The asymptotic manifold of a perturbed linear
differential equation as determined by
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Abstraet, - The asymplotic properties of the solutions of a linear homogemeous sysiem of
differentinl equations defermine, under suitable restrictions, the asympiotic properties of
a set of solutions of a wnonlinear perturbation of this linear eguation. The comparison
principle is used here fo gemerate an asymplotic manifold of the perturbed eguation.
The majorant function that is used in connection with the comparison technigue is
usually assumed to bz nondecreasing in the dependent variable- However, properties of
the asympiotic manifold are discussed here under the opposite monotonicity assumption,
namely, that the majorant function is wonincreasing in the dependent tariable. This
type of majorant fanchion arises, for example, in cerfain gravitation problems. The
main result on the structure of asymplotic manifolds which have an asymptotic uni-
formity is that solutions close fo the manifold are either in the manifold or do wof
exist in the fulure.

I. - Introduction.

Consider the linear system of differential equations

(1) dy/dt = Aty
and the nonlinear perturbation of this linear equation
(2) dx/dt = A(t)x 4 [ (t, x).

In these equations, we will require that A(f) is a real valued continnous
n X n matrix defined on J=1[0, oo); (¢, ) is a continuous function from
J X U, where U= R*— {0}, to B*. The symbol || will designate some con-
venient vector or matrix norm. The fundamental matrix of (1) that is equal
to the 5 X n identity matrix at {==14 will be denoted by Y ({). In order fo
have a measurement of the size of Y(#), we will require that there exists a
nonsingular confinuous n X n matrix A == A(f) defined on .J, a continuous
positive scalar valued function «= a(f) defined on J, and a constant &, k=| L],
(where I. is the n X n identity matrix) such that

6) IV Y ()] < ka(), ted;

{*) This research was supported in part by the National Science Foundation under
grant GP-11543.
(*¥} Entrata in Redazione il 6 giugno 1970.
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and
4 YA < el ted;

Under suitable hypotheses, the asymptotic properties of the solutions of
the linear system of differential equations (1) are transfered to certain of
the solutions of the nonlinear system of differential equations (2). A technique
that has often been used to effect this transfer of asymptotic behavior is the
comparigson principle. The comparison principle requires a majoraut of the
function f. We will assume that the majorant is given by the inequality

®) 1Y=10f ¢, o)) <o, |Alde]ai(),
ted, xeU.

In (), w{{, r) is nonnegative, continuous on J X (J — {0}), and nonincrea-
sing in 7, r > 0, for each te.J.

Perturbation problems which involve this particular class of majorant
functions have received very little attention in the literature. In fact, most
research articles in this area consider majorant functions that are nondecrea-
sing in r for each fixed teJ; (for example, see the references, [1]-[6]). This
remains true despite fundamental applications (for example, gravitational
problems) where the differential equations involved contain a decreasing fun-
ction of the dependent variable. However, there is one result in a fundamental
paper on asymptotic behavior by J. K. HALE and N. OxvucHIc [3] where the
nth order scalar equation considered has the nonlinear portion of the diffe-
renfial equation majorized by a nonincreasing function of the dependent
variable (see Corollary 2, [3, p. 72]).

Some of the results of this article are closely related to results of
F. BRAUER and J.S. W. WonG [2]. In [2], the majorant function = w({, )
in (D) is assumed to be nondecreasing in r for each fixed ¢ in J. Subject to
this hypothesis, asymptotic correspondences between the solutions of (1) and
(2) are obtained for arbitrarily small initial positions. Under our assumption
(5), we obtain a dnal result that solutions of (1) and (2) with arbitrarily large
initial positions have a prescribed asymptotic behavior. These results indicate
that (under certain conditions) a manifold of solutions of the nonlinear dif-
ferential equation (2) is generated by the linear equation (1). This manifold
and a certain openness property (perturbable) was considered by TOROSHELIDZE
in [6] for some scalar differential equations. A more formal development of
the properties of this manifold was given in a more general setting by J.W.
Heriper and the author in [5] (see also {4]). As is indicated below, the non-
inoreasing hypothesis in (5) leads to an asymptotic manifold that is essentially
cloged-in-itself.
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We now state the form of the comparison principle that we will need.

LeMMA 1. - (Viswanatham, [7, Theorem 2}). Let w = w({, v) be continuous
and wmonincreasing in r for each fixed t in the region R defined by |t — ]| <a,
lr — 9| < b where a and b are positive real nwmnbers. Suppose that ¢ = ¢(t) is
continuous for |t —to| < a and satisfies the inequality

¢(B) =n ~— f w(s, ¢(s))ds
&

there. Then, o(t) = pl(t) for to <t < to + a where « = minla, b/M], M > 0 and
[w(t, )| < M on R, and p=p(f) is the minimal solution of

(6) dr/d} = — w({{, r)

through the point (o, 7).

I1. - The asymptotic manifold of the perturbed linear equation.

We find it convenient to view the above perturbation problem in terms
of an asymptotic manifold of solutions.

DeriNitioN 1. - The asymplotic manifold S = S(4, a) of (2) generated by
(1) is the set of all solutions x = x(f) of equation (2) thal satisfy the order
relation

(0 | A@(t) — y(t)| = o(t)), (¢ — (o),

for some solution y = y(f) of equation (1)

The first result below demonstrates that, under certain hypotheses, the
asymptotic manifold of (2) generated by (1) is nonempty. A related result for
nondecreasing majorants may be found in [2, Theorem 1}

TuroreM 1. - Let the conditions (3), (4), and () be satlisfied. Suppose that
the initial value problem

8 dr/dt = — w(i, ), r{le) =7, >0

has a wminimal solution p = p(f) that is positive on Jo=lfy, oo). Then, any so-
lution x = x{l; to, 20) of (2) that initially satisfies the inequalily

@ laeo] =0
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is in S{4, a). Furthermore, the solution y = yt) of (1) thal corresponds to x by
the asymptotic relation (1) is unique. Also, if in addition fo satisfying (9),
o] satisfies the inequality, |xo [> o — po, oo = lim,,0p(f), then y @8 nonzero.

Proor. - By using the above integral inequality (Lemma 1) we will find
a lower bound for |A(f)jx(¢; f3, «f)|a'(f) provided that inequality (9) holds.
First, we note that condition (4) implies that

(10) 1AGY G = L] «(f)

where I, is the n X n identity matrix. The inequalities (3) and (10) mean
that the pair (3, @) is a ”good” measurement of the fundamental matrix of (1).
Using the variation of parameters formula, we have

(1) Y-Yhaxlt; o, o) = @y + [ Y Us)f (s, x(s; to, xo))ds.

From the equations (10) and (11) we obtain

t

o] — j wis, |AE)(s; o, wole—is)ds

ty

< o] — f | Y )f (s, wls; fo, wo)]ds

< | Y Y bx(t; fo, a0}
< a )| Alhx(t; to, xo)].
Since (9) is valid, an application of Lemma 1 establishes the inequality
(12) LAbxE; bo, xo)| = elt)2()> 0, ¢ =to;

hence, x{t; f, &) exists for t = 1.

The next portion of the proof proceeds much as in [2]; the only changes
that need fo be made are due fto the differences in fhe monotonicity hypo-
theses. To find a solution y of (1) satisfying (7) we comnsider the expression

x(fo) —l—fY"‘(s)f(s, x(8; o, ao))ds.
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Using conditions (b) and (12}, we obtain

[17-5r 65, als; 1o, wollds <ro—plt  t=to.
Therefore, the limit

L3

lim | Y=Ysif (s, x(s; to, ®o))ds =
1300

f Y-Usif (s, (85 to, ao))ds

to

exists; hence, let

(13) c= X +J YYs)f (s, a(s; fo, ao))ds.
Using the equations (11) and {13), we can write
A(tje(t; 1o, ao) == A(t)Y (e — A(t)Y(t)fY*l(s)f(s, afs; to, ao))ds.

Using condition (3) and the above equation, the asymptotic relationship
(7) with y{f) = Y(t)c is easily seen to be satisfied.

The conclusion of the theorem concerning the uniqueness of the corre-
spondence y — a as determined by (7), follows from inequality (10). For if
lf) = Y{f)e: and 9{f) = Y{f)ca, ¢ 3= ¢z, both satisfy the asymptotic relationship
(7) for the same solution « of (2), then

[ A8 (@:(t) — walt)] = o(=(®),  (t — =2).

Since ¢ == ¢z, an application of (10) leads to a contradiction.
It remains to show that y = y{f) = Y(fjc is nonzero provided |uwo] is suffi-
ciently large. To accomplish this, we note that

w0+ [ Y-6)(s, is; o, s

2”%’0”—'—@(“—7’0, t2l‘o
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If Jao]| > 70 — po and (9) is satisfied, then [c]> O; and, hence, y is non-
zero. This completes the proof of Theorem 1.

ReEMARK 1. - The inequality (9), [ao] =, is a weaker hypothesis than
assuming that [A{fo'as] = roa(fs). The stronger bypothesis has been imposed
previously (see [2]} in analogous situations.

As mentioned in the proof of Theorem 1, conditions (3) and (4) require
(in some sense) that the function A(f)ja—'(t) be a good measurement of the fun-
damental matrix Y(/) of (1), Some obvious choices of A that are usefal in
certain instances are A=1, and A=Y~'. To demonstrate that functions
other than these will also yield asymptotic resnlts, we consider the second
order nonlinear scalar equation

W 4 F 1 alglu — b T =0

where a(t)e C[1, oo) N L[1, oo}, Using u =, u' =, we write the above
equation as a system in the form (2) with

51 0 i
L2 0O 0

0
1, %)= ( 2 ) .
— all)/t(t + 17lar — teof? + a7

and

The fundamental matrix Y of the associated linear equation such that
Y(1)=1, is
1 -1
Yi) = ( >
0 1

For the purposes of this example, let |+| designate the sum of the abso-
lute values of the components of a vector or matrix, With A and o chosen as

= —1
A = ( ) , alt) =3t + 1),
0 !

it is easy to verify that (3) and (4) are satisfied with k= 18,
Since
|alt)]

(¢ + 12[(acs — taco)? + 3] ’

1Y (¢ «)| =
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the function # in (5) may taken as

w(t, r)=18]a(f)|r2,
where

r = At)ef|a—NE) = 3(¢ + Dl — faz| + |oc2|].

Since a € L'[l, oc), the initial value problem (8) has a solution that re-
mains positive provided r, is sufficiently large. Hence, the hypotheses of
Theorem 1 have been verified for this example.

The hypothesis that the majorant function is nondecreasing in » presents
some difficulties in a study of properties of the asymptotic manifold that do
nof occur when the majorant is nondecreasing in 7. These difficulties might
be alleviated by the development of the theory of differential and integral
inequalities for such majorant functions. However, it seems to be very desi-
rable to have an example of a differential equation of the from (6), with the
property that given any initial data (f, o), f6=0, 70> 0, there exists a mi-
nimal solution #(¢; 4, #o) of the initial value problem (8) that remains posi-
tive on [f;, oc). The existence of such an example is not readily cstablished.
For instance, if a differential equation with variables separable is considered,
under very natural assumptions, the above property cannot be demonstrated.

REMARK 2. - Let (¢) glr) be positive, nondecreasing on (0, oo} and conti-
nuous on [0, oc) with ¢{0) = 0; and, (é4) a(f) be continuous, positive, and in
L' on J=1{0, o). Then, the equation g(r)dr/di = — a(f) has a solution that
tends to zero as ! —» oc. Furthermcre, the equation has solutions that remain
positive (that is, exist) only on a finite interval. These conclusions are a
consequence of the following statements.

T o0

It Gf’):fg(s)ds, then lim #|f; #, 7)) =0 provided G(rd:fa(s)ds.
p ~>20 :

[o0]
It 7o > 0 and G(re) < (a(s]ds then lim,r-#{f; &, 7o) = 0 for some T, lp < T < oo,
The hypothesis a € L'[0, oo} of (i¢) is a necessary condition for a solution
to have a limit. In fact, for the more general equation (6), it is easy to show
that if the initial value problem (8) has a solution r=r(f; f,. 7,) with
[e 0]

Hm, e #{t; to, 1o} = reo =0, then fw(s, Mds < co for all A > re.

The above remarks point out the difficulties that arise when one attempts
to proceed as was done in the case of a nondecreasing majorant, see [5]. We
will continue our investigation by utilizing another property of asymptotic
manifolds.

Annali di Matematica 39
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A positive, continuous, scalar valued function % = (¢} defined on some
interval [T, oo} satisfying lim %(f) = 0 will be called a null function.
1320

DeriNITION 2. - A subset 4 of the asymptotic manifold S= S(4, a) of
(2) generated by (1) is locally asymptotically uniform if given any solution
xr=wu(l; t, x1) of (2) in A, there exists a 3 =18(x;) > 0 and a null function
N s = 7 4(f) defined on [T, oc) for some I'=+¢, such that whenever x(f; &, a,)
is in A with &1 — ;] <8, then

JA@) @it: b, @) — gelf)] < multielt),  t=T

where 3, = #.{f} denotes the solution of (1) that corresponds to «(¢; #,, a2) by (7).

DEriNITION 3. — A subset 4 of S(4, «) is asymplotically uniform if there
exists a null function v = %(f) defined on [T, oc) for some 7'>0, such that

13(8) (2(t) — gt < n(d)elt), t=T

for all solutions x = () of (2) in A. The function y is the solution of (1)
that corresponds to x by (7).

The next result shows that the comparison principle leads to asympto-
tic uniformity for certain subsets of S(4, «).

THEOREM 2. - Lel the hypotheses of Theorem 1 be satisfied. Suppose that
I=[T,, T\] is a compact subinterval of Jo=|[ty, oc). Then, lhe subset A,I)
of S(A, a) which consists of all solulions x = x(t} of (2) in S(4, ) that satisfy
the inequality

(14) | Y (t)e(to) | = elt)-

for some &, in I, is asymplotically uniform.
Proor. - Let a be in 4,(I); then, since A, I) < S(A, «), the argument

used in the proof of Theorem 1 leads to the equation

(15) Af#) feelt) — y(t)

= — A(i)Y(t)f Y-s)f (s, x(s))ds

t

for some solution y of (1). The hypothesis (14) and Lemma 1 imply that for
any x in A, (T)

(16) [AGit)] = plt)edt), =T
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Equation (15) and the inequality (16) lead to

1A0t) ((t) — gt ()

= kf (s, | As)e(s)]|a—*(s))ds

S Helt) — poo}, t=T1.

The right side of the above inequality yields a uniform null function,
whose domain is [T1, oo}, that satisfies Definition 3 for the class A4,(I). This
completes the proof of Theorem 2.

COROLLARY. — Let the hypotheses of Theorem 1 be salisfied and suppose
that initial value problems of (2) have unique solutions. The class A, of all
solutions x = u(t) of (2) that are in S(A, «) and satisfy the inequality

(17) P Y1 (e 1] > eltr)

for some t € Jy is locally asymplotically uniform.

Proor. - Let x =ux(f; #1, x:1) be in A,; then, the inequality (17) is sati-
sfied for some ¢ € Jo. Since solutions of (2) depend continuously apon their
initial data, there exists a 8 >0 such that if x, satisfies the inequality
le, — iL‘z“ <3 then

1 Y= B)eite; b, a2} = elte)

for £, in some compact subinterval I, of J,, that contains ¢F. Theorem 2
implies that A(I) is asymptotically uniform. Hence, 4, is locally asmptoti-
cally uniform.

Our next result shows that limits of solutions in the asymptotic manifold
are either in the asymptotic manifold or have a finite escape time.

THEOREM 3. - Let the hypotheses of Theorem 1 be satisfied. Suppose that
the asymplotic manifold, S = S(A, a}, of (12) generated by (1) is locally asym-
plotically uniform. If (x.'®  is any sequence of initial positions of solutions
Xa(t; tn, @a) that are in S(A, «} with lim.,ooffs, %) = (4, ®,) where |, ] > 0,
and t, =1t then either

(a) there exists a T where t, < T < oo such that lim,_, r-|x(f; &, x,)|=0; or

(b) the solution wx(t: ., x,} is in the asymplotic manifold S{d, «} of
(2) generated by (1).
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Proor. - If the solution x==wu(f; t,, x,) does not exist for all =1,
and (a) doés not oceur then there exists a T, f, <T) <oco such that
lim,_, r-|l&(t, £y, %) =oc. In particular, there is a &, t, < < T\ so that

[ YUt 5 by, ) | = ol
Lemma 1 implies that
1Ada(t; &y, wy)| = olt)all)

for all ¢+ = for which x{¢; ¢, »,) exists.
However, from the variation of parameters equation, we obtain

[A{lt; L, 2| a"(d)

< T {F) A el 5 Ley )]

2

+kf|l Y-Usif(s, wis; by, a,)]ds

PR

< Ba~ Ut ) JA(EF et 5 by, xy)]

+h f wis, [A(s)e(s; by, @)« s)ds

< ka (AU 5 b, )]

4

+ kjw(s, els)ids, t = tF.

)

This yields a contradiction and shows that if x{¢; f,, w,} has a finite
escape time T, then condition (@) must hold at T.

Next, the case where the solution wt; f,, x,) exists for all {=1{, will
be considered. In this instance we will show that condition (b} holds; that is,
xlt; t,, x,) is in S(A, «). Since w.(t; b, ) is in S(A, «) is locally asympto-
tically uniform, there exists a vector faunction z(f}, where lim,,[2(¢)] =0,
which satisfies the equation

(18) A(balt) = Altjealt; b, @) -+ (0ot

for £ =T and n==1, 2, ... The uniform convergence of the sequence of solu-
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tions {a.(t; £, x.)} to the solution x(¢; ¢,, x,} on compact subintervals implies
that lHm, el T; £, x)=a(T; ., x4

We note that if solutions to initinl value problems of {2) are not unique,
then a choice of a subsequence of {x.(¢; f., 2:)! might be necessary to gua-
rantee the uniform convergence that is desired. This subsequence will be
designated, as the original sequence was. by {@.ft; £, x)}. In (18}, let
Yalt) = Y (t)c.; then, we obtain

(19) 6 = YT ol T; tn, ) + Y=Y(T)A=Y(TJ2(T o T).

The equation (19) impiies that lim, e, exists; let ¢=1lim.,c.. The
solution y(f) = X(fic of (1) is the asymptotic correspondent (under (7)) of
x(t; t,, x,). To verify this statement we note that the limit

lim o [ A (@alt; t, ) — galt)) ]2ty =0

is uniform in #» since S{A, «) is locally asymptotically uniform. Also, for
each { =T,

im0 808) (2a(8; &, ) — g8 (E)
:‘f‘\(i)(%(h Loy Ty} — y@)'ﬂa—l(g)'
An application of the MoorRE-OscooD Theorem leads to

lHm [ Ay (x(t; £y, x) — yl)]e(f) = 0;

1300

that is, x(¢; f,, w,) is in the asymptotic manifold §(4, ) of (2) generated
by (1). This completes the proof of Theoremn 4.

ReMARK 3. - The conclusion {a) of Theorem 3 may not be neglected.
The following example demonstrates that limits of solutions in the asympiotic
manifold need not exist in the future. Consider the differential equation

[ —1 O0=<t=<li, >0
(20) T_{t—2 1<i=<l, r>0;

) 2 <t r>0.
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The solutions of (20) are given by

—t 4o 0<st<1l, r>0

t?
r(t): :2*—“2t+01 1<tS‘2, T>O

L Ce 2 <t r >0,

where ¢;, ¢ =1, 2, are constants.
The separatrix solution », =r,f) occurs when the constants are chosen

3 .
as ¢ =5 and ¢, = 2; we note that #, exists on [0, 2). Any sequence of so-

lutions, {r.t; fo, 72)!®,, of (20) snch that n(f; fo, 7)) | 7llo)(n— o) for
0 <t <2 has the property that r.(¢; &, ,) is in the asymptotic manifold
that is obtained by considering {20) as a perturbation of the equation
dv/dt = 0. However, lim,,— (ry(f)j=0; that is, #, has a finite escape time.

Next, we consider the necessity of assuming that the manifold S(4, «)
is locally asymptotically uniform. We will restrict our remarks to scalar

comparison equation of the form (6).

TaeorEM 4. - Let w=wll, r} salisfy the condilion (5) and let
dr/dt = — w(l, r) have unique solutions fo the initial value problem. Further-
more, suppose that the set S{1, 1), which consists of all positive solutions
r=r(t) of (6) that satisfy the condition lim._r{f)j=c for some constant c,
i3 closed in the sense that condition (b} of Theorem 3 always holds then S{1, 1)
is locally asymplotically uniform.

Proor. - Let ro ==roft) be in S(1, 1). Suppose that & > 0 is chosen so that
Vo(t1)~"6>€>0

where ¢ is some positive number and for some # = 1.

Let r, denote the infimum of all initial positions # where r; > ro(ty) — &
and the solution r(t; &, 1) of (6) is in S(f, 1). Since S(I, 1) is closed,
the solution r () =r(¢; f, r,) is also in S(1, 1). By uniqueness of solu-
tions to initial value problems,

r(b; b, M) =t b, 1y

for any solution »(¢; £, ) in S(1, 1) where r, =r,. Therefore,

[*0}
mmhm—a=fwamwumm
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0]
gj w(s, rys; b, ry)ds

=ry(t; b, ry — ¢,

where lim, ., 7y(t; f, ry) ==c,. Since the function y(f) =r.; &, r,) —c, is a
null function, S(1, 1) is locally asymptotically uniform.

11, - The asymptotic manifold of the linear equation as determined by
the nonlinear equation.

The next result is a dual result to Theorem 1. The duality is concerned
with the interchange of the roles of the equations (1) and (2). The analogue
for nondecreasing majorant functions may be found in [5].

THEOREM D. - Let the hypotheses of Theorem 1 be satisfied. Then, corre-
sponding to any solution y = y(t)= Y ({jc of (1) wifh |c| sufficiently large there
exists a solulion x=wx{t) of (2) so thal ithe asymplotic relutionship (7} is
satisfied.

REMARK 4. - The hypotheses imply that lim,_.¢(f) = g exists. The proof
of the theorem will show that "|c| sufficiently]large” means |c|> o.

Proor oF THEOREM 5. - It is easy to see that

oo

(21) f w{t, Adt < oo

for all X > oy . Let [¢] > poo and choose X, satisfying the inequality [¢[|> 20> peo-
Define y =|c]| — 2> 0 and consider the set
F={u; u(t)= Atjx—'(Hx(f) where = is continuous on J and Ao<<|u|<<

= kJe]+ 7).
Using (21), we suppose that £, is sufficiently large so that

jee]

fw(s, Lo)ds < v.

The transformation 7' defined on F by

(22) Tu(t) = A(ti_z')(t)g
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o]

f Ysif (s, A'(s)als)u(s))ds

12

A(D)Y (h)
O a())

maps F into itself since using (5) and (2), we obtain the lower bound

o]

doo N ¢) << oc”[tlluc” — f 1v(s, Ao)ds}

- a—l(t»[uou—— f | Y=(sIf (s, A=(s)als)u(s)|ds

< “ }7—1(“A'—1(t) T’Lt(i)}l
= o) Tul?)] -

The upper bound on || Tu| is obtained from (22) as follows:

00

| Tuit)| < k| + k f | Y-Ys)f (s, A~lisyu(s))|ds

2

= k[ le] + fow(s, lo)ds]

= Kf[e] + v]-

These two inequalities show that T'IFC F.

The operator T is continuous and the functions in the image set TF are
equicontinuous and bounded at every point of J,. The defails which are
ased to verify this statement are similar to those found in the proof of
Theorem 2 of [5]. A modification that is required in the details of [b] is
that the positive lower bound 2, in the definition of the class F is used
because of the nonincreasing nature of the function w.

The ScHAUDER-TYCHONOFF Theorem now implies that fhere exists a
u €l such that u(f)= Tulf); that is, there exists a solution x=a(f) of the

equation
0

x(t) = Y (f)c — Y(t)f Y-(s)f (s, x(s))ds.

i

From this equation, it follows that x(f) is a solution of equation (2)
which possesses the asymptotic behavior (7). This completes the proof of the
theorem,
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ReMark 5. - Motivated by the Corollary to Theorem 5 of [5], which is
valid for nondecreasing majorants, it might be expected that (under certain
hypotheses) the asymptotic manifeld of the linear equation as generated by
equation (2} consists of all of the solutions of (1).

An obvious condition thai one could impose upon the comparison equa-
tion is that there exists a minimal solution p=rpff) to an initial value pro-
blem (8) which satisfies lim,,,¢{f)=0. Under this assumption, Theorem 5
shows that the linear asymptotic manifold contains all solutions of the form
y{t) = Y(tic where ¢ is in B*— {0'. Because of our required domain of defi-
nition of f, this is the best that we can do, as the following simple example
demonstrates. Consider the scalar equations

dw
{25) cthO ted, || > 0.

In the comparison equation, take wif, r) = a(ljr—', where a(f) is conti-
aw
nuous and positive on J and fca(t)dt < oo, The comparison equation has a
0
solution that tends to zero as { tends to infinity. However, (25) has no solu-
tion to correspond to y = 0 under the asymptotic correspondence (7).
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