
The asyml)totic mal~ifold of ~ perturbed linear 
differential equation as determined by 

the comparison principle (*). 

TItOM:A8 HALLAbl (U,S,A,) (¢¢} 

,tbstt'aet. - The asymptotic properties of  the solutions of  a linear homogeneo~s system of 
differential equations determine, u~der suitable restrictions~ the asymptotic properties of  
a set of  solutions of  a no~dinear perturbation of this linear eq~¢ation, The comparison 
principle is used here to generate an asymptotic manifold of  the perturbed equation, 
The majorant  function that is used il~ connection wt th  the comparison technique is 
usually assumed to b~ ~o~,decreasi~g in  the dependent variable- Ho~vever, properties of  
the asymptotic manifold are discussed here under the opposite monotonicity assumpt,on, 
namely,  that the ,majorant function is nonincreasing in the dependent t ariable, This 
type of  m~joral~,t ft, tl~ztio~ arises~ for example, in c~rtai~ gravitation problem~. The 
m~irt res~dt on the s~ruehtre of  a.vymptotic manifolds which have a~ as gmptotic uni. 
fortuity is that  soltttions close to the m~nifold are either in  the manifold or do not 
exist in  the future. 

I .  - I n t r o d u c t i o n .  

Cons ider  the l inea r  sys tem of d i f f e r en t i a l  equa t ions  

(1) d y / d t  ~ A( t )y  

and  the n o n l i n e a r  p e r t u r b a t i o n  of this l i nea r  equa t ion  

(2) d x / d t  = A( t ) x  Jr" f ( t ,  x). 

In  these equa t ions ,  we will r e q u i r e  tha t  A(t) is a rea l  va lued  con t inuous  
n X n m a t r i x  de f ined  on J : [ 0 ,  oz); f( t ,  x~) is a con t inuous  func t ion  f rom 
J X U, where U----R n - / 0 } ,  to R n. Th e  symbol  I[" [I will des igna te  some con- 
ven ien t  vec to r  or m a t r i x  norm.  Th e  f u n d a m e n t a l  m a t r i x  of (1) tha t  is equa l  
to the n X n iden t i ty  ma t r i x  at t--~ to will be deno ted  by Y( t ) .  In  o rde r  to 
have  a m e a s u r e m e n t  of the size of Y(t) ,  we will  r e q u i r e  tha t  the re  exis ts  a 

n o n s i n g u l a r  con t i nuous  n X n m a t r i x  A ~ A(t) de f ined  on J, a con t inuous  
posi t ive  sca la r  va lued  func t ion  a ~  ~(t) de f ined  on J ,  and a cons tan t  k,  k ~ I l I ~ i 1 ,  

(where  I~ is the n X n iden t i ty  matr ix)  such  tha t  

(3) Ilv(t) Y(t)li _ ks(t), t e J; 

{*) This research was supported in part by the ~ational Science :Foundation under 
grant GP-1154:3. 

(**) Entratu in Redazione il 6 giugno 1970. 
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and 

(4) [] Y-~(t)A-~(t)ll < o¢-~4), t e J; 

Under  suitable hypotheses, the asymptotic properties of the solutions of 
the linear system of differential  equations (1) are transfered to certain of 
the solutions of the nonlinear system of differential  equations (2). A technique 
that has often been used to effect this t ransfer  of asymptotic behavior is the 
comparison principle. The comparison principle requires a majorant  of the 
function f. We will assume that the majorant  is given by the inequali ty 

(5) ~ Y-~(t)f(t, x)l I <_ w(t, [I A(t)x!la-~(t)), 

t ~ J ,  x ~ U .  

In  (5), w(t, r) is nonnegative, continuous on J X ( J - - i 0 [ ) ,  and nonincrea- 
sing in r, r > 0, for each t e J. 

Per turbat ion problems which involve this part icular  class of majorant 
functions have received very little attention in the li terature.  In fact, most 
research art icles in this area consider majorant  functions that are nondeerea.  
sing in r for each fixed t e J; (for example, see the references, [1]-[6]). This 
remains true despite fundamental  applications (for example, gravitational 
problems) where the differential  equations involved contain a decreasing fun- 
ction of the dependent  variable. However, there is one result  in a fundamental  
paper on asymptotic behavior by J .K.  HALE and N. O~cc~Ic  [3] where the 
n th  order scalar equation considered has the nonlinear portion of the diffe- 
rential  equation majorized by a nonincreasing function of the dependent  
variable (see Corollary 2, [3, p. 72]). 

Some of the results of this article are closely related to results of 
F. BRAVER and J. S. W. Wol~c~ [2]. In [2], the majorant  function w ~ w(t, r) 
in (5) is assumed to be nondecreasing in r for each fixed t in J. Subject to 
this hypothesis, asymptotic correspondences between the solutions of (1) and 
(2) are obtained for arbitrari ly sinai! initial positions. Under  our assumption 
(5), we obtain a dual  result  that solutions of (1) and (2) with arbitrari ly large 
initial positions have a prescribed asymptotic behavior. These results indicate 
that (under certain conditions) a manifold of solutions of the nonlinear dif- 
ferential  equation (2) is generated by the l inear  equation (t). This manifold 
and a certain openness property (perturbable) was considered by TOROS}IELIDZE 
in [6] for some scalar differential  equations. A more formal development of 
the properties of this manifold was given in a more general  setting by J.W. 
HEIDEL and the author in [5] (see also [4]). As is indicated below, the non- 
increasing hypothesis in (5) leads to an asymptotic manifold that is essentially 
closed-in-itself .  
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We now state the form of the comparison principle that we will need. 

LEMMA 1. - (Viswanatham, [7, Theorem 2]). Let  w = w(t, r) be cont inuous  
a n d  nonincreas ing  in  r for each f ixed t in  the region R defined by I t -  to]<_a, 
j r - -  ~[ < b where a a n d  b are posi t ice  real numbers .  Suppose  that ¢~ = ~(t) is 
cont inuous  for I t - - t o t <  a a n d  satisfies the ineq**ality 

t 

_ f ,v(s,  (s))ds 
tv 

there. Then, ~ ( t ) ~  p(t) for to <_ t <_. to + a where a ~ vain [a, b /M],  M > 0 a n d  
i w(t, r) l < M on R, a n d  p = 9(t) is the m i n i m a l  solut ion o f  

(6) d r / d t  ~ - -  w(t, r) 

through the po in t  (to, ~). 

II. - The asymptotic manifold of the perturbed linear equation. 

We find it convenient to view the above perturbation problem in terms 
of an asymptotic manifold of solutions. 

DEFINITIO~ 1. - The asymptot ic  m a n i f o l d  S = S(A,  ~) o f  (2) generated by 
(1) is the set of all solutions x = x ( t )  of equation (2) that satisfy the order 
relation 

(7) II a ( t ) (x ( t )  - -  y(t))[] ---- o (~ ( t ) ) ,  (t  - .  : ~ ) ,  

for some solution y - ~  y(t) of equation (1). 

The first result  below demonstrates  that, under  certain hypotheses, the 
asymptotic manifold of (2) generated by (1) is nonempty.  A related result  for 
nondeereasing majorants  may be found in [2, Theorem 1]. 

THEOICE~ 1. - Let  the condit ions (3), (4), a n d  (5) be satisfied. Suppose  that 
the in i t ia l  va lue  problem 

(8) d r / d t  =- - -  w(t, r), r(to) - -  ro > 0 

has a m i n i m a l  solut ion ~ = ~(t) that is posi t ive on Jo = [to, ~ ) .  Then,  a n y  so- 
lu t ion x = x(t; to, xo) o f  (2) that in i t ia l ly  satisfies the inequal i ty  

(9) 1]xol[ ~___iro 
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is in S(5, o:). Furthermore, the solution y = y(t) of (1) that corresponds to ~c by 
the asymptotic relation (7) is unique. Also, i f  in addition to satisfying (9), 
[lxo[[ satisfies the inequality, []Xo ~> r o -  p~, P~o = lim~_~:~p(t), then y is nonzero. 

P~ooF. - By using the above integral  inequal i ty (Lemma 1) we will find 
a lower bound for 1]A(t)x(t; t~, x~)[l~-~(t) provided that inequal i ty  (9)holds .  
First ,  we note that condit ion (4) implies  that  

(10) ]1 ~ (t) Y ¢)II ~ 11 L Ii ~(t) 

where /~ is the n X n identi ty matrix.  The inequali t ies  (3) and (10) mean 
that the pair  (5, a) is a " g o o d "  measurement  of the fundamenta l  matr ix  of (1). 

x- * O '  IAsln~, the variat ion of parameters  formula, we have 

(il) 
t 

Y-~(t)~t; to, x o ) :  xo + .fl Y-~(s)f(s, x(s; to, xo))ds. 
tO 

From the equations (10) and (11) we obtain 

t 

II xo II - -  f w(s, li A(s)x(s; to, xo)II~-l(s))ds 
t O 

< [lXol[ - -  f[] ¥-~(s)f(s, x(s; to, xo))llds 
t o 

< it Y-t(t)x(t; to, xo) It 

<_ ~-l(t)]lA(t)x(t; to, xo)tl. 

Since (9) is wdid, an appl icat ion of Lemma  1 establishes the inequal i ty 

(12) t[ia~t)~(t; to, xo)[I ~ ~(t)~(t):> o, t ~ to; 

hence,  x(t; to, to) exists for t_~_~ to. 
The  next  port ion of the proof proceeds much  as in [2]; the only changes  

that  need to be made are due to the differences in the monotonic i ty  hypo- 
theses. To find a solut ion y of (1) satisfying (7) we consider the expression 

t 

x(to) + f Y-~(s)f(s, x(s; to, xo))ds. 
t O 
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Using condit ions (5) and (12), we obtain 

t 

f l] Y-~(s)f(s, x(s; to, Xo}[lds < ro - -  ~(t), t ~  to. 

Therefore,  the l imit  

t 

limft.~o :/ ( s t f ( s ,  ~-~ ~(s ;  to, xo)}Cts : 
t o 

exists;  hence,  let 

(13) 

790 

f Y-~(s)f(s, x(s; to, xo))ds 
tO 

CO 

c =  ~Co "k" I Y-l(s)f(s'  x(s; to, xo))ds. 
tO 

Using the equat ions  (11) and (13), we can write 

OC; 

a(Ox(t; to, xo)= a(t)y(t)c- a(t)Y(t) f y-~(s)f(s, x(s; to, xo))ds. 
t 

Using condit ion (3) and the above equation,  the asymptot ic  re la t ionship 
{7) with y(t} ~ Y(t)c is easily seen to be satisfied. 

The  conclusion of the theorem concern ing  the un iqueness  of the corre- 
spondence y--~ x as de te rmined  by (71, follows from inequal i ty  (10). For  if 
yl(t} ~ Y(t}cl and y2(t} ~ Y(t)c2, ct ~ c2, both satisfy the asymptot ic  re lat ionship 
(7) for the same solut ion x of {2), then 

[I A(t)(yl( t )  - v2(t))t] = o(~(t)), (t ~ ~ ) .  

Since cl ~ c2, an appl icat ion of (10} leads to a contradict ion.  
I t  remains  to show that  y - ~  y ( t ) ~  ~Y(t)c is nonzero provided llxoll is suffi- 

ciently large. To accomplish this, we note that  

t 

Xo + f Y-l(s)f(s, x~s; to, Xo))ds 
to 

H xo~ + ~(t~ - ro ,  t ~ to. 
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If [IXoIl> r o -  a:~ and (9) is satisfied, then ~c[l> 0; and, hence, y is non- 
zero. This completes the proof of Theorem 1. 

REMA]~K 1. - The inequali ty (9}, l]Xol]~ro, is a weaker hypothesis than 
assuming that ~h{tCxoll~ro~(lo). The stronger hypothesis has been imposed 
previously (see [2]} in analogous situations. 

As mentioned in the proof of Theorem 1, conditions (3) and (4) require 
{in some sense) that the function h(l)~-~(t) be a good measurement  of the fun- 
damental  matrix Y(t) of (2). Some obvious choices of A that are useful  in 
certain instances are 5---~I~ and h ~  Y-~. To demonstrate that functions 
other than these will also yield asymptotic results, we consider the second 
order nonlinear  scalar equation 

u" + t-1(t + ~)-2a(s)I(u - -  tu't: + u':] -~ = 0 

where a(t}e C[I, c~)f~ L~[1, ~ ) .  Using u ~ ~el, u ' =  ~'2, we write the above 
equation as a system in the form (2) with 

and 

a =  , A t ) =  , 

~2 

( o ) 
f ( t ,  x ) =  _ a ( t ) / t ( t  + 1)2[(xl - tx2) ~ + ~] 

The fundamental  matrix Y of the associated linear equation such that 
¥ i i )  -~ Is is 

For  the purposes of this example, let ti" I[ designate the sum of the abso- 
lute values of the components of a vector  or matrix. With 5 and ~ chosen as 

(,o ,) 5(t) _--- , ~(t} = 3-1(t -}- 1) -~ , 
t-1 

it is easy to verify that (3) and (4) are satisfied with k----t8. 
Since 

lattll 
l] Y-~(t)f(t, x)I[ = (t A- 1)2[(xl - -  tx~) 2 -f- x~] ' 
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the function w in (5) may taken as 

where 

w(t, r) -~ 18 la(l) lr -2 ,  

r = I] a ( t )x  [] ~-qt )  = 3(t + l ) [ Ix ,  - -  tx~ I + I x~ []. 

Since a E L q l ,  ~ ) ,  the initial value problem (8) has a solution that re- 
mains positive provided ro is sufficiently large. Hence, the hypotheses of 
Theorem 1 have been verified for this example. 

The hypothesis that the majorant  function is nondecreasing in r presents  
some difficulties in a study of propert ies of the asymptotic manifold that do 
not occur when the majorant  is nondecreasing in r. These difficulties might 
be alleviated by the development  of the theory of differential  and integral 
inequali t ies for such majorant  functions. However,  it seems to be very desi- 
rable to have an example of a differential  equation of the from (6), with the 
property that given any initial data [/o, ro), t o ~ 0 ,  ro > 0, there exists a mi- 
nimal solution r(t; to, ro) of the initial value problem (8) that remains posi- 
tive on fro, ~ ) .  The existence of such an example is not readily cslablished. 
For  instance, if a differential  equation with variables separable is considered, 
under  very natural  assumptions,  the above property cannot be demonstrated. 

RE~AR:K 2. - Let (i) gqr) be positive, nondecreasing on (0, ~ )  and conti- 
nuous on [0, oc) with g t 0 ) = 0 ;  and, (ii) a(l) be continuous, positive, and in 
L 1 on J-----[0, c~). Then, the equation g(r)dr/dt ~ - - a ( t )  has a solution that 
tends to zero as t ~ oc.  Fur therm(re ,  the equation has solutions that remain 
positive (that is, exist) only on a finite interval. These conclusions are a 
consequence of the following statements.  

r 0*3 
f ,  f a  

If G r ) =  I g(s)ds, then lim r{t; to, ro)-~ 0 provided G(ro)---- I a(8)ds. 
J t.--> ~ J 

0 t o 

(X) 
f ,  

ro > 0 and G(ro)< !a(sJds then lim~_~ r(l; to, ro) ---- 0 for some T, to < T < c<~. If 

t O 

The hypothesis  a~L l [0 ,  ~ )  of (ii) is a necessary condition for a solution 
to have a limit. In fact, for the more general equation (6), it is easy to show 
that if the initial value problem (8) has a solution r-----~'(t; to, ro) with 

lim~_~r(t; to, r o } = r o o ~ 0 ,  then ~ w ( s ,  )~ )ds<~  for all ). 
/ a  

> woo. 

The above remarks point out the difficulties that arise when one at tempts 
to proceed as was done in the case of a nondecreasing majorant,  see [5]. We 
will continue our investigation by utilizing another property of asymptotic 
manifolds. 

Annali di Matematica 39 
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A positive, continuous, scalar valued function ~----~{t) defined on some 
interval [T, oo1 satisfying lim ~ ( t ) =  0 will be called a null function. 

DEFI~ITIOI~ 2. - A subset A of the asymptotic manifold S ' - S ( A ,  a) of 
(2) generated by {1) is locally asy~l~plotically u~iform if given any solution 
x~ = x ( t ;  t~, xl~ of (2) in A, there exists a ~----~(x~)> 0 and a null function 
~ =  ~,(t) defined on [T, c~) for some T ~ t ~ ,  such that whenever x(t; ix, x2) 
is in A with [] x~ - -  oc: [I < 8, then 

Ila(t)(x(t:  t~, x 2 ) -  y~(t)I] _< ~(tt~(t),  t >  T 

where y2 = y2(t} denotes the solution of (1) that corresponds to x(t; tl, x2) by (7}. 

DE~I~I~IO~ 3. - A subset  A of S(A, :¢) is asymptotically uniform if there 
exists a null function ~ = ~(t) defined on [T, oo) for some T ~ 0 ,  such that 

[l ~(t)(x(t)  - y(t)tll-< ~(t)~(t), t >_ T 

for all solutions x =  x(t) of (2) in A. The function y is the solution of (1) 
that corresponds to x by (7). 

The next result  shows that the comparison principle leads to asympto- 
tic uniformity for certain subsets of S(A~ ~). 

TIIEOI:CEM 2. - Let the hypotheses of Theorem 1 be satisfied. Suppose that 
I ~  [To, T1] is a compact s~¢binlerval of J o =  [t0, ~x:). Then, the subset Ac,(I) 
of S{A, ~) which co~sists of all solutions x = x(t) of (2~ in S(A, ~) that satisfy 
the inequality 

(14) II Y-l(t l)X(to) il ~ ~(t~). 

for some tl in I, is asymptotically uniform. 

Pnoo•. - Let  x be in Ae(I); then, since Ae(I ) C_ S(5,  ~), the argument 
used in the proof of Theorem 1 leads to the equation 

(15) ~(t) (~(t) - y(0) 

:30 

= --  A(I)Y(t} f Y-1(8)[(8, x(8))d8 
t 

for some solution y of (1). The hypothesis (14) and Lemma 1 imply tha.t for 
any ~v in A~(I) 

(16) I[ a(l)x~t)~ > - -  p(t)~(t), t _> T1. 
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Equat ion  (15) and the inequal i ty  (16) lead to 

tl a(t)  (x(t )  - y(t))11 

___k f w(s, U a(s)x(s)ll  - ts))ds 
t 

The right  side of the above inequal i ty yields a uni form nul l  function,  
whose domain is [T~, c~), that  satisfies Defini t ion 3 for the class A~(I). This 
completes  the proof of Theorem 2. 

COROLLARY. - Let the hypotheses of Theorem 1 be satisfied and suppose 
that initial value problems of (2} have unique ~olutions. The class A~ of all 
solutions x - ~  x(t) of (2) that are in S(A, ~) and satisfy the inequality 

(17) It v-l't* ~xlt* 

for some tf  e Jo is locally asymptotically uniform. 

PROOF. - Let x----x(t; t~, x~) be in Ap; then, the inequal i ty (17) is sati- 
sfied for some t* e Jo. Since solutions of (2) depend  cont inuous ly  upon their  
ini t ial  data, there exists a ~ > 0 such that  if x2 satisfies the inequal i ty  
Ilxl - -  x2[l < ~ then 

for t~ in some compact  subinterval  I, of Jo, that  contains t*. Theorem 2 
implies that  A~(I) is asymptot ical ly  uniform. Hence,  A~ is locally asmptoti- 
cally uniform. 

Our next  resul t  shows that  l imits of solutions in the asymptot ic  manifold 
are ei ther  in tile asymptot ic  manifold  or have a finite escape time. 

T H E O R E M  3 .  - Let the hypotheses of Theorem 1 be satisfied. Suppose that 
the asymptotic manifold, S ~- S(A, :¢), of (12) generated by (1) is locally asym. 
ptolically uniform. I f  }x~ !~_~ is any sequence of initial positions of solutions 
xn(t; t,, xn) that are in S(A, ~) wilh lim~._,~(l~, x , ) -~( t , ,  x,) where IIx, tl>O, 
and t, ~ to, then either 

(a) there exists a T where t, < T < ~ such that lim~_~r-t/x(t; t , ,  x,)/] = 0; or 

(b~ the solution x(t: t , ,  x,) is in the asymptotic manifold S(A, ~) of 
(2) generated by (1). 
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PROOF.- If the solution x = x ( t ;  t , ,  x , t  does not exist for all t ~  l, 
and (a) do~s not occur then there exists a '/1, t,  < T~ < ~  such that 
lim,.~r~-lIx(t, t , ,  x*)I] = ~ .  In particular,  there is a t~, t,_< l* < TI so that 

Lemma 1 implies that 

!l ~(tlx(t; t , ,  x,)ft ~ ~(t}~(t} 

for all t ~ t *  for which x(t; t , ,  x,) exists. 
However,  from the variation of parameters  equation, we obtain 

l]A(t)x(l; t , ,  ~:,lll:¢-qt} 

< kz-~(t*)[]A(t*ix(t~; t , ,  x,)ll 

t 

+ kl[]¥-~(s) f(s ,  x~ls; t , ,  x,)[lds 
f .  

i /  

t *  1 

<_ ko~-~(tff)]]a(t?)x(t~ ; t, ,  x,)[] 

+ k ~ v t s ,  tta(s)x(s; t , ,  x,)II ~-~(s)ds 
. J  

t$1  

<-- k°:-~(t*) il h(t*)x(t~ ; t , ,  x,)l] 

t 

+ k t w ( s  , ~(s))ds, t ~ t?. 
d 

t *  1 

This yields a contradiction and shows that i[ x(t; t , ,  x,} has a finite 
escape time T, then condition (a) must hold at T. 

Next, the case where the solution x(t; t , ,  ~,) exists for all t ~  t, will 
be considered. In this instance we will sh~w that condition (b) holds; that is, 
x{t; t , ,  x ,)  is in S(A, ~). Since x~(t; t,~, x~) is in S(A, ~) is locally asympto- 
tically uniform, there exists a vector function z(t}, where lim~.~llz(t)H=0, 
which satisfies the equation 

(18) h(t)y~(t) = h(t)x,(t; t,,, x~) + z(t)~(t), 

for t ~  T and n ~ l, 2, ... The uniform convergence of the sequence of solu- 
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tions ix.(t; t,:, x~)} to the solution xlt; t , ,  x,) on compact subintervals implies 
that l im .++x . tT ;  t~, x~) - -x (T ;  t , ,  x,}. 

We note that if solutions to initial value problems of (2) are not uniqu% 
then a choice of a subsequenee of ix~(t; t~, x.)! might be necessary to gua- 
rantee the uniform convergence that is desired. This subsequence will be 
designated, as the original sequence was, by Ix.(t; t~, x~l!. In  ([8), let 
y~(t) ~ Y(t)c.; then, we obtain 

(19} c~---- ¥-~(T),~,~(T; t., x.t + Y-~(T)A-~(T)z(T)~(T}. 

The equation (19} implies that lim=__~mc, exists; let c = l i m . _ , m c . .  The 
solution y ( t ) = X ( t t c  of (1) is the asymptotic correspondent  (under (7}) of 
x(t; t , ,  x,). To verify this statement we note that the limit 

is uniform in n since ~S(5, ~) is locally asymptotically 
each t >__ T, 

l im~l lh ( t ) (xo( t ;  t., x.) - -  y~(t))llo:-~(t) 

uniform. Also, for 

= 11,5(t)(x(t; t , ,  x , )  -- y(t),tl~-~t). 

An application of the •OORE-OsGooD Theorem leads to 

lim II-~t)(x(t; G ,  x , )  - -  y(t))H~-l(t) = o ;  
t-->OO 

. %' z) of generated that is. x(t; t , ,  x ,)  is in the asymptotic manifold ~(h,  (2) 
by (1). This completes the proof of Theorem 4. 

REMARt£ 3. - The eonelusiou (a} of Theorem 3 may not be neglected. 
The following example demonstrates that limits of solutions in the asymptotic 
manifold need not exist in the future. Consider the differential  equation 

(2o) 

/ - - 1  0__<tGt ,  r > 0  
t 
I t  2 1<1_<1,  r > 0 ;  dr 

dt  t 
I 0  2 < t ,  r > 0 .  
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The solutions of (20) are given by 

t 
- - t + c o  

t 2 
r(t} = ~ - -  2t + c~ 

t c2 

O < t g l ,  r > 0  

1 < t ~ , 2 ,  r > 0  

2 < t .  r > 0 ,  

where c~, i =  1, 2, are constants. 
The separatr ix solution r , = r , ( t )  occurs when thc constants are chosen 

3 
as c 0 =  ~ and c ~ = 2 ;  we note that r ,  exists on [0, 2~. Auy sequence of so- 

lutions, try(t; to, r~} ~ of (20) such that r~(to; to r~) $ r,(to)(n--->c~) for 
0 <  t~ < 2  has the property that r,~(t; to, r.) is in tlle asymptotic manifold 
that is obtained by considering (20) as a perturbation of the equation 
d v / d t = O .  However, lim~_,2-(r.(t} = 0 ;  that is, r ,  has a finite escape time. 

Next, we consider the necessity of assuming that the manifold S(A, ~) 
is locally asymptotically uuiform. We will restrict  our remarks  to scalar 
comparison equation of the form (6). 

TI-IEOREZ 4. - Let  w : w ( t ,  r) sat is fy  the condilion {5) and let 
dr~dr = -  w(t, r} have unique solutions to the ini t ial  value problem. Further- 
more, suppose that the set S(1, 1), which consists of all positive solutions 
r = r(t) of (6) that sat is fy  the condition l i m , ~ r ( t ) =  c for some constant c, 
is closed in the sense that condition (b} of  Theorem 3 always holds then S(1, 1) 
is locally asymptotically uni form.  

PROOF. - Let ro ~ ro(t) be in S(1, 1). Suppose that ~ > 0 is chosen so that 

ro(t~)-- 5> z > O 

where e is some positive number  and for some t~ ~ 1. 
Let r ,  denote the infimum of all initial positions rl where r~ > ro(t~)- 

and the solution r(t; t~, r~) of (6} is in S(t,  1}. Since S(1, 1) is closed, 
the solution r , ( O = r ( t ;  l~, r,) is also in S(1, 1). By uniqueness of solu- 
tions to initial value problems, 

r(t; tI, r ~ ) ~ r , ( t ;  t~, r ,)  

for any solution r(t; tl, r~} in S( i ,  1} where rl ~ r , .  Therefore,  

o ~  

r(t; tl, rl) - -  c~ ---- f w(s, r(s; tl, rl))ds 
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(X3 

~ w(s, r,(s; t~, 
f .  

r,l)ds 
. J  

t 

-~ r,(t ; tl , r,) -- c,.  

where lim~o~r,(t;  t~, r , ) = = c , .  Since the function ~(t)-~r,(t; tl, r , ) - - e ,  is a 
null function, S(1, 1) is locally asymptotically uniform. 

II. - The asymptot ic  manifold of  the  l inear  equation as determined by 
the nonl inear  equation. 

The next result  is a dual result  to Theorem 1. The duali ty is concerned 
with the interchange of the roles of the equations (1) and (2). The analogue 
for nondecreasing majorant  functions may be found in [5]. 

T~EOREM 5. - Let the hypotheses of Theorem 1 be satisfied. Then, corre- 
sponding to any solution y ~ y(t) ---- Y (t)c of (1) with IIcll sufficiently large there 
exists a solulion x ~  x(t) of (2) so that the asymptotic relationship (7) is 
satisfied. 

REMARK 4 .  - The hypotheses imply that l im~.~( / )  ---- 9~ exists. The proof 
of the theorem will show that "l[cll suff icient]y~large" means t]cl]> p~. 

PROOF OF THEOREM 5. - It is easy to see that 

(2i) f w(t, k}dt < 

for all )~ > ~ .  Let llell > 9~ and choose ),o satisfying the inequali ty [Ic[[> ),o> ~ .  
Define ~, ~---~c n - - ) , o>  0 and consider the set 

F--~ tu; u(l)----h(t}~-l(l)x(t)where x is conlinuous on J and ~o~llull_~ 

<~ k(!ic H + "c)!. 
Using (21), we suppose that to is sufficiently large so that 

OO 

f ~v(s. [o)ds < ?. 
t o 

The transformation T defined on F by 

(2.9) 
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CO 

__ A(t)Ylt_____~)a(l) / Y-I(s)f(s' A-l(s)~ts)~t(s))ds 
t 

maps F into itself since using (5) and 12t, we obtain the lower bound 

QO 

f,v,s  o)dS] 
t 

O ~  

t 

<_ ~.-~tt)[l Tu(O l[. 

The upper bound on []Tul] is obtained from (22) as follows: 

[l Tutt)I1 <- k II c il + k f [I ~'-~(s)f(s, ~-lts~u(s))II as 
t 

CO 

-< k[[lcll + ~]. 

These two inequali t ies show that T F c F .  
The operator T is continuous and the functions in the image set TF are 

equicontinuous and hounded at every Feint of Jo. The de~ails which are 
used to verify this statement are similar to those found in the proof of 
Theorem 2 of [5]. A modification that is required in the details of [5] is 
that the positive lower bound ),0 in the definition of |he class F is used 
because of the nonincreasing nature of the function w. 

The SCHAUDER-TYCHOI~OFF Theorem now implies that there exists a 
u e F  such that u(t)----Tu{t); that is, there exists a solution x,~-x(t} of lhe 
equation 

OO 
f ,  

X(t) = Y ( t ) c -  Y(t) I Y-1(8)f(8' x(8))d8. 
v 

I 

t 

From this equation, it follows that x(t) is a solution of equation (2) 
which possesses the asymptotic behavior (7). This completes the proof of the 
theorem. 
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REMARK 5. - Motivated by the Corol lary to Theorem 5 of [5], which is 
val id for nondec reas ing  majorants ,  it might  be expec ted  that  (under  cer ta in  
hypotheses)  the asymptot ic  mani fo ld  of the l inear  equa t ion  as genera ted  by 
equa t ion  {2) consis ts  of all of the solut ions of (1). 

An obvious condi t ion  that  one could impose upon the compar ison  equa- 
t ion is that  there  exists  a min ima l  solution ~-----~{t) to an  in i t ia l  va lue  pro- 
blem (8) which  sat isf ies  l im~+~ ,~( t ) :0 .  U n d e r  this assumpt ion ,  Theorem 5 
shows tha t  the l inea r  asymptot ic  mani fo ld  conta ins  all solut ions  of the form 
y(t)----Y(t ic  where  c is in R ~ -  {0!. Because  of our  requi red  domain  of defi- 
n i t ion  of f, this is the best tha t  we can  do, as the fol lowing simple example  
demonst ra tes .  Consider  the sca lar  equa t ions  

d~ 
(25) d--t "-~ 0 r e  J, lx l  > O. 

In  the compar i son  equat ion,  take w(t, r) ---- a(t)r -1, where a(t) is conti.  

f ,  

nuous  and posit ive on J and  / a ( t ) d t  < c o .  The compar i son  equa t ion  has a 

0 

solut ion tha t  tends to zero as t tends  to inf ini ty .  However ,  {25) has no solu. 
t ion to correspond to y ~ 0 under  the asympto t ic  cor respondence  (7). 
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