mℓ}

= 1 +O

(
1

log ℓ

)
, as ℓ→ ∞ ;

we shall also standardize the zero-mean sequence {Mℓ} , writing

(1.9) M̃ℓ :=
Mℓ√

Var(Mℓ)
.

The main contribution of the present manuscript is establishing the following asymptotic repre-

sentation for L̃ℓ:

Theorem 1.2. As ℓ→ ∞, we have that

E

[{
L̃ℓ − M̃ℓ

}2
]
= O

(
1

log ℓ

)
,

and thus in particular

L̃ℓ = M̃ℓ +Op

(
1√
log ℓ

)
.

In other words, after centering and normalization the spherical nodal lengths (1.8) and the
sample trispectrum (1.9) are asymptotically equivalent in L2(Ω) (and thus in probability and in
law). Now recall that the Wasserstein distance between two random variables X and Y is given
by (see e.g. [19, Appendix C])

dW (X,Y ) = sup
h:‖h‖Lip≤1

|Eh(X)− Eh(Y )| ;

convergence in mean-square implies convergence in Wasserstein distance, and both imply con-
vergence in distribution. Let N (0, 1) denote a standard Gaussian random variable; in view of

the aforementioned CLT [15] on
{
M̃ℓ

}
, it follows directly from Theorem 1.2 that:

Corollary 1.3. As ℓ→ ∞, we have that

dW (L̃ℓ,N (0, 1)) = O

(
1√
log ℓ

)
.

Hence we obtain here a new Quantitative Central Limit Theorem (in Wasserstein distance)
for the spherical nodal length.
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1.3. Discussion and Overview of Some Related Literature. Theorem 1.2 is closely related
to the recent characterization of the asymptotic distribution for the nodal length of arithmetic
random waves, i.e. Gaussian eigenfunctions on the two-dimensional torus T2, which was estab-
lished in [17]. The approach in the latter paper can be summarized as follows: the nodal length
can be decomposed into so-called Wiener-Chaos components, i.e., it can be projected on the
orthogonal subspaces of L2(Ω) spanned by linear combinations of multiple Hermite polynomials
of degree q; more precisely, we have the orthogonal decomposition

L2(Ω) =

∞⊕

q=0

Hq,

where Hq denotes the q-th Wiener chaos, i.e., the linear span of Hermite polynomials of order
q, and hence

(1.10) Ln =

∞∑

q=0

Proj[Ln|q]

where Ln denotes the nodal length of Gaussian arithmetic random waves of degree n = a2 + b2,
where n, a, b ∈ N, and Proj[.|q] projection on Hq, see [11, 17] for details. For arithmetic random
waves, all the terms {Proj[Ln|q], q odd} in the expansion (1.10) vanish for symmetry reasons,
and so does the term corresponding to q = 2. The latter phenomenon is one interpretation of
the so-called Berry’s cancellation, i.e. the fact that the nodal length variance is of order of
magnitude smaller than the natural scaling. Indeed it has been shown [17, 20] that the term
corresponding to q = 2 dominates the fluctuations of the boundary length of excursion sets for
arithmetic random waves for any threshold value z 6= 0; for z = 0 it vanishes, and the dominating
term is the projection onto the 4th order chaos.

The asymptotic domination of the second-order chaos for z 6= 0, and its disappearance for
z = 0, have been shown recently to occur for other geometric functionals of excursion sets
of random eigenfunctions in a variety of circumstances, such as the excursion area and the
Defect ([14, 15, 16] covering all dimensions d ≥ 2), and the Euler-Poincaré characteristic [6] (see
also [8]). The fact that a single chaos dominates clearly allows for a much neater derivation
of asymptotic distribution results; in particular, quantitative central limit theorems have been
given [14, 15, 16, 6] for various geometric functionals of random spherical harmonics, in the
high-energy limit where λℓ → ∞; on the torus the asymptotic behaviour is more complicated,
depending on the different subsequences as n grows [11, 17, 22] for the nodal length of arithmetic
random waves, and [23] for nodal intersections of arithmetic random waves against a fixed curve.

The results we shall give here confirm the asymptotic dominance of the fourth-order com-
ponent; in this sense, they are analogous to those in [17] for the case of the torus. On the
other hand, here we are able to obtain a neater expression for the leading term, which is of
independent interest, and makes the derivation of a Quantitative Central Limit Theorem much
more elegant. In fact, rather than studying the asymptotic behaviour of the fourth-order chaos
(which is a sum of six terms involving the eigenfunctions and their gradients), we establish the
asymptotically full correlation of the nodal length with a term which can be evaluated in terms
of the eigenfunctions themselves, and not their gradient components. The resulting approxi-
mation (valid in the mean square sense) is therefore surprisingly simple, and the quantitative
central limit theorem follows as an immediate consequence. We believe that this technique can
be applicable to other examples of geometric functionals for random spherical harmonics.

As mentioned earlier, the approach we use in this paper does not require to study directly the
asymptotic behaviour of the full components in the fourth-order chaos, as it was done earlier in
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[17] for eigenfunctions on the torus. On the other hand it is obvious that the random variables
Mℓ ∈ H4, and a quick inspection to the proof of our main result reveals that we have also the
following asymptotic equivalence: As ℓ→ ∞, we have that

Corr {Proj[Lℓ|4],Mℓ} = 1 +O

(
1

log ℓ

)
,

and hence

E

[{
Proj[L̃ℓ|4]− M̃ℓ

}2
]
= O

(
1

log ℓ

)
=⇒ Proj[L̃ℓ|4] = M̃ℓ +Op

(
1√
log ℓ

)
.

Likewise, as ℓ→ ∞, we also have that

Var {Proj[Lℓ|4]} =
log ℓ

32
+O(1) ⇒ Var {Proj[Lℓ|4]}

Var {Lℓ}
= 1 +O

(
1

log ℓ

)
,

and hence

E

[{
L̃ℓ − Proj[L̃ℓ|4]

}2
]
= O

(
1

log ℓ

)
=⇒ L̃ℓ = Proj[L̃ℓ|4] +Op

(
1√
log ℓ

)
.

In other words, it does follow from our results that the fourth-order chaos projection dominates
the high-frequency behaviour of the spherical nodal length, as for the two-dimensional toroidal
eigenfunctions.

As discussed before, the nodal length of random spherical harmonics can be viewed as the
special case (for z = 0) of the boundary length of excursion sets (Lℓ(z), say, with Lℓ := Lℓ(0)).
For z 6= 0, it was shown in [20], Proposition 7.3.1 (see also [6], Subsection 1.2.2, and [17], Remark
2.4) that the dominant term corresponds to the second order chaos, which can be expressed as

Proj[Lℓ(z)|2] = 2

{
λℓ
2

}1/2√π

8

{
z2φ(z)

} 1

2!

∫

S2

H2(fℓ(x))dx,

a component that vanishes identically for z = 0 (here, as usual, φ(z) denotes the density function
of a standard Gaussian variable). On the other hand, for the nodal case from the results in this
paper one obtains the related expression

Proj[Lℓ(0)|4] = −
{
λℓ
2

}1/2√π

8
φ(0)

1

4!

{∫

S2

H4(fℓ(x))dx+Op(
1

ℓ
)

}
.

It is instructive to compare these expressions with the results provided by the Gaussian Kine-
matic Formula (see e.g., [25], [1]) for the expected value of the boundary length, which in terms
of Wiener-chaos projections can be written in this framework as

E [Lℓ(z)] = Proj[Lℓ(z)|0] = 2

{
λℓ
2

}1/2√π

8
φ(z)

∫

S2

H0(fℓ(x))dx.

We leave as an issue for further research to determine whether similarly neat expressions can be
shown to hold in greater generality, i.e. in dimension greater than two, for higher-order chaos
projections, or for different geometric functionals.

1.4. Outline of the paper. In section 2 we discuss some issues concerning the L2 expansion of
the spherical nodal length into Wiener chaos components, and we present the analytic expression
for the fourth-order chaos (which corresponds to the leading non-deterministic term); in section
3 we give the proofs of the two main Theorems, which are largely based on a Key Proposition
whose proof is collected in section 4. The Appendix (section 4) collects the justification for the
L2 expansion of the nodal length into Hermite polynomials and some elementary facts about
the covariances of random spherical harmonics and their derivatives.
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2. The L2 Expansion of Nodal Length

In this section, we present the Wiener chaos expansion of the nodal length Lℓ as in (1.7). The
details of this derivation are similar to those given in [17] (see also [10]). Let us first recall the
expression for the projection coefficients in the Hermite expansions of the two-dimensional norm
and the Dirac δ-function. For independent, standard Gaussian variables ζ, η the expansion of
the Euclidean norms has been been established to be (see i.e., [10], [17])

‖(ζ, η)‖ =

∞∑

q=0

∑

n,m:2n+2m=q

α2n,2m

(2n)!(2m)!
H2n(ζ)H2m(η)

where (ζ, η) ∈ R
2 and

α2n,2m :=

√
π

2

(2n)!(2m)!

n!m!

1

2n+m
pn+m

(
1

4

)
,

and pN is the swinging factorial coefficient

pN (x) :=

N∑

j=0

(−1)j(−1)N
(
N
j

)
(2j + 1)!

(j!)2
xj .

For the first few terms we have

α00 =

√
π

2
; α02 =

1

2

√
π

2
; α04 = −3

8

√
π

2
.

On the other hand, the first few coefficients for the expansion into Wiener chaoses of the
Dirac delta function δ-function are given by ([10], [17]):

β0 =
1√
2π

; β2 = − 1√
2π

; β4 =
3√
2π
.

TheWiener-chaos decompositions need to be evaluated on variables of unit variance; this requires
dividing the derivatives by

√
ℓ(ℓ+ 1)/2 ∼ ℓ/

√
2 (here and everywhere else aℓ ∼ bℓ means that

the ratio between the two sequences converges to unity as ℓ→ ∞). The L2(Ω) expansion of the
nodal length (1.7) then takes the form

Lℓ − ELℓ =

√
ℓ(ℓ+ 1)

2

∞∑

q=2

q∑

u=0

u∑

k=0

αk,u−kβq−u
k!(u− k)!(q − u)!

×

×
∫

S2

Hq−u(fℓ(x))Hk(
∂1;xfℓ(x)√
ℓ(ℓ+ 1)/2

)Hu−k(
∂2;xfℓ(x)√
ℓ(ℓ+ 1)/2

)dx

=
∞∑

q=2

∫

S2

Ψℓ(x; q)dx,
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where

Ψℓ(x; q) :=

√
ℓ(ℓ+ 1)

2

q∑

u=0

u∑

k=0

αk,u−kβq−u
k!(u− k)!(q − u)!

Hq−u(fℓ(x))Hk(
∂1;xfℓ(x)√
ℓ(ℓ+ 1)/2

)Hu−k(
∂2;xfℓ(x)√
ℓ(ℓ+ 1)/2

);

here, we are using spherical coordinates (colatitude θ, longitude ϕ) and for x = (θx, ϕx) we are
using the notation

∂1;x =
∂

∂θ

∣∣∣∣
θ=θx

, ∂2;x =
1

sin θ

∂

∂ϕ

∣∣∣∣
θ=θx,ϕ=ϕx

.

In particular, the projection of the nodal length on the fourth-order chaos has the expression

Proj[L̃ℓ|4] =
∫

S2

Ψℓ(x; 4)dx

=

√
ℓ(ℓ+ 1)

2

{
α00β4
4!

∫

S2

H4(fℓ(x))dx+
α20β2
2!2!

∫

S2

H2(fℓ(x))H2(
∂1;xfℓ(x)√
ℓ(ℓ+ 1)/2

)dx

+
α40β0
4!

∫

S2

H4(
∂1;xfℓ(x)√
ℓ(ℓ+ 1)/2

)dx+
α22β0
2!2!

∫

S2

H2(
∂1;xfℓ(x)√
ℓ(ℓ+ 1)/2

)H2(
∂2;xfℓ(x)√
ℓ(ℓ+ 1)/2

)dx

(2.1) +
α02β2
2!2!

∫

S2

H2(fℓ(x))H2(
∂2;xfℓ(x)√
ℓ(ℓ+ 1)/2

)dx+
α04β0
4!

∫

S2

H4(
∂2;xfℓ(x)√
ℓ(ℓ+ 1)/2

)dx

}
.

3. Proof of the Main Results (Theorem 1.2 and Corollary 1.3)

3.1. Proof of Lemma 1.1.

Proof. Before we proceed with the proof, we need to introduce some more notation: we shall
write x = (0, 0) for the ”North Pole” and y(θ) = (0, θ) for the points on the meridian where
ϕ = 0. It is now sufficient to note that

Var {Mℓ} =
ℓ(ℓ+ 1)

2× 42 × 242
× E

[{∫

S2

H4(fℓ) sin θdθ

}2
]

=
ℓ(ℓ+ 1)

2× 42 × 242
× 576

log ℓ

ℓ2
+O(1) =

1

32
log ℓ+O(1),

where we have used the asymptotic result [15, Lemma 3.2]

E

[{∫

S2

H4(fℓ(x))dx

}2
]
= 576

log ℓ

ℓ2
+O

(
1

ℓ2

)
, as ℓ→ ∞.

�

Now we transform variables as

ψ := Lθ , for L :=

(
ℓ+

1

2

)
, whence y(θ) = y(

ψ

L
);

also, let us define the following 2-point cross-correlation function

(3.1) Jℓ(ψ; 4) :=
[
−1

4

√
ℓ(ℓ+ 1)

2

1

4!

]
× 8π2

L
E

{
Ψℓ(x; 4)H4(fℓ(y(

ψ

L
)))

}
.

Our main result will follow from the following Key Proposition:
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Proposition 3.1. For any constant C > 0, uniformly over ℓ we have, for 0 < ψ < C ,

(3.2) Jℓ(ψ; 4) = O(ℓ),

and, for C < ψ < Lπ2 ,

(3.3) Jℓ(ψ; 4) =
1

64

1

ψ sin ψ
L

+
5

64

cos 4ψ

ψ sin ψ
L

− 3

16

sin 2ψ

ψ sin ψ
L

+O

(
1

ψ2

1

sin ψ
L

)
+O

(
1

ℓ

1

ψ sin ψ
L

)
.

The proof of this Proposition is given later in section 4; with this result at hand, we can
proceed with the proof of Theorem 1.2 as follows.

3.2. Proof of Theorem 1.2.

Proof. To establish Theorem 1.2, it is clearly sufficient to show that, as ℓ→ ∞,

Corr {Lℓ,Mℓ} = 1 +O

(
1

log ℓ

)
,

and to this end we will prove the equivalent

Cov {Lℓ,Mℓ} =
log ℓ

32
+O(1)

(cf. (1.3) and (1.6)); here, as usual Corr and Cov denote correlation and covariance (respec-
tively), while the O(1) term is uniform in ε. By continuity of the inner product in L2 spaces,
we need to prove that

Cov {Lℓ,Mℓ} = lim
ε→0

Cov {Lℓ;ε,Mℓ} =
log ℓ

32
+O(1),

where

Lℓ;ε :=
∫

S2

‖∇fℓ(x)‖χε(fℓ(x))dx , χε(.) :=
1

2ε
I[−ε,ε](.).

Now define the ”approximate local nodal length”

Ψℓ;ε(x) := ‖∇fℓ(x)‖χε(fℓ(x)) ,

where IA(.) denotes the characteristic function of the set A. The newly defined Ψℓ;ε(x) is an
isotropic random field on S

2 admitting the L2(Ω) expansion

Ψℓ;ε(x) = EΨℓ;ε(x) +

∞∑

q=2

Ψℓ;ε(x; q);

moreover, as established in the Appendix, we have the L2(Ω) convergence

lim
ε→0

∫

S2

Ψℓ;ε(x)dx = lim
ε→0

∫

S2

{‖∇fℓ(x)‖χε(fℓ(x))} = Lℓ.
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Note also that Ψε(x), H4(fℓ(y)) are both in L2(S2 × Ω) and they are isotropic, and thus

Cov {Lℓ;ε,Mℓ} = −1

4

√
ℓ(ℓ+ 1)

2

1

4!
Cov

{∫

S2

Ψε(x),

∫

S2

H4(fℓ(y))dy

}

= −1

4

√
ℓ(ℓ+ 1)

2

1

4!

∫

S2

∫

S2

E {Ψε(x)H4(fℓ(y))} dxdy

= −1

4

√
ℓ(ℓ+ 1)

2

1

4!

∫

S2

∫

S2

E





∞∑

q=2

Ψℓ;ε(x; q)H4(fℓ(y))



 dxdy

=

[
−1

4

√
ℓ(ℓ+ 1)

2

1

4!

]
× 8π2

∫ π

0
E





∞∑

q=2

Ψℓ;ε(x; q)H4(fℓ(y(θ)))



 sin θdθ

=

[
−1

4

√
ℓ(ℓ+ 1)

2

1

4!

]
× 8π2

∫ π

0
E {Ψℓ;ε(x; 4)H4(fℓ(y(θ)))} sin θdθ.

The integrand E {Ψℓ;ε(x; 4)H4(fℓ(y(θ)))} can be computed explicitly and it is easily seen to
be absolutely bounded for fixed ℓ, uniformly over ε, see Proposition 3.1 above. Hence by the
Dominated Convergence Theorem we may exchange the limit and the integral, and we have that

Cov {Lℓ,Mℓ} = lim
ε→0

Cov {Lεℓ ,Mℓ}

=

[
−1

4

√
ℓ(ℓ+ 1)

2

1

4!

]
× 8π2 lim

ε→0

∫ π

0
E {Ψℓ;ε(x; 4)H4(fℓ(y(θ)))} sin θdθ

=

[
−1

4

√
ℓ(ℓ+ 1)

2

1

4!

]
× 8π2

∫ π

0
lim
ε→0

E {Ψℓ;ε(x; 4)H4(fℓ(y(θ)))} sin θdθ

=

[
−1

4

√
ℓ(ℓ+ 1)

2

1

4!

]
× 8π2

∫ π

0
E {Ψℓ(x; 4)H4(fℓ(y(θ)))} sin θdθ.

We can now rewrite, using (3.1)

(3.4) Cov {Lℓ,Mℓ} =

∫ Lπ

0
Jℓ(ψ; 4) sin

ψ

L
dψ,

where we recall that L/ℓ = 1 + o(1), as ℓ→ ∞. It is now sufficient to notice that

Cov {Lℓ,Mℓ} =

∫ C

0
Jℓ(ψ; 4) sin

ψ

L
dψ + 2

∫ Lπ/2

C
Jℓ(ψ; 4) sin

ψ

L
dψ.(3.5)

For the first summand in (3.5) we have easily

|
∫ C

0
Jℓ(ψ; 4) sin

ψ

L
dψ| ≤ const× ℓ

∫ C

0
| sin ψ

L
|dψ ≤ ℓ

L

∫ C

0
ψdψ = O(1) , as ℓ→ ∞.

For the second sum in (3.5), using Proposition 3.1 and integrating we obtain

2

∫ Lπ/2

C
Jℓ(ψ; 4) sin

ψ

L
dψ
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=
1

L

∫ Lπ/2

C

1

sin2 ψL

{
1

32
+

5

32
cos 4ψ − 3

8
sin 2ψ

}
sin

ψ

L
dψ

+O

(
1

L

∫ Lπ/2

C

1

ψ

1

sin2 ψL
sin

ψ

L
dψ

)
+O

(
1

L

∫ Lπ/2

C

1

ℓ

1

sin2 ψL
sin

ψ

L
dψ

)

=

∫ Lπ/2

C

1

ψ

{
1

32
+

5

32
cos 4ψ − 3

8
sin 2ψ

}
dψ

+O

(∫ Lπ/2

C

1

ψ2
dψ

)
+O

(
1

L

∫ Lπ/2

C

1

ℓ

1

sin ψ
L

dψ

)

=
log ℓ

32
+O(1) +O

(
log ℓ

ℓ

)
,

as claimed. �

Remark 3.2. As mentioned in the Introduction, our main result could equivalently be stated as

Corr {Lℓ,Proj[Lℓ|4]} ,Corr {Proj[Lℓ|4],Mℓ} → 1

and thus

Proj[L̃ℓ|4] = −
√
ℓ(ℓ+ 1)

2

1

4× 24

∫

S2

H4(fℓ(x))dx+O(1),

L̃ℓ = −
√
ℓ(ℓ+ 1)

2

1

4× 24

∫

S2

H4(fℓ(x))dx+O(1),

both equivalences holding in the L2(Ω) sense.

3.3. Proof of the Central Limit Theorem (Corollary 1.3). Recall that hℓ;4 is defined in
(1.5). It was shown [15, Lemma 3.3] that the so-called fourth-order cumulant of hℓ;4

cum4 {hℓ;4} := E
[
h4ℓ;4
]
− 3

{
E
[
h4ℓ;4
]}2

satisfies cum4{hℓ;4} ≈ ℓ−4, i.e. the ratio between the left and right-hand sides is bounded above
and below by finite, strictly positive constants. Taking into account the normalizing factors, it

means that M̃ℓ satisfies

cum4

{
M̃ℓ

}
=
cum4 {Mℓ}
V ar2(Mℓ)

=
322

log2 ℓ

(
−1

4

√
ℓ(ℓ+ 1)

2

1

4!

)4

cum4 {hℓ;4} = O

(
1

log2 ℓ

)
,

where we have exploited definitions of the sequences
{
Mℓ,M̃ℓ

}
and standard properties of the

cumulants. Let us now recall the so-called Stein-Malliavin bound by Nourdin-Peccati, stating
that for a standardized random variable F which belong to the q−th order Wiener chaos Hq we
have the bound (see [19, Theorem 5.2.6])

dW (F,N (0, 1)) ≤
√

2q − 2

3πq
cum4 {F}.

Now the sequence
{
M̃ℓ

}
is indeed standardized and belongs to the Wiener chaos for q = 4,

so that we have

dW (M̃ℓ,N (0, 1)) ≤
√

1

2π

{
cum4

{
M̃ℓ

}}
= O

(
1

log ℓ

)
.
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As a simple application of the triangle inequality for dW (see [19, Appendix C]), for ℓ→ ∞

dW (L̃ℓ,N (0, 1)) ≤ dW (M̃ℓ,N (0, 1)) +

√
E

[
L̃ℓ − M̃ℓ

]2
= O

(
1√
log ℓ

)
,

and the statement of Corollary 1.3 follows.

4. Proof of Proposition 3.1

Proof. It is convenient to introduce some further notation, recalling (2.1) and writing

Ψℓ(x; 4) = Aℓ(x) +Bℓ(x) + Cℓ(x) +Dℓ(x) + Eℓ(x) + Fℓ(x),

where

(4.1)

√
ℓ(ℓ+ 1)

2

3

2

1

4!
H4(fℓ(x)) =: Aℓ(x),

(4.2) −
√
ℓ(ℓ+ 1)

2

1

4

1

2!2!
H2(fℓ)H2

(
∂1;xfℓ(x)√
ℓ(ℓ+ 1)/2

)
=: Bℓ(x),

(4.3) −
√
ℓ(ℓ+ 1)

2

3

16

1

4!
H4

(
∂1;xfℓ(x)√
ℓ(ℓ+ 1)/2

)
=: Cℓ(x),

(4.4) +
3

2

1

2!2!
H2

(
∂1;xfℓ(x)√
ℓ(ℓ+ 1)/2

)
H2

(
∂2;xfℓ(x)√
ℓ(ℓ+ 1)/2

)
=: Dℓ(x),

(4.5) − 1

4

1

2!2!
H2(fℓ(x))H2

(
∂2;xfℓ(x)√
ℓ(ℓ+ 1)/2

)
=: Eℓ(x),

(4.6) − 3

16

1

4!
H4

(
∂2;xfℓ(x)√
ℓ(ℓ+ 1)/2

)
=: Fℓ(x),

and also

Mℓ : = −1

4

√
ℓ(ℓ+ 1)

2

1

4!

∫

S2

H4(fℓ(x))dx =

∫

S2

Mℓ(x)dx,

Mℓ(x) : = −1

4

√
ℓ(ℓ+ 1)

2

1

4!
H4(fℓ(x)).(4.7)

For the computations to follow, recall that we focus on x = (0, 0) (the ”North Pole”) and
y(θ) = (θ, 0) (the ”Greenwich meridian”). By repeated application of the well-known Diagram
Formula (see e.g. [13, subsection 4.3.1]), we have

E

[
H2

(
∂1;xfℓ(x)√
ℓ(ℓ+ 1)/2

)
H2

(
∂2;xfℓ(x)√
ℓ(ℓ+ 1)/2

)
H4(fℓ(y(θ)))

]

= 4!
4

ℓ2(ℓ+ 1)2
{E [∂1;xfℓ(x)fℓ(y(θ))]}2 {E [∂2;xfℓ(x)fℓ(y(θ))]}2 = 0,

in view of (A.3); likewise

E

[
H2 (fℓ(x))H2

(
∂2;xfℓ(x)√
ℓ(ℓ+ 1)/2

)
H4(fℓ(y(θ)))

]
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= 4!
2

ℓ(ℓ+ 1)
{E [fℓ(x)fℓ(y(θ))]}2 {E [∂2;xfℓ(x)fℓ(y(θ))]}2 = 0 ,

and

E

[
H4

(
∂2;xfℓ(x)√
ℓ(ℓ+ 1)/2

)
H4(fℓ(y(θ)))

]

= 4!
4

ℓ2(ℓ+ 1)2
{E [∂2;xfℓ(x)fℓ(y(θ))]}4 = 0.

As a consequence, using definitions (4.4), (4.5), (4.6) and (4.7) we have that

E [Dℓ(x)Mℓ(y(θ)] = E [Eℓ(x)Mℓ(y(θ)] = E [Fℓ(x)Mℓ(y(θ)] ≡ 0

for all θ ∈ [0, π]. In the sequel, it is sufficient to focus on Aℓ(.), Bℓ(.) and Cℓ(.). The proof of 3.2
is rather straightforward; indeed, as a simple application of the Cauchy-Schwartz inequality, we
have that

E [H4(fℓ(x))H4(fℓ(y(θ)))] ≤ E

[
{H4(fℓ(x))}2

]
= 24

E

[
H2(fℓ(x)H2

(
∂1;xfℓ(x)√
ℓ(ℓ+ 1)/2

)
H4(fℓ(y(θ)))

]

≤

√√√√√E



{
H2(fℓ(x))H2

(
∂1;xfℓ(x)√
ℓ(ℓ+ 1)/2

)}2

E

[
{H4(fℓ(x))}2

]
= 24

and analogously

E

[
H4

(
∂1;xfℓ(x)√
ℓ(ℓ+ 1)/2

)
H4(fℓ(y(θ)))

]

≤

√√√√√E



{
H4

(
∂1;xfℓ(x)√
ℓ(ℓ+ 1)/2

)}2

E

[
{H4(fℓ(x))}2

]
= 24.

It then follows that

|Jℓ(ψ; 4)| = 8π2
∣∣∣∣E
[
{Aℓ(x) +Bℓ(x) + Cℓ(x)}Mℓ(y(

ψ

L
))

]∣∣∣∣

≤ 8π2

L

{∣∣∣∣E
[
Aℓ(x)Mℓ(y(

ψ

L
))

]∣∣∣∣+
∣∣∣∣E
[
Bℓ(x)Mℓ(y(

ψ

L
))

]∣∣∣∣+
∣∣∣∣E
[
Cℓ(x)Mℓ(y(

ψ

L
))

]∣∣∣∣
}

≤ 24
ℓ(ℓ+ 1)

2L
8π2

{
3

2

1

4!

1

4

1

4!
+

1

4

1

2!2!

1

4

1

4!
+

3

16

1

4!

1

4

1

4!

}
= O(ℓ),

as claimed.
We now turn to proving (3.3). Using (A.1), (A.2) and the Diagram Formula we can write

explicitly

E [Aℓ(x)Mℓ(y(θ))] = −ℓ(ℓ+ 1)

2

3

2

1

4!

1

4

1

4!
× 4!P 4

ℓ (cos θ)

= −ℓ(ℓ+ 1)

2

1

64
P 4
ℓ (cos θ) ,(4.8)
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E [Bℓ(x)Mℓ(y(θ))] =
ℓ(ℓ+ 1)

2

1

4

1

2!2!

1

4

1

4!
× 4!

2

ℓ(ℓ+ 1)
P 2
ℓ (cos θ)

{
P ′
ℓ(cos θ)

}2

=
ℓ(ℓ+ 1)

2

1

64

2

ℓ(ℓ+ 1)
P 2
ℓ (cos θ)

{
P ′
ℓ(cos θ)

}2
,(4.9)

E [Cℓ(x)Mℓ(y(θ))] =
ℓ(ℓ+ 1)

2

3

16

1

4!

1

4

1

4!
× 4

ℓ2(ℓ+ 1)2
4!
{
P ′
ℓ(cos θ) sin θ

}4

=
ℓ(ℓ+ 1)

2

3

16

1

4!

1

ℓ2(ℓ+ 1)2
{
P ′
ℓ(cos θ) sin θ

}4
.(4.10)

Now recall that (see section 4)

Pℓ(cos
ψ

L
) =

√
2

πℓ sin ψ
L

(
sin
(
ψ +

π

4

)
+O

(
1

ψ

))

P ′
ℓ

(
cos

ψ

L

)
=

√
2

πℓ sin3 ψL

(
ℓ sin

(
ψ − π

4

)
+O(1)

)
.

Let us also mention the following standard trigonometric identities that are used repeatedly in
our arguments:

{
sin(ψ − π

4
)
}4

=

{√
2

2
sinψ −

√
2

2
cosψ

}4

=
3

8
− 1

8
cos 4ψ − 1

2
sin 2ψ,

{
sin(ψ +

π

4
)
}4

=
3

8
− 1

8
cos 4ψ +

1

2
sin 2ψ,

and

(1 + sin 2ψ)(1− sin 2ψ) =
1 + cos 4ψ

2
.

Substituting the latter expressions into (4.8), we obtain that

8π2E [Aℓ(x)Mℓ(y(θ))] = −ℓ(ℓ+ 1)

2

1

8
π2P 4

ℓ (cos θ)

= −ℓ(ℓ+ 1)

2

1

8
π2

[√
2

πℓ sin ψ
L

(sin(ψ +
π

4
) +O

(
1

ψ

)
)

]4

= −ℓ(ℓ+ 1)

2

1

8
π2

22

π2ℓ2 sin2 ψL

{
sin(ψ +

π

4
)
}4

+O

(
1

ψ

1

sin2 ψL

)

= −ℓ(ℓ+ 1)

2

1

2ℓ2 sin2 ψL

{
3

8
− 1

8
cos 4ψ +

1

2
sin 2ψ

}
+O

(
1

ψ

1

sin2 ψL

)

= − 1

4 sin2 ψL

{
3

8
− 1

8
cos 4ψ +

1

2
sin 2ψ

}
+O

(
1

ψ

1

sin2 ψL

)
+O

(
1

ℓ

1

sin2 ψL

)
.

Likewise for (4.9)

8π2E [Bℓ(x)Mℓ(y(θ))]

=
ℓ(ℓ+ 1)

2

1

8
π2

2

ℓ(ℓ+ 1)
P 2
ℓ (cos θ)

{
P ′
ℓ(cos θ) sin θ

}2
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=
1

8
π2

[√
2

πℓ sin ψ
L

(
sin(ψ +

π

4
) +O

(
1

ψ

))]2 [√
2

πℓ sin3 ψL

(
ℓ sin

(
ψ − π

4

)
+O(1)

)
sin

ψ

L

]2

=
1

8
π2

2

πℓ sin ψ
L

sin2(ψ +
π

4
)

2

πℓ sin ψ
L

ℓ2 sin2
(
ψ − π

4

)
+O

(
1

ℓ sin2 ψL

)

=
1

2

1

sin ψ
L

sin2(ψ +
π

4
)

1

sin ψ
L

sin2
(
ψ − π

4

)
+O

(
1

ℓ sin2 ψL

)

=
1

2

1

sin ψ
L

{√
2

2
sinψ −

√
2

2
cosψ

}2
1

sin ψ
L

{√
2

2
sinψ −

√
2

2
cosψ

}2

+O

(
1

ℓ sin2 ψL

)

=
1

2

1

sin ψ
L

1

4
{sinψ + cosψ}2 1

sin ψ
L

{sinψ − cosψ}2 +O

(
1

ℓ sin2 ψL

)

=
1

2

1

sin2 ψL

1

4

{
sin2 ψ − cos2 ψ

}2
+O

(
1

ℓ sin2 ψL

)
=

1

2

1

sin2 ψL

1

4

{
1− 2 cos2 ψ

}2
+O

(
1

ℓ sin2 ψL

)

=
1

2

1

sin2 ψL

1 + cos 4ψ

8
+O

(
1

ℓ sin2 ψL

)
.

Finally, for (4.10)
8π2E [Cℓ(x)Mℓ(y(θ))]

=
ℓ(ℓ+ 1)

2

3

2
π2

1

4!

1

ℓ2(ℓ+ 1)2
{
P ′
ℓ(cos θ) sin θ

}4

=
3

4

1

4!
π2

1

ℓ(ℓ+ 1)

{√
2

πℓ sin3 ψL

(
ℓ sin

(
ψ − π

4

)
+O(1)

)
sin

ψ

L

}4

=
3

4

1

4!
π2

1

ℓ(ℓ+ 1)

22

π2ℓ2 sin2 ψL
ℓ4 sin4

(
ψ − π

4

)
+O

(
1

ℓ sin2 ψL

)

=
1

8

1

sin2 ψL

[
3

8
− 1

8
cos 4ψ − 1

2
sin 2ψ

]
+O

(
1

ℓ sin2 ψL

)

=
1

8

1

sin2 ψL

[
3

8
− 1

8
cos 4ψ − 1

2
sin 2ψ

]
+O

(
1

ℓ sin2 ψL

)
.

Thus, summing (4.8), (4.9) and (4.10) we obtain

Jℓ(ψ; 4) = − 1

4L sin2 ψL

{
3

8
− 1

8
cos 4ψ +

1

2
sin 2ψ

}
+O

(
1

ψ

1

sin2 ψL

)
+O

(
1

ℓ

1

sin2 ψL

)

+
1

2

1

L sin2 ψL

1 + cos 4ψ

8
+O

(
1

ℓ sin2 ψL

)

+
1

8

1

L sin2 ψL

[
3

8
− 1

8
cos 4ψ − 1

2
sin 2ψ

]
+O

(
1

ℓ sin2 ψL

)
,

=
1

64

1

L sin2 ψL
+

5

64

cos 4ψ

L sin2 ψL
− 3

16

sin 2ψ

L sin2 ψL
+O

(
1

ψ

1

L sin2 ψL

)
+O

(
1

ℓ

1

L sin2 ψL

)
,
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(4.11) =
1

64

1

ψ sin ψ
L

+
5

64

cos 4ψ

ψ sin ψ
L

− 3

16

sin 2ψ

ψ sin ψ
L

+O

(
1

ψ2

1

sin ψ
L

)
+O

(
1

ℓ

1

ψ sin ψ
L

)
,

as claimed. �

Remark 4.1. The variance of the spherical nodal length is written [26, Proposition 2.7] as

Var {Lℓ} =

∫ Lπ

0
4π2

ℓ(ℓ+ 1)

L

{
Kℓ(ψ)−

1

4

}
sin(

ψ

L
)dψ.

Here Kℓ(·) represents the two-point correlation function of the nodal length, defined as

Kℓ(ψ) =
1

2π
√
1− P 2

ℓ (cos
ψ
L)

E

[
‖∇fℓ(N)‖ ·

∥∥∥∥∇fℓ(
ψ

L
)

∥∥∥∥
∣∣∣∣ fℓ(N) = fℓ

(
ψ

L

)
= 0

]
.

It was shown [26] that one has

Kℓ(ψ)−
1

4
=

1

2

sin 2ψ

πℓ sin ψ
L

+
9

32

cos 2ψ

πℓψ sin ψ
L

+
1

256

1

π2ℓψ sin ψ
L

+
27
64 sin 2ψ − 75

256 cos 4ψ

π2ℓψ sin ψ
L

+O

(
1

ψ3
+

1

ℓψ

)
.

To compare this result with those in the present paper, let us note that

4π2
ℓ(ℓ+ 1)

L

{
Kℓ(ψ)−

1

4

}
=

1

64
· 1

ψ sin ψ
L

+ oscillatory or lower order terms ,

in perfect analogy with the two-point cross-correlation function (4.11), used to compute the co-

variance

Cov {Lℓ,Mℓ} =

∫ Lπ

0
Jℓ(ψ; 4) sin

(
ψ

L

)
dψ,

satisfying

Jℓ(ψ; 4) =
1

64

1

ψ sin ψ
L

+ oscillatory or lower order terms.

Appendix A. Some Background Material

For completeness, in this Appendix we record some basic facts about covariances of random
spherical harmonics and their derivatives; all the expressions to follow are rather standard and
have been repeatedly exploited in the literature. Let us first recall that for arbitrary coordinates
x = (θx, ϕx), y = (θy, ϕy) we have

〈x, y〉 = cos θx cos θy + sin θx sin θy cos(ϕx − ϕy)

It is then elementary to show that

E [fℓ(x)∂1;yfℓ(y)] = P ′
ℓ(〈x, y〉) {− cos θx sin θy + sin θx cos θy cos(ϕx − ϕy)} ,

E [fℓ(x)∂2;yfℓ(y)] = P ′
ℓ(〈x, y〉) sin θx sin(ϕx − ϕy) ,

E [∂1;xfℓ(x)∂1;yfℓ(y)]

= P ′′
ℓ (〈x, y〉) {− cos θx sin θy + sin θx cos θy cos(ϕx − ϕy)} {− sin θx cos θy + cos θx sin θy cos(ϕx − ϕy)}

+P ′
ℓ(〈x, y〉) {sin θx sin θy + cos θx cos θy cos(ϕx − ϕy)} ,

E [∂1;xfℓ(x)∂2;yfℓ(y)] = −P ′′
ℓ (〈x, y〉) {sin θx cos θy + cos θx sin θy cos(ϕx − ϕy)} sin θx sin(ϕx − ϕy)

−P ′
ℓ(〈x, y〉) cos θx sin(ϕx − ϕy) ,
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E [∂2;xfℓ(x)∂2;yfℓ(y)] = −P ′′
ℓ (〈x, y〉) sin θx sin θy sin2(ϕx − ϕy) + P ′

ℓ(〈x, y〉) cos(ϕx − ϕy) .

In particular, the result we exploited several times in this paper are obtained setting x = (0, 0),
y = (θ, 0):

(A.1) E [fℓ(x)fℓ(y)] = Pℓ(cos θ),

(A.2) E [fℓ(x)∂1;yfℓ(y)] = −P ′
ℓ(cos θ) sin θ,

(A.3) E [fℓ(x)∂2;yfℓ(y)] = E [fℓ(y)∂2;yfℓ(x)] = 0,

(A.4) E [∂1;xfℓ(x)∂1;yfℓ(y)] = P ′
ℓ(cos θ) cos θ − P ′′

ℓ (cos θ) sin
2 θ ,

(A.5) E [∂1;xfℓ(x)∂2;yfℓ(y)] = E [∂1;xfℓ(y)∂2;yfℓ(x)] = 0 ,

(A.6) E [∂2;xfℓ(x)∂2;yfℓ(y)] = P ′
ℓ(cos θ).

On the other hand, the following very useful expansions are proved [26, LemmaB.3], and hold
uniformly for C < ψ < Lπ2 (recall that L := ℓ+ 1

2) :

Pℓ(cos
ψ

L
) =

√
2

πℓ sin ψ
L

(
sin
(
ψ +

π

4

)
+O

(
1

ψ

))
,

P ′
ℓ(cos

ψ

L
) =

√
2

πℓ sin3 ψL
(ℓ sin

(
ψ − π

4

)
+O(1)),

P ′′
ℓ (cos

ψ

L
) = − ℓ2

sin2 ψL
Pℓ(cos

ψ

L
) +

2

sin2 ψL
P ′
ℓ

(
cos

ψ

L

)
+O

(
ℓ3

ψ5/2

)
.

Appendix B. The L2 approximation

We know that the nodal length is defined almost-surely by

lim
ε→0

∫

S2

χε(fℓ(x)) ‖∇fℓ(x)‖ dx;

the almost-sure convergence follows from the standard argument ([24, Lemma 3.1]), as χε(.) =
1
2εI[−ε,ε](.) is integrable and fℓ is smooth we have, using the co-area formula [1, p.169]

∫

S2

χε(fℓ(x)) ‖∇fℓ(x)‖ dx =

∫

R

{∫

f−1

ℓ
(s)
χε(fℓ(x))

}
ds.

Since

χε(fℓ(x)) =

{
0 for x : fℓ(x) > ε
1
2ε for x : fℓ(x) ≤ ε

we obtain
∫

R

{∫

f−1

ℓ
(s)
χε(fℓ(x))

}
ds =

1

2ε

∫ ε

−ε
Vol

[
f−1
ℓ (s)

]
ds→ Vol

[
f−1
ℓ (0)

]
, as ε→ 0 ,

since the function s → Vol
[
f−1
ℓ (s)

]
is continuous for regular (Morse) functions. We now want

to show that the convergence occurs also in the L2 sense; as convergence holds almost surely, it
is sufficient to show that

lim
ε→0

E
[
L2
ℓ;ε

]
= E

[
L2
ℓ

]
.
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Note that

E
[
L2
ℓ;ε

]
= E

[{∫

S2

{χε(fℓ(x)) ‖∇fℓ(x)‖} dx
}2
]

= E



{∫

R

∫

fℓ(x)=u
χε(fℓ(x))dxdu

}2



= E

[{∫

R

Lℓ(u)χε(u)du
}2
]
.

It is easy to see that the application u→ E

[
{Lℓ(u)}2

]
is continuous, where

E
[
L2
ℓ (u)

]
=

∫

S2×S2

E [‖∇fℓ(x1)‖ ‖∇fℓ(x2)‖| fℓ(x1) = u, fℓ(x2) = u]φfℓ(x1),fℓ(x2)(u, u)dx1dx2

= 8π2
∫ π

0
E [‖∇fℓ(N)‖ ‖∇fℓ(y(θ))‖| fℓ(N) = u, fℓ(y(θ)) = u]φfℓ(N),fℓ(y(θ))(u, u) sin θdθ.

To check continuity, it is enough to show that the Dominated Convergence Theorem holds; we
first note that

φfℓ(N),fℓ(y(θ))(u, u) sin θ ≤ φfℓ(N),fℓ(y(θ))(0, 0) sin θ

=
1

2π
√
1− P 2

ℓ (cos θ)
sin θ = O(1) ,

uniformly over θ. On the other hand, to evaluate

E [‖∇fℓ(x1)‖ ‖∇fℓ(x2)‖| fℓ(N) = u, fℓ(y(θ)) = u]

we can use Cauchy-Schwartz inequality, and bound

E
[
w2
i

∣∣ fℓ(N) = u, fℓ(y(θ)) = u
]
= Var [wi| fℓ(N) = u, fℓ(y(θ)) = u]+{E [wi| fℓ(N) = u, fℓ(y(θ)) = u]}2 ,

for i = 1, 2, 3, 4, where



w1

w2

w3

w4


 :=

(
∇fℓ(x1)
∇fℓ(x2)

)
.

Note first that, by standard properties of Gaussian conditional distributions

Var [wi| fℓ(N) = u, fℓ(y(θ)) = u] = Var [wi| fℓ(N) = 0, fℓ(y(θ)) = 0] ,

and the quantities on the right-hand sides have been shown to be uniformly bounded over θ in
[26]. On the other hand, a direct computation along the same lines as in [26, Appendix A] shows
that

E




w1

w2

w3

w4

∣∣∣∣∣∣∣∣
fℓ(N) = u, fℓ(y(θ)) = u


 = BT

ℓ (θ)A
−1
ℓ (θ)

(
u
u

)
,
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where

BT
ℓ (θ) =




−P ′
ℓ(cos θ) sin θ 0

0 0
0 P ′

ℓ(cos θ) sin θ
0 0


 ,

A−1
ℓ (θ) =

1

1− P 2
ℓ (cos θ)

(
1 −Pℓ(cos θ)

−Pℓ(cos θ) 1

)
,

so that the conditional expected value can be written as

1

1− P 2
ℓ (cos θ)




−P ′
ℓ(cos θ) sin θ P ′

ℓ(cos θ)Pℓ(cos θ) sin θ
0 0

−P ′
ℓ(cos θ)Pℓ(cos θ) sin θ P ′

ℓ(cos θ) sin θ
0 0



(
u
u

)

=
1

1− P 2
ℓ (cos θ)




uP ′
ℓ(cos θ) sin θ(Pℓ(cos θ)− 1)

0
uP ′

ℓ(cos θ) sin θ(1− Pℓ(cos θ))
0




=
1

1 + Pℓ(cos θ)




−uP ′
ℓ(cos θ) sin θ

0
uP ′

ℓ(cos θ) sin θ
0


 .

This vector function is immediately seen to be uniformly bounded over θ, whence the Domi-
nated Convergence Theorem holds. Hence

E
[
L2
ℓ

]
≤ lim inf

ε→0
E

[{∫

S2

{χε(fℓ(x)) ‖∇fℓ(x)‖} dx
}2
]

= lim inf
ε→0

E
[
L2
ℓ;ε

]

≤ lim sup
ε→0

E
[
L2
ℓ;ε

]

= lim sup
ε→0

E

[{∫

S2

{χε(fℓ(x)) ‖∇fℓ(x)‖} dx
}2
]

= lim sup
ε→0

E

[{∫

R

Lℓ(u)χε(u)du
}2
]

≤ lim sup
ε→0

∫

R

E
[
L2
ℓ (u)

]
χε(u)du = E

[
L2
ℓ

]
.

We have thus shown that E
[
L2
ℓ;ε

]
→ E

[
L2
ℓ

]
, and the proof is complete.
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