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In (3), corollary, p. 373) Burch gives the following inequality for the analytic

spread 1(1) of an ideal / of a noetherian local ring (R, m):

(0) 1(1) s= dim (R) - min depth (R/In).
n

In this paper we shall improve this by showing that the number min depth (R/In)

may be replaced by the asymptotic value of depth (R/In) for large n (which exists)

(see Section (2)). By its definition (see (6), def. 3)) the analytic spread is of asymptotic

nature, i.e. depends on the modules In/mln = Un only for large n. We shall prove a

stronger result, Section (4), which also shows the asymptotic nature of 1(1). This result

might be interesting for itself, particularly as it is not of local nature. Once Section

(4) is proved and once we know that depth (R/In) is asymptotically constant (which

turns out to be an easy consequence of (l), (1)), our improved inequality is easily

established: Indeed, replacing R by R/xR where x is regular with respect to almost

all modules R/In, we perform a change which affects only finitely many of the modules

Un (see Section (8)).

In Section (12) we give a result which relates the depths of the .R-modules / " - i / /»

and R/In. Namely, if R is Cohen-Macaulay, and iiht(I) > 0, these two values coincide

asymptotically.

As an application we shall give another proof (and slight improvement) of a criterion

for local complete intersections, due to Vogel-Achilles (7), which, in its turn, improves

a corresponding result of Cowsik and Nori (4), p. 219.

We intend to make our results as general as possible, in particular to show that the

arguments we use are not confined to local rings. So, unlike Burch, we shall not use

completions or Nakayama's lemma. On the other hand, to keep the paper self-

contained, we reproduce some arguments which may be known to the reader familiar

with the subject.

Let R be a noetherian ring, and let / , J £ R be ideals. Then by the Rees ring of /,

we mean the graded R algebra

nSO

Now for each iJ-module M we may form the graded ^-modules

M = ®lnM

and M* = ®InM/JInM = M/JM.
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Next define the analytic spread of I at J with respect to M as the Krull dimension of

the .S-annihilator of M*, i.e.

(1) Remark. If (R, J) is local, lj(I, R) is the analytic spread 1(1) of/, introduced by

Northcott and Rees (6). If N is a finitely generated /2-module, let the ./-grade of N,

gTj (N), be the maximal length of iV-sequences in J. Now we are ready to state:

(2) THEOREM. Let M be an R-module of finite type. Then

(i) gTj (M/InM) takes a constant value Qj{I, M)for large n.

(ii) / / / s J , we have the inequality I j(I, M) ^ dim^j (M)-gj(I, M).

(3) Remark. If we take (R, J) local and M = R, (ii) obviously gives the announced

improvement of Burch's inequality (0). Let us prove (i) by induction on the inferior

l i m i t hM = lim inf gr j (M/InM).
n—>-<o

If hM = 0, we have ,

peA(n)

for infinitely many n, where A(n) = Ass(M/InM). But by [1, (1)] A(n) is stable for

large n, and so we see that gr j (M/InM) = 0 for sufficiently large n.

If hM > 0, use the same stability argument to show that there is an x e J which

lies outside U p for sufficiently large n. Then we clearly have, withM = M/xM,
peA(n)

hM<hM; grj(M/I"M) = gVj(M/InM)-l (n $> 0),

so (i) follows by induction.

Now we prove (ii) by induction on gj(I, M) = c. So let c = 0. Then, obviously,

anng(lif) = 0 a n n B ( i f ) n In,

which shows that .S/anng (M) is isomorphic to the Rees-ring R oi IR where

R = R/&xmR(M).

So we get lj(I, M) < dim (R/JR).

But on the other hand, it is easy to see that

fdim (M), if dim (R/IR) = dim (R)
dim (R) < \

Idim (R)+ 1, otherwise.

As dim (R) = dimfi (M) we are done in the first case. Note that, in the second case,

C l e a r l y dim (R/JR) < dim (R);

hence dim (R/JR) ^ dimR (M).

If c > 0, we need more information on M*. To formulate our results, let us introduce

the following notations. If N is any graded /2-module, let (N)n be the /^-module of its

re-forms, and let (N)^n be the /?-submodule of M given by

(X)kn = 0 (N)m.
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We claim

(4) For all n we have

The inclusion £ is clear. So let a eRh = /* (h > 0) be a form which annihilates (M*)„,

for some m. As, over R, M* is generated by its 0-forms, it suffices to show that a3

annihilates (M*)0 for an appropriate s.

By our hypothesis we have that

(5) aImM £ JI™+*M,

and we have to find an s such that

(6) a*M £ JI*M.

Note that (5) induces that asImM £ J*I™+**M £ I™+S>'JM for all s. Let < < s. Then,

obviously, asM £ /sAif c IthJM. Now, by an Artin-Rees argument, we have

(0: / ) / r t < ,M = 0

for sufficiently large values of t [see (1), (5)]. (If A, B are sub-modules of an .R-module

C, and L £ ^ is an ideal, (A:L)B is defined as {b sB\Lb £ A}.) Then by [(1), (4)] we

find an s > t such that for each n > 0

(In+siJM: I)IthJM = {In+^-»h(IthJM): I)IthJU=

Applying this repeatedly, we get finally that

asM £ (Im+shJM: Im)ithjM

Note the following obvious fact.

(7) (i) anng(J/*)0 = a,nnR(M/JM), consequently,

(ii) if x eJ, anng ((M/xM)*)0 = anng (if*)0.

Now we complete the proof of (2). As c = gj(I,M) > 0 (by our assumption) the asymp-

totic stability of A(n) shows that there is an xeJ which is regular with respect to

M/InM for all sufficiently large n. Now there is a canonical homomorphism of graded

/2-modules

M* -t (M/xM)*,

given in degree n by the canonical maps

(M*)n = JnM/JInM-^In(M/xM)/JIn(M/xM) = (M/xM)*.

We claim that <f> is a quasiisomorphism, i.e. that

(8) <j>n is an isomorphism for all large n. Indeed, we have the canonical isomorphisms

(M/xM)* ~ (InM + xM)/{JInM + xM) ~ InM/(JInM+ xM) n InM

= InM/(JInM + xMn InM),

and it suffices to show that xM n InM £ JInM for large values of n. As xeJ, this

means proving that {InM: x)M = InM for sufficiently large n. But this is clear by our

choice of x.
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(8), (7) and (4) now induce

(9) lj(I,M) = lj(I,M/xM).

On the other hand, we have, obviously,

(10) gj(I,M) = gj(I,M/xM) + l.

As / £ </, it is clear that any minimal prime divisor of M containing J would belong

to A(n) for all sufficiently large n. This shows that x moreover may be chosen outside

of all minimal prime divisors of M, hence that

(11) dim (M) = dim (M/xM) + l.

But, as by induction, we have

lj(I,M/xM) ^ dim (M/xM)-gj(I,M/xM);

(9)-(ll) give the inequality (2(ii)).

Now we want to compare the asymptotic behaviour of gVj(M/InM) to that of

(12) PROPOSITION. If M is finitely generated,

(i) gr_j {ln~xMIInM) takes a constant value g~j{I, M)for all sufficiently large n, which

satisfies the inequality gj(I, M) ^ (jj(I, M).

(ii) / / / £ J, gr7 (M) > 0, and gTj (M) = ht (J/&nn(M)), we have equality in (i).

Proof, (i) To show that gr^ {In-1M/InM) asymptotically stabilizes, we could apply

the same argument as in the proof of (2 (ii)), if we knew that

B(n) = Ass (ln-lM/InM)

is asymptotically stable. But this is clear, as B(n) is increasing for large n ((l), proof (1)),

and as B(n) £ A(n). This latter relation then also immediately proves the inequality,

(ii) As gTj(M) > 0 we have that A(n) and B(n) take the same asymptotic value A*

by [(D, C
7
)]- This proves the equality in case g = g~j(I, M) < 1. Let ysl n reg(M). If

g > 1 there is an x e J n reg (M) n reg (M/yM), but outside of (J P, as otherwise
peA'

g ̂  ht(J/&nn(M)) = gr j(M) < 1. Thus we have?/ e reg (M/xM); hence

gVj(M/xM) > 0,

and gj(l,M/xM) = gj(I,M)-\, (jj{I,M/xM) = §j(I,M)-l. Finally it holds that

ht (J/ann (M/xM)) < ht (J/ann (M)), and so, by induction, applied to M/xM, we

get the equality.

(13) Remark. The example [(l), (8)] shows that gj(I, M) and gj(I, M)do not coincide

in general. If, on the other hand, R = M is a Cohen-Macaulay ring, and if ht (I) > 0,

they do.

Now we want to give the announced application.

(14) COROLLARY (cf. Cowsik-Nori(4), p. 219), Vogel-Achilles(7), Waldi(8)).

Let {R, m) be a local Cohen—Macaulay ring, and let I £ R be an ideal of height h > 0.
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Assume that IRp is generated by h elements for each minimal prime P of I. Then the

following statements are equivalent :

(i) I11-1/!11 is a Cohen-Macaulay module over R/I for infinitely many n.

(ii) R/In is a Cohen-Macaulay ring for infinitely many n.

(iii) I is generated by h elements (hence a complete intersection).

Proof, (i) => (ii) is an immediate consequence of (12).

(iii) => (i). (iii) implies that R/I is CM. and that all the ^//-modules /"-
1
//

71
 are free.

So it remains to prove (ii)=>(iii). But this implication is clear by (2(ii)), which

induces

1(1) = lm(I, R) < dim (R) - dim (R/I) = h,

and the following result essentially due to Cowsik-Nori (4).

(15) Let R and / be as in (14). Then / is generated by h elements if and only if

1(1) < h.

(16) Remark. Cowsik and Nori give a slightly more special form of (15). The above

statement is given in (5), p. 179.

Finally, note that Section (14) generalizes a part of (2), (6-5), where only the case

h = dim (R) — 1 was treated.
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