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Abstract The classical asymptotic homogenization approach for linear elastic
composites with discontinuous material properties is considered as a starting point.
The sharp length scale separation between the fine periodic structure and the
whole material formally leads to anisotropic elastic-type balance equations on the
coarse scale, where the arising fourth rank operator is to be computed solving sin-
gle periodic cell problems on the fine scale. After revisiting the derivation of the
problem, which here explicitly points out how the discontinuity in the individual
constituents’ elastic coefficients translates into stress jump interface conditions for
the cell problems, we prove that the gradient of the cell problem solution is minor
symmetric and that its cell average is zero. This property holds for perfect inter-
faces only (i.e. when the elastic displacement is continuous across the composite’s
interface), and can be used to assess the accuracy of the computed numerical solu-
tions. These facts are further exploited, together with the individual constituents’
elastic coefficients and the specific form of the cell problems, to prove a theorem
that characterizes the fourth rank operator appearing in the coarse scale elastic-
type balance equations as a composite material effective elasticity tensor. We both
recover known facts, such as minor and major symmetries and positive definite-
ness, and establish new facts concerning the Voigt and Reuss bounds. The latter
are shown for the first time without assuming any equivalence between coarse and
fine scale energies (Hill’s condition), which, in contrast to the case of represen-
tative volume elements, does not identically hold in the context of asymptotic
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homogenization. We conclude with instructive three dimensional numerical simu-
lations of a soft elastic matrix with an embedded cubic stiffer inclusion to show
the profile of the physically relevant elastic moduli (Young’s and shear moduli)
and Poisson’s ratio at increasing (up to 100%) inclusion’s volume fraction, thus
providing a proxy for the design of artificial elastic composites.

Keywords Multiscale homogenization · Composite materials · Hill’s condition ·
Voigt bound · Reuss bound · Anisotropic elasticity

1 Introduction

The study of elastic composites, see, e.g., [7, 22, 23, 26] is motivated by practical
engineering applications involving real materials such as wood, geomaterials, and
biological tissues, as well as artificial constructs as, for example, polymers, metals,
and biomimetic materials. A thorough understanding of the mechanical behavior
of composites on the basis of their constituents’ properties can enhance the knowl-
edge concerning real world physical scenarios and improve the design of optimized
artificial materials with respect to key physical properties, such as stiffness and
toughness. However, these materials are in general multiscale in nature and it
is virtually impossible to resolve any single interaction among their constituents,
both from a computational and from an experimental viewpoint. These issues mo-
tivated the development of the so called multiscale homogenization techniques,
which aim to find an effective constitutive relationship for the composite material
as a whole (thus describing it on a coarse scale), which is at the same time capable
to (at least partially) retain information concerning the individual constituents’
arrangement, properties, and interplay occurring on a fine scale. According to the
existing literature, the most widely exploited techniques to tackle this issue rely
on either the average field or the asymptotic homogenization techniques, see, e.g.,
the review [21], where these two approaches are discussed and compared.

The average field approach is based on an elastic-type constitutive behavior
(a priori assumed) for the whole composite, where the effective elasticity tensor
linearly relates fine scale stresses and strains averaged on a representative volume.
This volume should be large enough to statistically represent the whole structure
and, at the same time, sufficiently small to enable a computationally feasible ap-
proach for the actual computation of the effective elasticity tensor. This can be
achieved by performing elastic-type computations on a representative volume ele-
ment (RVE), which, by definition, satisfies Hill’s condition [17, 18], i.e., the coarse
scale energy (which involves the effective elastic properties) equals the average fine
scale energy (see, e.g., [14] for a practical application of the RVE technique for
cortical bone). Further average field techniques involve the well-known results by
Eshelby [12], i.e. the representative volume is identified with an infinite medium
equipped with uniform strain condition at infinity (which also satisfies Hill’s con-
dition), and the different constituents are modeled as ellipsoidal inclusions; this
way, the strain inside the inclusions turns out to be uniform, and further approx-
imations (such as the Mori-Tanaka [27] and self-consistent [19] schemes) can be
exploited to compute the effective elastic constants semi-analytically (see, e.g.,
[42], where these techniques are exploited to compute the mineralized turkey leg
tendon elastic constants and validated against experimental data).
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The asymptotic homogenization technique (see, for example, [2, 3, 20, 25, 29,
37]) aims to find the effective governing equations for composite materials en-
forcing the length scale separation between the fine and coarse scales, which are
considered as independent spatial variables; multiple scale expansions of the fields
is performed to obtain differential conditions which are used, under the assump-
tion of fine scale periodicity, to derive an elastic-type coarse scale problem for the
whole composite. The fine scale information is encoded in the homogenized mod-
uli, which are to be computed solving elastic-type partial differential equations on
the single periodic cell only once, thus reducing computational complexity.

Here we embrace the classical asymptotic homogenization approach for an
elastic composite with discontinuous material properties. We start revisiting the
standard results that can be found in [3, 29, 37] to point out explicitly the role of
the interface loads which drive nontrivial cell problems solution whenever there are
discontinuities in the constituents coefficients. We setup the problem representing
explicitly the different domains and both, continuous spatial variations of elastic
costants within a single phase and their jump across the interface between two
different phases, are separately taken into account. The gradient of the cell problem
solution, which is central in the effective elastic coefficients computation, possesses
particular features and symmetries which are proved and discussed. The latter are
subsequently exploited to demonstrate the set of properties which characterize the
homogenized moduli as actual elastic moduli, i.e. minor and major symmetries
and positive definiteness, as well as the Voigt [43] and Reuss [36] bounds for the
effective elasticity tensor. The aforementioned properties and bounds (including
more refined estimates, such as the Hashin and Shtrikman bounds [15] and their
generalizations) are well-known to hold whenever the effective elasticity tensor is
defined by a linear relationship between the average stress and strain and Hill’s
condition [17, 18] is satisfied. This condition is fulfilled by definition for RVE and,
in general, for any volume portion if uniform traction, displacement, or periodic
boundary conditions are applied. In these cases, the elementary Voigt and Reuss
bounds can be proved by means of variation arguments (see, e.g. [26] and [7])
or equivalently by average stress and strain theorems (as, for example, in [44]).
Whenever asymptotic homogenization is concerned, even though the fine scale
periodic cell plays, from a practical viewpoint, the role of a representative volume,
Hill’s condition is satisfied for leading order quantities only (as previously noted,
for example, in [2]), hence the general formalism which would apply in the context
of average field techniques (which can be carried out also for periodic composites,
as in the last chapter of [7]) does not hold and different strategies are to be
developed.

Issues concerning bounds for the effective coefficients arising from asymptotic
homogenization of elliptic problems have been investigated to a lesser extent, and
mostly rely on the H-convergence theory [28]. The latter framework provides gen-
eral (in particular, periodicity of the fine scale is not a priori assumed) arguments
that can be specialized to rigorously prove existence and uniqueness of the asymp-
totic homogenized solutions via two scale convergence [1], as done in [8] in the
context of linear elasticity with periodic fine scale structure. The work [41] rep-
resents a first step towards the identification of bounds for the homogenized co-
efficients arising from scalar, diffusion-type, elliptic problems. The properties of
H-convergence are used to bound the homogenized diffusivity tensor by the L∞

limit of the fine scale diffusion (from above), and by the inverse of the L∞ limit



4 Raimondo Penta, Alf Gerisch

of the inverse of the fine scale diffusion (from below)1. The work [13] comprises
bounds in elasticity derived in the framework of H-convergence. The authors con-
sider composites made of isotropic constituents and explore a number of possible
isotropic homogenized limits (i.e. also isotropy of the homogenized elasticity tensor
is assumed when bounds are to be identified). For such restricted cases, they derive
bounds for the effective shear and bulk moduli and study optimality compared to
the Hashin and Shtrikman bounds [15]. These bounds are not derived assuming
periodicity and in fact hold for fine scale structures that result in macroscopically
isotropic media (for example, multiple layering of isotropic constituents, as high-
lighted by the authors). In [24] the authors exploit the findings in [13] to derive
bounds for the effective elastic energy of macroscopically anisotropic composites
made of isotropic and incompressible constituents in terms of their fine scale shear
moduli. These previously known bounds in the context of elasticity rely on spe-
cific restriction, such as coarse and/or fine scale isotropy, whereas the Voigt and
Reuss bounds, which can be interpreted as bounds on the elastic energy as well,
though not optimal, are more general, as they involve the (local average) of the
possibly anisotropic constituents’ elasticity tensors (and their inverse). This gen-
erality makes these bounds a paramount characterization of elastic composites in
the engineering literature. In [25], the authors develop a variational setting and
exploit the cell problem interface conditions directly to prove the aforementioned
bounds in the particular case of local oscillations but continuous coefficients at the
two-phase elastic composite’s interface.

Here, we extend the existing literature for asymptotic homogenization of elas-
tic composites which can possibly exhibit both discontinuos material properties
and local oscillations. We present the following results (a-c) below. (a) Rigorous
proof of the properties of the auxiliary fourth rank tensor that represents the
gradient of the cell problems solution. The necessary role of continuity of displace-
ments across the composite interface is remarked and the latter properties are
used to prove crucial properties of the effective elasticity tensor and can be ex-
ploited to assess the reliability of fine scale numerical simulations. (b) A theorem
that provides alternative, yet equivalent, representations of the effective elasticity
tensors, which are exploited to recover its standard minor and major symmetries
and positive definiteness properties (in analogy to those proved in the two scale
convergence context in [8]) and to prove for the first time the Voigt and Reuss
bounds without assuming Hill’s condition. (c) Innovative three dimensional sim-
ulations (complementary to those reported in [33]), representing the mechanical
behavior of a stiff cubic inclusion embedded in a softer matrix to highlight the ef-
fective Young’s modulus, shear modulus, and Poisson’s ratio profiles at inclusion’s
volume fraction ranging from 0 to 100%.

The paper is organized as follows:

– In Section 2 we present a revisited derivation of the asymptotic homogenization
model for linear elastic composites with discontinuous material properties and
present a novel theorem concerning key properties of the cell problem solution.

– In Section 3, we embrace a direct, yet rigorous, approach and enforce the
individual constituents’ elasticity tensor properties and the results proved in
Section 2 to prove a theorem that characterizes the fourth rank tensor arising

1 English translations of the works [28, 41] performed by the authors themselves can be
found in chapter 2 and 3 of [7], respectively.
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from the asymptotic homogenization approach as a composite material effective
elasticity tensor, in terms of minor and major symmetries, positive definiteness
(recovering previously derived results), and the Voigt and Reuss bounds proved
for the first time without assuming the Hill’s condition.

– In Section 4 we perform three dimensional numerical tests to predict the me-
chanical behavior of an elastic composite at increasing volume fraction of the
embedded cubic inclusion.

– In Section 5 we present concluding remarks and further perspectives.

2 Asymptotic homogenization and the properties of the cell problems

The classical asymptotic homogenization approach for elastic composites exploits
the length scale separation between the fine local structure (where interactions
among the individual constituents are clearly resolved) and the whole medium, to
derive effective elastic-type balance equations which hold on the coarse scale. The
homogenized elastic moduli are to be computed solving periodic cell problems on
the fine scale local structure. The technique has its mathematical foundation in the
pioneering works reported in [29] for elliptic problems, which have been extended
to the elastic problem in [37], where the extension to discontinuous coefficients
is suggested in weak form and formally appears as a volume contribution in the
related cell problems. In [3], a general procedure is employed to derive averaged
elliptic equations of infinite order of accuracy, which can be used, for example, in
the context of strain gradient elasticity as in [30]. Following recent advances in
the multiscale asymptotics literature (see, e.g., [31, 32, 39]), we provide a modern
and revisited derivation of the problem, which is formally carried out in strong
form and points out explicitly the role of volume and boundary loads that appear
in the arising periodic cell problem. This introductory background provides us a
clear framework to prove for the properties of the periodic cell problems solutions,
which are subsequently used in Section 3 to prove our main result concerning the
properties of the effective elasticity tensor. We first introduce the standard elastic
problem for composites and the basis of asymptotic homogenization. Application
of the technique steps leads to the coarse scale problem. Finally, we prove a novel
theorem which depicts peculiar properties of the cell problem solutions.

2.1 Formulation of the elastic problem for material composites

We start setting up a linear elastic problem assuming the interaction between a
matrix and a number of inclusions 2. This choice is performed for the sake of sim-
plicity of notation only, as every result proved in the current work is actually valid
for an arbitrary number of subphases (i.e. inclusions and fibers) embedded in the
host medium, see our computational study reported in [33] for a straightforward
generalization of the problem to multiphase linear elastic composites.

2 We refer to inclusion for simplicity of terminology and to foster the reader’s intuition,
although the current formulation and related proofs hold also for fiber reinforced composites
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We represent the composite as a bounded domain Ω ⊂ R3, such that Ω̄ =
Ω̄A ∪ Ω̄B , ΩA ∩ΩB = ∅. Here, ΩA represents the host medium (the matrix ) and

ΩB =
N⋃
α=1

ΩBα . (1)

a number N of disjoint embedded inclusions ΩBα . We assume that both the matrix
and the inclusions behave as linear elastic materials with constitutive relationships
for the stress tensors σA and σBα

σA = CA∇uA, (2)

σBα = CB∇uBα , (3)

where, for every x ∈ Ω, uA(x) is the restriction of the elastic displacement u(x) to
ΩA and uBα(x) denotes the elastic displacement restricted to the inclusion ΩBα

uA = u|ΩA ; uBα = u|ΩBα . (4)

The fourth rank tensors CA(x), CB(x) (with components CAijkl, C
B
ijkl for i, j, k, l =

1, 2, 3) are the elasticity tensors in ΩA and ΩB , respectively. They possess major
symmetry

CAijkl = CAklij ; C
B
ijkl = CBklij (5)

and left and right minor symmetry

CAijkl = CAjikl; C
B
ijkl = CBjikl; C

A
ijkl = CAijlk; CBijkl = CBijlk, (6)

the latter leading to

CA∇uA = CAξ(uA); CB∇uBα = CBξ(uBα), (7)

where

ξ ( r) =
∇( r) +∇( r)T

2
, (8)

i.e. ξ(uA), ξ(uBα) are the matrix and inclusion elastic strain tensors. We enforce
the stress balance equations in ΩA and in each inclusion in ΩBα ignoring volume
forces and inertia. We close the problem by coupling the matrix and the inclusions
via continuity of stresses and displacements across every interface Γα: = ∂ΩA ∩
∂ΩBα and prescribe proper external boundary conditions on ∂Ω. Therefore, the
resulting boundary value problem reads

∇ · σA = 0 in ΩA, (9)

∇ · σBα = 0 in ΩBα , (10)

σAn
α = σBαn

α on Γα, (11)

uA = uBα on Γα, (12)

+ boundary conditions on ∂Ω, (13)

for α = 1...N . Here, nα denotes the unit vector in x ∈ Γα normal to the interface
Γα pointing into the inclusion ΩBα and σA, σBα are given by the constitutive
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relationships (2) and (3), respectively. The elasticity tensors CA and CB are as-
sumed as smooth functions of x in ΩA and every ΩBα , respectively. The material
properties are assumed, in general, discontinuous, that is(

CA(x)− CB(x)
)
6= 0 on Γα. (14)

Next, we introduce the asymptotic homogenization technique based on the length
scale separation assumption.

2.2 The asymptotic homogenization technique

We consider a typical fine scale d, which characterizes the local structure, and the
coarse scale L which represents the size of the whole domain Ω. We then assume
that these length scales are well-separated, namely:

d

L
= ε� 1. (15)

We enforce spatial scale decoupling exploiting condition (15) to relate d (the fine
scale) and L (the coarse scale) as follows:

y: =
x

ε
. (16)

From now on x and y denote independent variables, representing the coarse and
fine spatial coordinates, respectively. Each field and material property is then
assumed to be a function of both the independent spatial variables x and y,
namely

uA = uA(x,y), uBα = uBα(x,y), (17)

CA = CA(x,y), CB = CB(x,y). (18)

By virtue of the performed spatial scale decoupling, we obtain, by the chain rule,
the following transformation for differential operators:

∇ → ∇x +
1

ε
∇y. (19)

We now assume that the elastic displacement u can be represented by multiscale
expansions in powers of ε:

uε(x,y) =
∞∑
l=0

u(l)(x,y)εl. (20)

We substitute the power series representation (20) applied to the restrictions uA
and uBα , together with relationship (19), into the system (9-12) and equations (2-
3). As a result, multiplying each equation by a suitable power of ε and exploiting
(7), we obtain the multiscale differential system for the elastic composite, namely

∇y ·
(
CAξy(uεA)

)
+ ε∇y ·

(
CAξx(uεA)

)
+

+ε∇x ·
(
CAξy(uεA)

)
+ ε2∇x ·

(
CAξx(uεA)

)
= 0 in ΩA,

(21)
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∇y ·
(
CBξy(uεBα)

)
+ ε∇y ·

(
CBξx(uεBα)

)
+

+ε∇x ·
(
CBξy(uεBα)

)
+ ε2∇x ·

(
CBξx(uεBα)

)
= 0 in ΩBα ,

(22)

CAξy(uεA)nα − CBξy(uεBα)nα = εCBξx(uεBα)nα − εCAξx(uεA)nα on Γα, (23)

uεA = uεBα on Γα. (24)

We finally assume y-periodicity for every field and constituent elasticity tensor.
This technical assumption will enable us to retain fine scale geometrical informa-
tion focusing on a small portion of the local structure only. From now on, we
identify the domain Ω with its corresponding periodic cell and ΩA, ΩB denote
the corresponding matrix and inclusion in the cell, respectively (and thus omit the
unnecessary index α ). Note that the fine scale length d is now defined as the min-
imum (linear) periodic cell size which can fully represent the fine scale geometry,
see Figure 1.

Fig. 1 A 2D schematic representing the fine and coarse scales. On the right hand side, the
coarse scale domain, where the fine scale structure is smoothed out, is shown. On the left hand
side, a sample periodic unit representing the fine scale is shown and the different between the
matrix and the inclusion is clearly resolved.

In the following section, we equate coefficients of εl for l = 0, 1, 2, ... in (21-24)
to obtain a homogenized model in terms of the leading (zeroth) order elastic dis-
placement field in the coarse scale domain ΩH (see Figure 1). Since the quantities
involved in the definition of this problem can also vary on the local scale y, we
define the following cell average operators

〈 r 〉 =
1

|Ω|

∫
Ω

r dy; 〈 r 〉A =
1

|Ω|

∫
ΩA

r dy; 〈 r 〉B =
1

|Ω|

∫
ΩB

r dy, (25)

where |Ω| represents the periodic cell volume.
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2.3 The coarse scale model derivation

Equating coefficients of ε0 in (21-24) yields

∇y ·
(
CAξy(u

(0)
A )
)

= 0 in ΩA, (26)

∇y ·
(
CBξy(u

(0)
B )
)

= 0 in ΩB , (27)

CAξy(u
(0)
A )n = CBξy(u

(0)
B )n on Γ, (28)

u
(0)
A = u

(0)
B on Γ, (29)

whereas equating coefficients of ε1 in (21-24) leads to

∇y ·
(
CAξy(u

(1)
A )
)

+∇x ·
(
CAξy(u

(0)
A )
)

= −∇y ·
(
CAξx(u

(0)
A )
)

in ΩA, (30)

∇y ·
(
CBξy(u

(1)
B )
)

+∇x ·
(
CBξy(u

(0)
B )
)

= −∇y ·
(
CBξx(u

(0)
B )
)

in ΩB , (31)

CAξy(u
(1)
A )n− CBξy(u

(1)
B )n = CBξx(u

(0)
B )n− CAξx(u

(0)
A )n on Γ, (32)

u
(1)
A = u

(1)
B on Γ. (33)

Finally, when equating coefficients of ε2 in (21-23) we obtain

∇y ·
(
Ccξy(u(2)

c )
)

+∇y ·
(
Ccξx(u(1)

c )
)

+

+∇x ·
(
Ccξy(u(1)

c )
)

+∇x ·
(
Ccξx(u(0)

c )
)

= 0 in Ωc,
(34)

∇y ·
(
CBξy(u

(2)
B )
)

+∇y ·
(
CBξx(u

(1)
B )
)

+

+∇x ·
(
CBξy(u

(1)
B )
)

+∇x ·
(
CBξx(u

(0)
B )
)

= 0 in ΩB ,
(35)

CAξy(u
(2)
A )n− CBξy(u

(2)
B )n = CBξx(u

(1)
B )n− CAξx(u

(1)
A )n on Γ. (36)

The solutions of the periodic cell problem (26-29) are y-constant functions.
Hence, since continuity across the interfaces Γ holds, the leading order displace-
ment field reads

u(0)(x) = u
(0)
A (x) = u

(0)
B (x) (37)

and we also simplify the notation defining

ū(x) = u(0)(x). (38)
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Employing relationships (37-38) in equations (30-33), we obtain the following

differential problem for the fields u
(1)
A (x,y), u

(1)
B (x,y):

∇y ·
(
CAξy(u

(1)
A )
)

= −∇y ·
(
CAξx(ū)

)
in ΩA, (39)

∇y ·
(
CBξy(u

(1)
B )
)

= −∇y ·
(
CBξx(ū)

)
in ΩB , (40)

CAξy(u
(1)
A )n− CBξy(u

(1)
B )n =

(
CB − CA

)
ξx(ū)n on Γ, (41)

u
(1)
A = u

(1)
B on Γ. (42)

The problem (39-42) is a linear elastic-type periodic boundary value problem
equipped with continuity and stress jump interface conditions on Γ . Exploiting

linearity, the restrictions u
(1)
A , u

(1)
B to the solution

u(1) =

{
u
(1)
A : y ∈ ΩA

u
(1)
B : y ∈ ΩB

are given by the ansätze

u
(1)
A = χAξx(ū), u

(1)
B = χBξx(ū). (43)

The third rank tensor χ,

χ =

{
χA : y ∈ ΩA

χB : y ∈ ΩB ,
(44)

is the solution of the following periodic cell problems:

∂

∂yj

(
CAijpqξ

kl
pq(χ

A)
)

= −
∂CAijkl
∂yj

in ΩA, (45)

∂

∂yj

(
CBijpqξ

kl
pq(χ

B)
)

= −
∂CBijkl
∂yj

in ΩB , (46)

CAijpqξ
kl
pq(χ

A)nBj − CBijpqξklpq(χB)nBj = (CB − CA)ijkln
B
j on Γ, (47)

χAikl = χBikl on Γ, (48)

where we set

ξklpq(χ
A) =

1

2

(
∂χApkl
∂yq

+
∂χAqkl
∂yp

)
; ξklpq(χ

B) =
1

2

(
∂χBpkl
∂yq

+
∂χBqkl
∂yp

)
(49)

and sum over repeated indices p, q, j is understood. The problem (45-48) is then
closed by periodic conditions on ∂Ω, whereas a further condition is to be imposed
for uniqueness, for example〈

χAikl

〉
A

=
〈
χBikl

〉
B

= 0 i, k, l = 1, 2, 3. (50)
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Remark 1 Note that nontrivial solutions of the cell problems are a direct con-
sequence of both local variations of the elastic constants within the composite
constituents, which formally appear as volume forces on the right hand side of
(45-46), and of the interface loadings which appear in the stress discontinuity con-
ditions (47). In the latter case, the contribution is directly related to the difference
in the elastic constants between the matrix and the inclusion, and to the interface
geometry. The interface loadings are nonzero even when the elastic properties are
constants within the individual constituent. In this case, these interface loadings
are the only driving force for the cell problems (45-48).

We now aim to formulate the effective governing equations for the elastic com-
posite material. We apply the integral average operators (25) over ΩA and ΩB in
equation (34) and equation (35), respectively. We then sum every resulting contri-
bution and apply the divergence theorem in y, such that, rearranging terms, we
obtain:

1

|Ω|

[∫
Γ

CAξy(u
(2)
A )n dS−

∫
Γ

CBξy(u
(2)
B )n dS +

+

∫
Γ

CAξx(u
(1)
A )n dS−

∫
Γ

CBξx(u
(1)
B )n dS

]
+

+
1

|Ω|

∫
ΩA

∇x ·
(
CA(ξy(u

(1)
A ) + ξx(ū))

)
dy +

+
1

|Ω|

[∫
ΩB

∇x ·
(
Cm(ξy(u

(1)
B ) + ξx(ū))

)
dy

]
= 0,

(51)

where the contributions over the cell boundaries ∂Ω cancel due to y-periodicity.
We account for relationship (36), such that also the contributions over the interface
Γ in (51) cancel. Finally, we enforce ansätze (43) to deduce the following effective
governing equations for every x ∈ ΩH , namely

∇x ·
(
C̃(x)ξx(ū)

)
= 0. (52)

The effective elasticity tensor C̃ is given by:

C̃ =
〈
CA + CAMA

〉
A

+
〈
CB + CBMB

〉
B

(53)

or, componentwise:

C̃ijkl =
〈
CAijkl + CAijpqM

A
pqkl

〉
A

+
〈
CBijkl + CBijpqM

B
pqkl

〉
B
. (54)

The auxiliary fourth rank tensors MA and MB are defined componentwise as:

MA
pqkl = ξklpq(χ

A) =
1

2

(
∂χApkl
∂yq

+
∂χAqkl
∂yp

)
,

MB
pqkl = ξklpq(χ

B) =
1

2

(
∂χBpkl
∂yq

+
∂χBqkl
∂yp

)
. (55)
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2.4 Properties of the cell problems solution

The gradient of the cell problem solution possesses specific properties which are
summarized in

Theorem 1 (Properties of M) Let M be the fourth rank tensor defined by

M =

{
MA : y ∈ ΩA

MB : y ∈ ΩB ,
(56)

with restrictions MA, MB given by (55). Then the following facts hold:

(i) M possesses both left and right minor symmetries.
(ii) 〈M〉 = 0.

Proof (i) The tensor M is left minor symmetric as the restrictions MA, MB

are left minor symmetric according to (55). Right minor symmetry of M is
deduced from the cell problems (45-48) employing right minor symmetry of
CA, CB .

(ii) Since M is minor symmetric, then also 〈M〉 is minor symmetric, hence we
only need to prove that for every y-constant second rank symmetric tensor
A

〈M〉A = 0. (57)

Let us set

v =

{
vA : y ∈ ΩA

vB : y ∈ ΩB ,
(58)

vA = χAA; vB = χBA. (59)

We can therefore rewrite 〈M〉A by means of definitions (59) and compute

〈M〉A = 〈MA〉 =
〈
MAA

〉
A

+
N∑
α=1

〈
MBA

〉
B

=

=
〈
ξy(vA)

〉
A

+
N∑
α=1

〈
ξy(vB)

〉
B

=

=
1

2|Ω|

N∑
α=1

∫
Γ

(vA − vB)⊗ n + n⊗ (vA − vB) dS = 0,

(60)

where the contributions over the boundary ∂Ω cancel due to y-periodicity
and we applied continuity (48) of the third rank tensor χ, which in turn
implies continuity of v across the interfaces Γ . Hence

〈M〉 = 0 (61)

and the proof is complete. ut
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Remark 2 Note that relationship (61) holds, in a periodic setting, for perfect in-
terfaces only, i.e. when the continuity condition (48) is satisfied. In fact, the latter
condition is a direct consequence of the continuity of the elastic displacement across
the composite interface (12), which implies continuity of the first order elastic dis-
placement (cf. equation (33)) and, in turn, of the third rank tensor χ (cf. equation
(43)). In the most general case of interface debonding the quantity 〈M〉 is nonzero
and depends on the prescribed jump of the elastic displacement across the com-
posite’s interface. The property (61) can also be seen as a simple consequence of
periodicity when dealing with asymptotic homogenization in a weak formulation
setting, provided that jump discontinuities across the interface of the composite
are automatically excluded assuming that χ belongs to an appropriate Sobolev
space. (A proper example is the space H1

per, introduced through definition (3.48),
page 56 of [8]. In the latter book, property (61) is exploited this way in the context
of asymptotic homogenization applied to linear elasticity.)

Accounting for the symmetries proven in Theorem 1(i), the cell problem (45-48)
stated in terms of three and four rank tensors, corresponds to six elastic-type cell
problems, one for each fixed (k, l), k ≥ l, that can be solved numerically adopting
the computational scheme described in [33]. The property proven in Theorem 1
(ii), which will be widely exploited to prove the theorem in the next section, can
be also used as a (necessary, but not sufficient) condition to assess the accuracy
of the numerical computations of the cell problems, such as those performed in
[33, 34].

In the next section we prove a number the properties that characterize C̃ as
the proper coarse scale elasticity tensor, such that the differential model (52) can
be regarded as an actual elastic model in the coarse scale domain.

3 The effective elasticity tensor

At this stage, the relationships (52) formally represent the coarse scale stress
balance equations of the composite. In fact, applying asymptotic homogenization
(17-20) to the stress fields defined by (2-3) we obtain:

σ
(0)
A = CAξx(ū) + CAξy(u

(1)
A ) =

(
CA + CAMA

)
ξx(ū), (62)

σ
(0)
B = CBξx(ū) + CBξy(u

(1)
B ) =

(
CB + CBMB

)
ξx(ū), (63)

where we exploited (43) and (55). Therefore, defining

σ(0) =

{
σ
(0)
A : y ∈ ΩA

σ
(0)
B : y ∈ ΩB

(64)

and exploiting (53) we have 〈
σ(0)

〉
= C̃ξx(ū), (65)

i.e. the coarse scale governing equations (52) can be rewritten in terms of the
average leading order stress tensor as

∇x ·
〈
σ(0)

〉
= 0. (66)
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Hence, the next step is to prove the properties that characterize C̃ as an effective
elasticity tensor, namely minor and major symmetries and positive definiteness,
such that (66) and in turn (52) can be considered as the actual coarse scale elastic
model. The upper (Voigt) and lower (Reuss) bounds are also provided, and the
proof of our main theorem (which includes all the aforementioned facts) merely
exploits the interface conditions that characterize the cell problems, the properties
of the auxiliary tensor M (i.e. Theorem 1) and those of the constituents CA, CB .
We do not enforce the equivalence between coarse scale and fine scale energies
(Hill’s condition) as this does not identically apply, as also remarked at the end
of this section.

3.1 Preliminaries and notation

We first introduce the following notation for the sake of convenience:

C =

{
CA : y ∈ ΩA

CB : y ∈ ΩB ,
(67)

It is also useful to recall the definition of the transpose operator for fourth rank
tensors, that is

Definition 1 Let T be a fourth rank tensor. The transpose of T, denoted TT , is
the unique fourth rank tensor which satisfies

ATB = BTTA (68)

for all second rank tensors A, B. In particular, for any tensor T with components
Tijkl, i, j, k, l = 1, 2, 3, the componentwise representation of TT reads

Tklij , (69)

that is, T = TT if and only if T has major symmetry. Applying the componentwise
representation (69) to two fourth order tensors T and S, we also obtain

(TS)T = STTT . (70)

We further notice that, whenever T is major symmetric, then for every fourth rank
tensor A we have(

ATTA
)T

=

(
AT
(
ATT

)T)
= ATTTA = ATTA, (71)

i.e. ATTA is also major symmetric.
We also recall the definition of positive (semi) definiteness (restricted to fourth

rank minor symmetric tensors), that is

Definition 2 A fourth rank minor symmetric tensor T is called positive semidef-
inite if for any symmetric second rank tensor A,

ATA ≥ 0. (72)

A fourth rank minor symmetric tensor T is called positive definite if for any non
zero symmetric second rank tensor A

ATA > 0. (73)
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In particular, we point out that positive definiteness of T also implies the existence
of a positive definite inverse T−1 which fulfills

TT−1 = I, (74)

where I denotes the fourth rank identity tensor satisfying

IA = A (75)

for every second rank tensor A.
We first prove the following

Lemma 1 Let T be a positive definite fourth rank tensor with minor and major
symmetries. Then, for all second rank tensors A and B, the following inequality
holds:

1

2

(
ATA + BT−1B

)
≥ AB, (76)

where AB denotes the inner product between second rank tensors defined by

AB = BA = AijBij , (77)

where summation over repeated indices i, j is understood.

Proof We set
G = A− T−1B (78)

and compute

1

2

(
ATA + BT−1B

)
=

=
1

2

[
GTG + (T−1B)T(T−1B) + (T−1B)TG + GT(T−1B) + BT−1B

]
= (79)

=
1

2

(
GTG + 2GB + 2BT−1B

)
=

1

2
(GTG + 2AB) ,

where we exploited major symmetry of T to obtain (T−1B)TG = GT(T−1B) = GB.
Since T is positive definite

GTG ≥ 0,

thus (79) implies (76). ut

3.2 Properties of the effective elasticity tensor

We are now ready to state the theorem that fully characterizes C̃ as an effective
elasticity tensor for the composite material. We first merely use the properties of
(a) the auxiliary tensor M (proved in Theorem 1), (b) the constituents’ elasticity
tensor C, and (c) the specific form of the cell problems (45-48) to show equivalent
representation 3 of C̃ (point (i)), that are exploited to prove minor and major sym-
metries (point (ii)) and positive definiteness (point (iii)), thus recovering known
facts (see, e.g., [8]). The points (iv) and (v) are entirely novel, and concern the
Voigt and Reuss bounds.

3 The representation C̃ =
〈

(I + M)T C (I + M)
〉

shown here can also be found, although

proved using a different approach, in [8], page 198, proposition 10.12
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Theorem 2 (Properties of C̃) Let us consider the fourth rank tensor C̃ given
by relationship (53). Then, the following facts hold:

(i) C̃ has the following equivalent representations

C̃ = 〈C〉+ 〈CM〉 =
〈

(I + M)T C (I + M)
〉

= 〈C〉 −
〈
MTCM

〉
.

(ii) C̃ possesses minor and major symmetries.
(iii) C̃ is positive definite.
(iv) 〈C〉 − C̃ is positive semidefinite.

(v) C̃−
〈
C−1

〉−1
is positive semidefinite.

Proof (i) We account for relationship (53), such that, exploiting notation (67)
and global integral average (25), we immediately obtain

C̃ = 〈C〉+ 〈CM〉 . (80)

We multiply equation (45) and equations (46) by χAirs, χ
B
irs and integrate

over ΩA, ΩB , respectively. Then, summing up the resulting equations and
integrating by parts yields:∫

ΩA

CAijpqξ
kl
pq(χ

A)ξrsij (χA) dy +
N∑
α=1

∫
ΩB

CBijpqξ
kl
pq(χ

B)ξrsij (χB) dy +

+

[∫
Γ

CBijpqξ
kl
pq(χ

B)χBirsnj dS−
∫
Γ

CAijpqξ
kl
pq(χ

A)χAirsnj dS +

+

∫
Γ

CBijklχ
B
irsnj dS−

∫
Γ

CAijklχ
A
irsnj dS

]
+

+

∫
ΩA

CAijklξ
rs
ij (χA) dy +

∫
ΩB

CBijklξ
rs
ij (χB) dy = 0,

(81)

where the contributions on ∂Ω cancel due to y-periodicity and summation
over repeated indices i, j, p, q is understood. Exploiting interface conditions
(47-48), also the contributions over every interface Γα in equation (81) cancel,
such that, accounting for definitions (55), (56), (25), we obtain〈

MTCM
〉

+
〈
MTC

〉
= 0, (82)

thus, summing (82) to (80) yields

C̃ =
〈

(I + M)T C (I + M)
〉
. (83)

Finally, exploiting major symmetry of C, and property (71), we deduce that
MTCM and hence also

〈
MTCM

〉
is major symmetric. Accounting for rela-

tionship (82),
〈
MTC

〉
is then major symmetric and〈

MTC
〉

=
〈
MTC

〉T
=

〈(
MTC

)T〉
=
〈
CTM

〉
= 〈CM〉 . (84)

Thus, according to (82) and (84)

〈CM〉 = −
〈
MTCM

〉
, (85)
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that is, enforcing representation (80)

C̃ = 〈C〉 −
〈
MTCM

〉
, (86)

such that C̃ possesses the three representations (80), (83) and (86).
(ii) Since C is major symmetric, then exploiting representation (83), C̃ is major

symmetric via property (71). In order to prove minor symmetries, exploit-
ing representation (80), we only need to prove that 〈CM〉 possesses minor
symmetries. This is the case because CM is both left and right minor sym-
metric due to left minor symmetry of C and right minor symmetry of M,
respectively.

(iii) Accounting for positive definiteness of C and representation (83) we have,
for every y-constant, second rank symmetric tensor A:

A(C̃A) = 〈B (CB)〉 ≥ 0, (87)

where we set

B = (I + M)A. (88)

It follows that A(C̃A) = 0 if and only if B = 0. To prove positive definiteness
of C̃, we therefore only need to prove that

B = 0⇔ A = 0. (89)

Obviously, A = 0 implies B = 0. Let us then assume B = (I + M)A = 0, then,
enforcing (61) we have

0 = 〈(I + M)〉A = A, (90)

which completes the proof of statement (iii).
(iv) Given a y-constant second rank symmetric tensor A, we set

D = MA.

Exploiting representation (86) yields

A(〈C〉 − C̃)A =
〈
A(MTCM)A

〉
= 〈DCD〉 ≥ 0, (91)

where we enforced positive definiteness of the elasticity tensor C on the right
hand side.

(v) We choose a y-constant symmetric second rank D, such that, by means of
(83), we obtain

1

2
DC̃D =

1

2
〈(MD + D)C(MD + D)〉 . (92)

We apply inequality (76) to the right hand side of (92) exploiting the follow-
ing identifications

T = C; A = MD + D; B = C̃D (93)

such that
1

2
DC̃D ≥

〈
(MD + D)C̃D

〉
− 1

2

〈
BC−1B

〉
(94)
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Since C̃ and D are y-constant, exploiting (61) yields〈
(MD + D)C̃D

〉
= DC̃D, (95)

thus substituting (95) in (94), and rearranging terms we obtain

DC̃D = BC̃−1B ≤ B
〈
C−1

〉
B (96)

or, equivalently

B

(
C̃−

〈
C−1

〉−1
)
B ≥ 0, (97)

which proves positive semidefiniteness of C̃ −
〈
C−1

〉−1
as D was arbitrarily

chosen and hence B is also an arbitrary symmetric second rank tensor, due
to the positive definiteness and symmetric properties of C̃. ut

Theorem 2 demonstrates that the homogenized tensor C̃ arising in the effective
balance equations (52) satisfies the standard symmetries and positive definiteness
property which characterize an actual elasticity tensor. The coarse scale elastic
energy density reads

W (ξx(ū)) =
1

2
ξx(ū)C̃ξx(ū) ≥ 0. (98)

and the problem (52) can now be regarded as the coarse scale elastic problem.

Remark 3 Note that, according to Theorem 2, the effective C̃ is equipped with
the so called Voigt (upper) and Reuss (lower) bounds provided by the arithmetic

and geometric averages 〈C〉 and
〈
C−1

〉−1
, respectively. As we remarked in the

introduction, these bounds can be proved to characterize any elasticity tensor C∗
defined on a volume element ΩR by the relationship:

〈σ〉R = C∗ 〈ξ〉R , (99)

provided that the so called Hill’s condition (see, e.g. [16]) is satisfied, that is

〈σ〉R 〈ξ〉R = 〈σξ〉R , (100)

i.e. the coarse scale energy equals the average of the fine scale energy. Here, σ and
ξ denote the stress and strain of the material and the integral average is performed
over the representative volume element ΩR (see, e.g [44]). In our context, relation-
ships of the type (99-100) hold for leading order quantities only (when considering
equation (65)), therefore Hill’s condition is not identically satisfied. In general,
when dealing with asymptotic homogenization for multiphase elastic composites,
it is necessary to exploit the cell problems properties directly, using either a direct
approach (as in the current work) or by means of a variational setting (as in [25],
where several of the above properties are proved, in contrast to the work here,
assuming continuity of the elastic properties at the composite interface).

In the next section we perform a numerical test to show the qualitative and
quantitative profile of the elastic Young’s and shear moduli, as well as the Poisson’s
ratio, obtained applying asymptotic homogenization to a single cubic inclusion
problem.
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4 Numerical tests

In this section we compute the effective elasticity tensor that is obtained applying
asymptotic homogenization to a linear elastic composite made of identical cubic
inclusion. We numerically solve the elastic-type cell problems (45-48) to compute
the auxiliary tensors MA and MB defined in (55) and the effective elasticity tensor
C̃ by means of (53). We perform the three dimensional numerical simulations via
the finite element software COMSOL Multiphysics and exploit the same compu-
tational setting described in detail in [33], in particular assuming a linear elastic
isotropic and uniform behavior of both the matrix and the inclusion phases. The
Young’s moduli and Poisson’s ratios, denoted by EA, EB and νA, νB , respectively,
are consistent to those exploited in [33]; they refer to the realistic scenario reported
in [42], so that, identifying our matrix ΩA and our inclusion ΩB with the collagen
matrix and the (hydroxyapatite) mineral inclusion in the bone, we have

EA = 5 [GPa]; νA = 0.3; EB = 110 [GPa]; νB = 0.28. (101)

The considered geometry possesses three orthogonal planes of symmetry and is
invariant with respect to permutation of the three orthogonal axis (see, e.g., [40]).
Hence, adopting (from now on) the Voigt notation (see e.g. [9]) the elasticity tensor
C̃ is represented by a 6× 6 symmetric matrix equipped with cubic symmetry (see,
e.g. [11]), namely

C̃ =



C̃11 C̃12 C̃12 0 0 0

C̃12 C̃11 C̃12 0 0 0

C̃12 C̃12 C̃11 0 0 0

0 0 0 C̃44 0 0

0 0 0 0 C̃44 0

0 0 0 0 0 C̃44

 , (102)

that is, three independent elastic parameters fully specify the elastic behavior
of the composite. In particular, the homogenized Young’s modulus EH , shear
modulus µH and Poisson’s ratio νH read (see, e.g.[4]):

EH = C̃11 −
2C̃2

12

C̃11 + C̃12

; νH =
C̃12

C̃11 + C̃12

; µH = C̃44. (103)

Next, we present a parametric study by varying the volume fraction of the inclusion

φm =
|ΩB |
|Ω| . (104)

We present the results in terms of the Young’s modulus EH , Poisson’s ratio νH ,
shear modulus µH , and quantifying the deviation of the results from a purely
isotropic elastic material for

0 < φm < 1,

approaching 100% volume fraction at a resolution of 1%.
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4.1 Young’s and shear elastic moduli

The Young’s and shear moduli versus the inclusion volume fraction φm are re-
ported in Figures 2 and 3, respectively. The elastic moduli are both bounded by
their Reuss and Voigt counterparts. This is intuitive, as the bounds proven in
Section 3 can be interpreted as energetic bounds and hold for any kind of specific
deformation, including those induced by uniaxial and shear loading, represented
by the Young’s and shear moduli. This argument can be proven applying the Reuss
and Voigt bounds and positive definiteness presented in Section 3 to suitable linear
combinations of the constant strains A (in Voigt notation):
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Young’s modulus: Asymptotic homogenization vs Voigt and Reuss bounds

 

 

Asymptotic Homogenization Young’s Modulus EH

Voigt Young’s Modulus EV

Reuss Young’s Modulus ER

Fig. 2 The asymptotic homogenization Young’s modulus EH , together with the corresponding
Voigt and Reuss Young’s moduli, is shown as a function of the single cubic inclusion volume
fraction φm.


1
0
0
0
0
0

 ,


0
1
0
0
0
0

 ,


0
0
0
1
0
0

 (105)

leading, for instance, to the following bounds

0 < CR11 < C̃11 < CV11, (106)

0 < CR11 + CR12 < C̃11 + C̃12 < CV11 + CV12, (107)

and
0 < CR44 < C̃44 < CV44, (108)

respectively. Relationships of the kind (106-107) and (108), when applied to defi-
nitions (103), finally lead the Voigt and Reuss bounds for the Young’s and shear
moduli

ER < EH < EV , µR < µH < µV , (109)
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Shear modulus: Asymptotic homogenization vs Voigt and Reuss bounds

 

 

Asymptotic homogenization shear modulus µH
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Fig. 3 The asymptotic homogenization shear modulus µH , together with the corresponding
Voigt and Reuss shear moduli, is shown as a function of the single cubic inclusion volume
fraction φm.

respectively. Our numerical results show for the first time the asymptotic homog-
enization profile of the Young’s and shear moduli for inclusions volume fraction
approaching 100%. Although the results hold for a particular geometrical setting,
we believe that this study can be used as a first step towards the optimal design of
artificial composite materials. The presence of a surrounding soft matrix greatly
inhibits the overall material stiffness and we predict that composite remains rel-
atively compliant also for high inclusions volume fraction. This feature (which is
also in qualitative agreement with the results obtained via average field techniques,
see our computational study [33] for a detailed comparison) can be exploited to
obtain composite materials compliant with respect to uniaxial and shear loadings,
nonetheless being primarily made of a dramatically stiffer material, which might
be useful to maximize other physical properties (such as thermal conductivity and
corrosion resistance, etc.).

4.2 Poisson’s ratio

The homogenized Poisson’s ratio νH versus the inclusion volume fraction φm is
shown in Figure 4. The Poisson’s ratio does not represent a particular deforma-
tion, rather, it is physically defined as the opposite of the ratio of transverse to
uniaxial strain, i.e., it is related to the transverse compression of the material at
fixed uniaxial loading. Therefore, no bounds apply in this case, and its value can
be dramatically lower than that of the individual constituents. This effect can be
explained observing that the inclusions within the composite represent a stiff core
which inhibits compression in the transverse direction upon uniaxial loading. This
peculiar behavior is also captured by Eshelby based technique (although quantita-
tive smaller, see [33]) and RVE techniques, see the computational study reported
in [38] for sphere reinforced composites.



22 Raimondo Penta, Alf Gerisch

0  10 20 30 40 50 60 70 80 90 100

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

φm

ν

Poisson’s ratio: Asymptotic homogenization vs Voigt and Reuss bounds

 

 

Asymptotic homogenization Poisson’s ratio νH

Voigt Poisson’s ratio νV

Reuss Poisson’s ratio νR

Fig. 4 The asymptotic homogenization Poisson’s ratio νH , together with the corresponding
Voigt and Reuss Poisson’s ratios, is shown as a function of the single cubic inclusion volume
fraction φm.

4.3 Deviation from isotropy

The obtained material is anisotropic and cubic symmetric, and the deviation from
isotropy can be quantified defining a function DEV as follows:

DEV = C̃11 − (C̃12 + 2C̃44). (110)
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Single cubic inclusion

Fig. 5 The deviation from isotropy is shown as a function of the inclusion volume fraction
φm for a single cubic inclusion in a cubic cell.

Whenever DEV = 0, relationships (103) turn into the classical definition of the
Young’s modulus and Poisson’s ratio in terms of the shear modulus µH and Lamé
constant λH , i.e.

EH =
µH(3λH + 2µH)

λH + µH
; νH =

λH
2(λH + 2µH)

, (111)
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where C̃12 is identified with λH in the case of isotropy. The nonlinear profile of the
deviation from isotropy is shown in Figure 5. Although the individual constituents
are isotropic, we obtain an anisotropic, cubic symmetric elasticity tensor. This
effect is not merely related to the particular geometrical setting we investigated,
rather, it accounts for the prescribed structural arrangement of the inclusions
within the matrix. In fact, as highlighted in [33], a cubic symmetric structure is
obtained also for spherical inclusions, and the anisotropy that arises from asymp-
totic homogenization of isotropic constituents is, unlike Eshelby based techniques,
not only related to the inclusions aspect ratios.

5 Concluding remarks

We have started from a revisited asymptotic homogenization model for linear elas-
tic composites with discontinuous material properties. Our formulation explicitly
highlights how the discontinuity in the individual constituents’ elastic coefficients
plays a role in the computation of the effective elasticity tensor. The jump in the
elastic coefficients across the interface between the matrix and the inclusion trans-
lates into stress discontinuity interface conditions in the relevant cell problems.
The latter play, in turn, a major role in determining the effective elasticity tensor.
The properties reported in Theorem 1 have been exploited to prove our major
results concerning the characterization of the fourth rank operator obtained via
asymptotic homogenization as the effective elasticity tensor, as reported in Sec-
tion 3. We have proven every property which characterize an elasticity tensor for
material composites, that is, major and minor symmetries, positive definiteness,
and the energetic lower (Reuss) and upper (Voigt) bounds. We have carried out
the proof without considering the periodic cell as an RVE, as it does not fulfill the
Hill’s condition (the average fine scale energy is not identically equal to the coarse
scale energy). We have finally shown a numerical test solving the cell problems
for a stiff single cubic inclusion embedded in a softer matrix. We have varied the
inclusion volume fraction and presented the results in terms of Young modulus,
shear modulus, Poisson’s ratio, and deviation from isotropy. We have provided
quantitative insights towards the application of asymptotic homogenization for
the study of real material composites, complementing the computational analysis
reported in [33] on the potential of the technique, and for its application for the
optimized design of artificial composites.

The coarse scale model for elastic composites is open to improvement towards
a better understanding of real, imperfect, and non periodic elastic composites. We
comment on these aspects below.

Our major results reported in Section 3 are only valid whenever Theorem 2
holds, the latter requiring, in turn, perfect interface bonding. In fact, continuity
of displacements across the interface translates into a corresponding continuity
of the auxiliary displacements in the cell problems, which represents a necessary
interface condition to prove that the cell average of the solutions gradient vanishes
(see Theorem 1). The present model could be significantly extended to include
imperfect interfaces (interface debonding), as done for Eshelby based techniques
in [35]. The theoretical framework we have developed can be adapted to prove
novel bounds (that will in general differ from the standard Voigt and Reuss bounds
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proven here) for the effective elastic constants as a function of the specific interface
debonding prescription dictated by the actual physical system at hand.

Periodicity of the fine scale geometry is typically assumed when deriving coarse
scale models via asymptotic homogenization. Note that this assumption is not
strictly necessary to formally derive the coarse scale model as such (see for exam-
ple the classical derivation of poroelasticity equations carried out in [6] assuming
local boundedness only). However, the representative periodic cell enables us to re-
tain fine scale information on the coarse scale, without resolving every geometrical
detail of the composite, which is indeed the primary goal of this approach. Follow-
ing the approach recently developed in [31, 32], it is also possible to generalize the
current formulation to non macroscopically uniform media, i.e. retaining fine scale
periodicity and allowing for coarse scale variations of the fine scale structure. In
this case, the solution of a different cell problem at every coarse scale point would
be required, thus greatly affecting the computational cost. High performance par-
allel computing would be then necessary to solve the cell problems via independent
instances, thus reducing the global computational time. In [5, 10], it is also shown
how to bypass this issue for specific geometrical setting (including, for example, a
collection of spherical obstacles) in the context of advection-diffusion and porous
media flow problems.

Finally, although this paper focuses mostly on theoretical aspects, its natural
development resides in the application to realistic experimental scenarios (such as
musculoskeletal mineralized tissues) and in the optimal design of artificial com-
posite materials. Our results confirm that the computational procedure adopted
in [33] has a robust theoretical foundation. Computations based on real composite
geometries will allow model validation through comparison against experimental
data, and the provided information concerning the mechanical behavior of a peri-
odic composite can be exploited for the optimal design of artificial materials and
to explain relevant physiological phenomena, as done for example in [34] in the
context of aged bone.
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