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Abstract 

For the problem of minimizing makes pan on parallel machines of different 

speed, the behaviour of list scheduling rules is subjected to a probabilistic 

analysis under the assumption that the processing requirements of the jobs are 

independent, identically distributed nonnegative random variables. Under mild 

conditions on the probability distribution, we obtain strong asymptotic 

optimality results for arbitrary list scheduling and even stronger ones for 

the LPT (Longest Processing Time) rule, in which the jobs are assigned to the 

machines in order of nonincreasing processing requirements. 
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1. Introduction 

One of the fundamental problems in scheduling is the minimization of makes pan 

,on parallel identical machines. In this problem n jobs have to be distributed 

among m machines so as to minimize the time needed to process to them. We 

shall denote the processing requirement of the j-th job by Pj (j-l, ••• ,n). If 

the set of jobs assigned to the i-th machine is denoted by Mi (i=l, ••• ,m), 

then the time required by that machine to process all its jobs is equal to 
A Zi.n - E. M p. and the objective is to minimize the makespan 

• Jt i J 

Z(m) e max {Z }. 
n i i,n 

This problem is well known to be NP-hard if m L 2 [11). This motivates the 

design and analysis of heuristic methods that with moderate computational 

effort produce a value Z(m)(HEUR) which is reasonably close to the optimal 
n 

value Z(m)(OPT). Among these heuristics, particular attention has been paid to 
n 

list scheduling rules (LS), in which jobs are assigned successively to the 

first available machine in the order in which they appear on a predetermined 

priority list. Indeed, one of the oldest worst case results in scheduling 

theory [12] is concerned with the behaviour of such rules; it states that 

Z(m)(LS) 
n -":"--:--- < 2 

z(m)(OPT) 
n 

1 --. m 
(1) 

The examples for which this worst-case bound is actually achieved suggest that 

a better bound should be obtainable if the jobs appear in the list in order of 

nonincreasing Pj. And indeed, for this LPT (Longest Processing Time) rule, it 

is shown in [13] that 

Z(m)(LPT) 
n 4 1 
~~----- < - - --. 
z(m)(OPT) -33m 

n 

(2) 

Such worst-case results, however, are inherently pessimistic and do not .. 
necessarily provide much information about the performance of the heuristic in 

practice. To carry out a rigorous study of the latter phenomenon, it is 

necessary to specify a probability distribution over the class of problem 

instances and study the relation between the_r~a~n~d~om~~v~a~r~i~a~b~le~s~ z(m) (HEUR) and -n 
z(m)(OPT). The common way to arrive at such a probability distribution is to -n 
assume that the processing requirements Pj are independent, identically 
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distributed nonnegative random variables, generated from some given 

probability distribution. 

The initial probabilistic analyses of the LPT rule strengthened the intuition 

that it is a reasonable heuristic for this scheduling model. For instance, 

under the assumption that the~j are uniformly distributed on [0,1] it is 

known that [4] 

EZ(m) (LPT) 
-n 

-.;;;;--.~--= 

EZ(m) (OPT) 
-n 

2 
1 + 0 (m

2
), 

n 
(3 ) 

so that the heuristic is aSymptotically relatively optimal in expectation: 

(m) 
E1n (LPT) 

lim = 1 (4) 
n- EZ(m)(OPT) 

-n 

In addition, the absolute difference Z(m)(LPT) - z(m)(OPT) has been studied -n -n 
under the assumption that the ~j have finite first moment F£.; it is known to 

be bounded by an a.s. f1xed valued random variable [14]. Below, these results 

are extended in various ways. 

To start with, we shall extend the underlying scheduling model to allow for 

uniform rather than identical machines: the i-th machine has speed s1 and Zi n , 
is redefined as (E

j 
M p.)/s .• The extension of list scheduling rules to this 

e: J ~ 

new situation is straightforward. 

In Section 2, we consider the LPT rule for this model. We assume that the 

density function of the processing requirements is strictly positive in a 

neighbourhood of 0 and show that, if E~ is finite, the LPT rule is 

. aSymptotically absolutely optimal almost surely: 

lim (Z(m)(LPT) - z(m)(OPT» = 0 (a.s.). 
n- -n -n (5) 

We also show that, if ~ is finite, the LPT rule is aSymptotically absolutely 

optimal in expectation 

EZ(m)(OPT» = O. 
-n (6) 

These results represent strong forms of asymptotic optimality for the LPT 
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rule. In Section 3, we consider the speed at which convergence to absolute 

optimality occurs. For almost sure convergence (5) we show that if the~j are 

generated from a uniform distribution or a negative exponential distribution, 

then the speed of convergence is almost surely proportional to (log n)/n. For 

convergence in expectation, we show that if the~j are uniformly distributed, 

then 

(7) 

thus generalizing the result in [4] (cf. (3». 

In Section 4, we show how similar techniques yield comparable (but not 

surprisingly somewhat weaker) results for arbitrary list scheduling rules. For 

the case of identical machines (si=1 for all i) and under the assumption that 

~ is finite, we show that 

We also indicate how this result can be extended to the case of arbitrary 

uniform machines. Finally, in Section 6, we show how the results for the LPT 

rule can be applied to yield speed of convergence results for certain 

hierarchical scheduling heuristics [6]. We also provide some concluding 

remarks and topics for further research. 

2. The LPT rule for uniform machines 

Let us assume that the machines are numbered in such a way that 

s12.. 82 2.. ..... 2.. 8m" A formal description of arbitrary list scheduling can be 

given as follows. If the partial sums Zi,n_1(i=1, ••• ,m) are ranked in non

decreasing order: 

( 9) 

then the n-th job is assigned to machine k such that 

z = z(l) = min {Z } 
k,n-l n-1 i 1,n-1' (10) 
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so that 

z(m) = max {z(m) Z(I) + Pn} 
n n-l' n-l sk 

(11) 

As in [14], much of our analysis will ~ocus on the difference between the 

largest and the average partial sum: 

= z(m) -1 Im z > o. 
n m i=1 i,n-

Applying (11), we obtain the following recurrence 

D = z(m) - 1 Im z = 
n n m i=1 itn 

= {z(m) 1 ~m Z 
max n-l - m li=1 i,n' 

z ( 1) + P n _ 1 ,m z } = 
n-l s m l1=1 i n 

By iteration, we obtain 

k ' 

(m-l)p 
ms n} 

m 

--- , 

(12) 

(13) 

(14) 
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Since, by definition 

Dl 
PI 1 PI =----= 
sl m sl 

(m-l) PI 
= ( 

mS
I 

( 
(m-l)P1 

ms , (15) 
m 

we obtain that 

(16) 

with 

II (m-l)sl 
a = + 1. s 

(17) 
m 

The above inequality (16) holds for arbitrary list scheduling rules. In the 

case of the LPT rule, we know that in addition 

PI 2. P2 2. ••• 2. Pn (18) 

Hence, if p(j) are the order statistics of {P
1

, ••• ,Pn}, with 

(19) 

we have that in this case 

D (LPT) ( 1 max {ap(k) - ,k
Jo
=I P(j)}. - l(k( L n - mS I n 

(20) 

Now, let us assume that the~j are i.i.d. nonnegative random variables with 

distribution function F, whose density function is strictly positive on (O,e) 

for some e > O. 
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Theorem 1. If the expected processing time E~ is finite, then 

lim ~~ D (LPT) - 0 (a.s.) n-r- -n (21) 

Proof. For a certain e € (O,€) to be chosen later, we give separate 

consideration in (20) to values k € {l, ••• ,[en]} ([xl is the integer rounddown 

of x) and k € {[en] + l, ••• ,n}. Clearly, 

(22) 

and 

< (n) ~[en] (j) _ a..e. - L.j=l ..e. • (23 ) 

Hence, 

and we shall prove that the right hand can be made arbitrarily small almost 

surely. 

Define 

.fe n ~ inf {x , I {k : ~ .$. x} I 2. en}. (25) 

Obviously, 

([en] < ~ < ([en]+l) ..e. --e,n-..e. (26) 

.. 
Now consider the interval (O,F(€». This interval is not empty since F has 

been assumed to be strictly increasing on (O,€). It follows that for all 

y € (OtF(~» [7, p.75] 

lim ~ ... I;;y n+oo -y,n (a.s.) (27) 
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Obviously, 

1imy+o ~y == o. (28) 

Thus, for every 0 > 0, E can be chosen in such a way that ~€E(O,E) and 

lim sup _1_ a.,£ ( [En]) < 0 
n~ mS

l 
- (a.s.) 

For this particular choice of €, we shall show that (I~En]p(j»/n 
J=1 -

(29) 

converges to a positive constant almost surely. Since E.,£ < = implies that [2, 

p.212] lim p(n)/n - a (a.s.), we then know that 
n~ 

lim ap(n) - I~Enl]n(j) = - = (a.s.) 
n~ - J= .L. 

(30) 

and hence, together with (29), the desired result follows immediately. 

We first observe that 

1 ] f([En]) - ~[£n n(j) == xdF (x) 
n Lj_l .L. -n a 

(31) 

where!n(x) is the empirical distribution function. NOW, (31) can be rewritten 

as 

F( ([en]) u([En]) 
p + + J - F (y)dU (y) = r- F (y)dU (y), 

a ~ a ~ 
(32) 

where U(j) are the order statistics of n random variables that are uniformly 

distributed on [0,1]. 

Through partial integration, we obtain 

U([En]) E + 
I r- F+(Y)dU (y) - J F (y)dyl s 
a ~ 0 
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e + 
+ I J (y - U (y»dF (y)1 + o -n 

e 
+ I {[en]) Un(y)dF (y)l (33) 

U 

We claim that all the three terms on the right hand side of (33) converge to 0 

almost surely. Indeed, for the first term this is implied by the specific 

choice of e: (e < F(€» and the continuity of F on (O,€). For the second term, 

this is implied by the Glivenko-Cantelli lemma [2,p. 232]. And for the third 

term, this follows from the fact that the term is bounded from above 
by IF+(e) - F+(~([enJ»I. 

Hence, we have shown that 

lim .!. I [en] n (j) = 
n+<x> n j=l.s:.. 

which completes the proof. 

e + 
f F (y)dy 

o 
(a.s.), (34) 

Theorem 1 will now be seen to imply that the LPT rule is aSymptotically 

absolutely optimal almost surely, this confirming a conjecture in [14]. 

Corollary 1. If E~ is finite, then 

lim (Z(m)(LPT) - Z(m)(OPT» = 0 (a.s.) 
n+<x> -n -n (35) 

Proof. Theorem 1 implies that 

lim (Z(m)(LPT) _1 \~ Z(i)(LPT» = o. 
n+<x> -n m L.~=l -n (36) 

From 

o < Z(m)(LPT) - Z(i)(LPT) = ~(i Z(m)(LPT) -~ Z(i)(LPT») (37) 
--n -n i m-n m-n 

it follows that 
1', r-
\ '.-- - , 

<. 

o < ~ (l Z(m)(LPT) -.!. \~ Z(j)(LPT») < 
- i m -n m L. J= 1 -n -



and hence 

10 

= mi D (LPT) for every i € {I, ••• ,m} -n 

lim (Z(m)(LPT) - Z(i){LPT») = 0 (a.s.) 
-n -n 

n~ 

for every i € {l, ••• ,m}. 

Now, by summing (39) over all i, we obtain that 

( ,m (m) ,n) 
limn~ (Li=I s1) ~ (LPT) - Lj=l Pj = 0 

Since, trivially, 

this leads to the desired result. 

(38) 

(39) 

(a.s.). (40) 

(41) 

We can use the upper bound (23) on~(LPT) in a similar manner to show that 

the LPT rule is aSymptotically absolutely optimal in expectation under a 

somewhat stronger condition on the distribution of the"£'j. 

Theorem 2. If E~2 is finite, then 

lim ED (LPT) = O. 
n~ -n (42) 

Proof. Starting from (23), we obtain upper bounds for the expected value of 
i 

the terms on the right hand side. 

First, we derive an upper bound on E~([€n]). As in (27), let ~(1+8)c satisfy 

(43 ) 

for some 8 > O. Then 



11 

eo 

+ J (1 - pr~([en]) ~ x })dx ~ 
i;;(l+B)e 

co 

i ~(l+e)e + J (1- pr{p([en]) ~ x})dx i 
t;;(l+e)e 

eo 

+ J (l - prlE.([en]) ~ x})dx. (44) 
n 

The first term can be made arbitrarily small for every B € (0,1] (cf. (28». 

The second term is equal to 

~[en]-l n j n-j 
n Lj_O (j)F(;(l+B)e) (1 - F(~(l+a)e» = 

= n I~en]-I(~)«l + a)e)j(1 - (1 + B)e)n- j 
J=O J 

< -2(ae:)2n n e 

(cf. [9]). Similarly, the third term is equal to 

(45) 
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(46) 

where the first inequality in (46) is implied by the fact that E~ is finite 

and hence lim x(l-F(x») = O. Obviously, both (45) and (46) converge 
x+~ 

exponentially to O. 

We next consider E max{a~(n) - 2~~~] ~(j), O} and bound it by conditioning on 

a~(n) being greater or smaller than on respectively, where 

2 E/2 + E/2 + 2 
o ~ min{E, J F (z)dz, (f F (z)dz) } 

o 0 

We bound the expectation, conditioned on a~(n) 2 on, by 

~ 

J xd(pr{a~(n) i x}) = 
on 

~ 

(47) 

< on2(1 - F(on») + n J (1 - F(x»)dx. (48) 
- a on a 

2 Both these final terms converge to 0, £ince E~ < ~ implies that 

lim x2
(1 - F(x») = 0 and lim x J (1 - F(z»)dz = O. 

x~ x~ 
x 

The term conditioned on a~(n) < on is bounded by 

on pr{I~~~]~(j) i a~(n) < on} i 

< on Pr{I3~~] ~(j) < on}. 

Similar to (32), we observe that 

pr{I3~~] ~(j) < on} = 

pr{2~En] F+(U(j») < on} = 
~1 -

1 
= J pr{L~~~] F+~j(Y») < on}d(pr~([En]+I) i y}) 

o 

(49) 



i prl!!( (£n]+1) i ~} + 

1 
+ J pr{ 1 1[£n] 

£/2 T£iif j=1 

13 

+ 1 Y + 
(F (U.(y») - - J F (z)dz) 

-J y o 

where Uj(y) are independently uniformly distributed on [O,y] and where we have 

conditioned on the value of the ([En]+I)-th uniform order statistic U([£n]+l) 

([1, p. 103]). 

The first term on the right hand side of (50) corresponds to the tail of a 

binomial distribution, converging exponentially to O. 

We bound the term within the remaining integral by observing that, for every 

y € [e/2,1], 

o 1 Y + - - - J F (z)dz < e: y -o 
o 2 e/2 + 

< - - - J F (z)dz < - e e: -o 
1 E/2 + 

< - - J F (z)dz 
- E 0 

(51) 

y + 
where we have used (47) and the (easily verified) fact that lly J F (z)dz is 

nondecreasing in y. It follows from Chebyshev's inequality that ehe 

probability within the integral is bounded by 

[En](oJE/ 2F+(Z)dZ)2 
(52) 

so that the last term in (50) multiplied by on itself can be bound~d by 

1 
o£ J 02(F+ (U .(y» )d(prfu.( [£n]+l) < y }) < EM (53) 

(or/2F+(Z)dz)2 e/2 -J - -' 

where M is the uniform upperbound on 02(F+(U.(y») for y € [0,1]. 
-J 

Collecting the various upper bounds, we conclude that 
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(54) 

and the theorem follows by letting € go to O. 

Corollary 2. If ~2 is finite then 

lim (EZ(m)(LPT) 
n+a> -il 

(55) 

Proof: The proof is similar to that of Corollary 1. 

Corollaries 1 and 2 confirm the excellent asymptotic properties of the LPT 

rule. The usefulness of such asymptotic results is, however, much enhanced by 

some insight into the speed at which convergence occurs. This forms the 

subject of the next section. 

3. Speed of convergence results 

In this section, we first analyse the speed of convergence to absolute almost 

sure optimality of the LPT rule for two special cases: 

(i) the..E.j are uniformly distributed on [0,1]; 

(ii) the..E.j are exponentially distributed with parameter A. 

For both cases, we obtain the same result. 

i 
Theorem 3. If the..E.j are uniformly or exponentially distributed, then 

lim sUPn~ n (Z(m)(LPT) - z(m)(OPT» < ~ (a.s.) (56) 
-.- log n -il -il 

Proof. We first consider the uniform case. Here, we know that [1, p. 107] 

<.R..(l) ,p(2), ••• ,.,2.(n» is distributed as 
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..9.2 ,--
..9.n+l 

Sn 
J •••• --) 

..9.0+1 . 
(57) 

with q. = E~ 1 r D , and ro independent exponentially distributed random 
-J ",= -'" -'" 

variables (!=I •••• ,n+l) with parameter A = 1. From (20), we conclude that in 

this case 

D (LPT) ~ 1 max1<k< {aq,. - Ikj 1 q.}. -n - IDS q n --t\. =-J 
l~l --

We now consider two possibilities. First, if k < a, then 
. -

a~ - L~=1 .9.j = (l I~=l '!:t - L~=l H=l '!:t ~ 

i (a-l) l~=1 '!:t i 

Secondly, if k > a, then also 

Hence, 

and since [2, p. 224] 

max 1< t<n {r RJ 
lim -""""=""---- = 1 (a.s.), n+oo log n 

(58) 

(59) 

(60) 

(61) 

(62) 

the strong law of large numbers applied to Jln+l yields that.En con~erges to 0 

as fast as (log n)/n. Hence (cf. (36)-(41», so does Z(m)(LPT) - z{m)(OPT). 
-n -n 

Next, we consider the exponential case, where we may as well assume that 

A = 1. Here, we know [3, p. 18] that :.e.(j) - ..E.{j-1) is distributed as 

.!.j/(n-j+1){j=I, ••• ,n) with p{o) = 0 and.!.j as defined above. Thus, (20) 
implies that in this case 
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d 1 k 1:.£ k . 1:.R, 
E.n{LPT) ~ iiiS max1<k<n{a LR,=1 n-£+1 - I j =l. Ii-l n-.Hl 

1 --

I {Ik a-k+£-1 r } 
= iiiS max1<k<n £=1 n-£+1 -£ 

1 --
(63 ) 

In the proof of Theorem 1 we have seen that, if k € {[En] + 1 •••• ,n}, then 

(64) 

(cf. (22), (30». Thus, we only need consider the cases that k < a and that 

a + 1 ~ k ~ [En]. In the former we have that 

a(a-l)max1<t<n{rR,} 
\,k (j) ~ --
L. j=1 .E, - n-a+l ' 

a.E, (k) (65) 

in the latter we have by a similar argument that 

• (66) 

The remaining part of the proof is as above. 

We now consider the speed of convergence to absolute optimality in expectation 

for the LPT rule, and restrict ourselves to the case that the~j are uniformly 

distributed on [0,1]. 

Theorem 4. If the ~j are uniformly distributed, then 

(i) in the case of identical machines 

(67) 

(ii) in the case of uniform machines 

(68) 

Proof: Starting from (58), we observe that 
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E max1<k< {aq,. - I~ 1 q.} < __ n --. J= -J -

S. E max1<k<[3a] {a~ - I~=l .9..j' O} + 

+ E max[3a]+1<k<n{a~ - I~=l qj' O} S. 

S. EaS[3a] + E max[3a]+1<k<n {a~ - I~=l qjf oJ 

(69) 

We define~ ~ I~=l(a-k+t-l)rt and rewrite the second term in (69) as follows: 

00 

= L~=[3a]+1 J pr~ 2. x} dx = 
o 
00 

\n J I~ k(2a-l-k)} 
= L.k=[3a]+1 Pr ~ - ESk. 2. x - 2 dx o 

(70) 

Through Chebyshev's inequality, we can choose any pEN and bound the 

probability within the integral by E(~-Elk)2p. (x-!k(2a-l-k»-2P. Thus, for 

every pEN, (70) is bounded from above by 

00 -2p 
In E«S -ES )2p) J ( _ k(2a-1-k») dx 
k=[3a]+1 :.':.k. ==k 0 x 2 

= 0(L~=[3a]+1 E«~_E~)2P) ((k+1-2a)k)-2p+l). 

We now apply the Marczinkiewicz-Zygmund inequality [18, p. 41] to 

E( <2k-Elk)2p): 

(71) 

with A depending only on p. Hence, E({lk-Elk)2P) = 0(kP-l{k-a)2p+l) and by 
\n -p+2 substitution we find that (70) is finally bounded by 0(Lk=[3a1+1k, ), 

which is 0(1) if p=4. Combining this with (69) and by conditioning on the 

events {~l > t(n+l)} and {So < t(n+l)} respectively, we easily verify that 
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[J 

This proves (i), i.e., the case in which a s m. For (ii), we see from (37) 

that EZ(m)(LPT) - EZ(i)(LPT) = O(a2/in) for every i e {I t ••• t m} 
-n -n 

Since Theorem 4 trivially implies that 

EZ(m) (LPT) 2 
-n m 

-E-Z (':'"""m-:'")-( O-P-T-) = 1 + O( n 2) • 
-n 

(73) 

this result generalizes the bound in [4] (cf. (3». 

4. A bound for arbitrary list scheduling rules 

As pOinted out in Section 2, the basic result 

D < __ 1 __ max1(k< {aPk - L~-k p.} n - ms n J- J 1 
(74) 

holds for arbitrary list scheduling rules (LS). We can use it to derive the 

following bound on the expected absolute difference between the result 

produced by such rules and the optimal value. 

Theorem 5. If EJ? is finite and 8i - 1 for all i, then 

Proof. Since 8i - 1 for all it we have that (cf. (17» 

(76) 

If we denote the right hand side of (76) by ~(m), then we obtain after 

renumbering 

(77) 
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Thus, pr{!n(m) ~ x} is a nonincreasing sequence for fixed x. Hence, E1n(m) ~ 

E1n+l(m) and since 

lim ( 1 \n ) () n~ .En - iii L.j=1 Pj =...... a.s. (78) 

this implies that !n(m) converges in distribution to an a.s. finite valued 

nonnegative random variable 1.(m) that satisfies the following recurrence (cf. 

(13»: 

.Eo:, (m-I).£:., 
V(m) = max IV(m) - - , } - ~ m m 

where...Eoo does not depend on 1.(m). Hence, 

(m-I).Eo:, 
y(m) = max {V(m) - .Eo:"O} + m • 

(79) 

(80) 

By applying a technique used first by Kingman [5,16], it is easy to show that 

this implies that, if EV(m)Z is finite, then 

1 1 oZ(.Eo:,) 
EV(m) .s. (1 - iii)E.£,., + (1 - Zm) ~E~~-

2 
1 E.£,., 1 

= (1 - Zm) E..Eco - 2m E.£,., 

where...Eoo is distributed as the Pj (cf. Appendix A) 

Since ~(LS) ~ E1n(m) ~ EV(m) and 

< Z(m)(LS) _~ En p. = 
- n m j=l J 

- D (LS), n 

(81) 

(82) 

all that remains to be done is to verify that EV(m)Z 1s indeed finite. For 

this proof, we refer to Appendix B. 
CI 
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We note that Theorem 5 implies that, if EJ? is finite, then 

(83 ) 

so that under this assumption arbitrary list scheduling is asymptotically 

relatively optimal in expectation; the speed of convergence is O(m/n). 

It is also possible to extend the above analysis to the case of uniform 

machines. One finds that 

and hence 

EZ(m) (LS) 
-n 

s 
m (m-l+ -) 

2s 1 

(84) 

(85) 

with similar conslusions to be drawn as in the identical machine case; we 

leave the details to the reader. 

5. Conluding remarks 

The analysis in the previous sections confirms that the LPT rule requires only 

slightly more work than arbitrary list scheduling and yet has very strong 

properties of asymptotic optimality. 

This insight can be fruitfully applied whenever asymptotic results that were 

obtained for arbitrary list SCheduling have to be improved. An example of such .. 
a situation occurs in hierarchical, two-stage scheduling problems, where in 

the first stage m identical machines have to be acquired at cost c each, 

subject to probabilistic information about the n jobs that have to be 

scheduled on these machines in the second stage so as to minimize makespan. 

The objective is to find the value m(OPT) such that 

E.,(OPT) = cm(OPT) + z(m(OPT»{OPT) 
-n (86) 
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is minimal in expectation. 

In the heuristic method proposed in [6] to solve this problem, m is chosen so 

as to minimize the expected value of a lower bound on the objective function, 

given by 

i.e. , 

LB(m) m 
, 

nE.E, t nE..E. t 
m(H) £ {[(-C-) ], «-C-) )} 

(87) 

(88) 

«x) is the integer roundup of x). In the second stage, the jobs are scheduled 

on the m(H) machines by some list scheduling rule. 

It is easy to see that the value~(H) produced by this heuristic satisfies 

(89) 

where, of course, the second term is equal tO~(LS) for m = m(H). 

Hence, if we replace arbitrary list scheduling by the LPT rule, 

EC(H) = ELB(m(H» + E!n(LPT) ~ 

( EC(OPT) + ED (LPT). 
- - --n 

(90) 

If EJ? is finite, then one can prove as in Section 2 that 

lim ED (LPT) = O. Hence, since EC(OPT) = O(/n) , we obtain the ~ollowing n+<>o --n - t 
strengthened version of the asymptotic relative optimality result in 

expectation from [17] 

E.£(H) 

EC(OPT) 
1 = 1 + o(Tn) (91) 

The other asymptotic optimality results for this model from [6] can be 

strengthened in a similar manner. For instance, it is possible to obtain speed 
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of convergence results for the rate at which~(H)/C(OPT) converges to 1 almost 

surely, by applying the law of the iterated logarithm so as to obtain 

£(H) _ log log t 
lim sUPn+= £(OPT) - 1 + 0( n n») (a.s.). (92) 

As a final remark, we note that the results on the LPT rule are all based on 
(m) ~n / ~m replacing Z (OPT) by (Lj 1 p.) (L--1 si); as such they show that this 
~ =~ ~ 

approximation is asymptotically accurate almost surely. Indeed, for the 

uniform case, our results show that the difference between the LPT result and 

this value converges to 0 as (log n)/n, whereas it can be shown that the 

difference between the true optimal value and its approximation converges 

exponentially to 0 [15]. It is of interest to note that a heuristic was 

recently proposed [15] for the case that si = 1 for all i for which the 

absolute error converges as n-log n; it is tempting to conjecture that this 

result is the strongest possible one for a polynomial time heuristic. 
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Appendix A 

Define x+ ~ max {X,O} and X- ~ max {-X,O}. Since EV(m) < ~ (see Appendix B) we 

find from (80) that 

EV(m) - E.£,., = 

m-I -= EV(m) - -m E.£,., - E(V(mJ -.Ea,) (A.I) 

Because :i(m) and.Ex, are independent, we also have that (use (80) again) 

222 
a (V(m» + a (ell) = a (V(m) - l!,,"> = 

. 2 +2 -= a «V(m) - p ) ) + a «V(m) - p ) ) + 
_.,;;;,.,00 _..:...00 

+ -+ 2E(V(m) - 2ac.) E(V(m) - Ea,) 

E.E... m-l + 2 - (EV(m) - - Ep ). m - m.:;...tll) (A.2) 

Since a2(Y(m» < ~ (see Appe~dix B), this implies that 

2m-l 2 E.Ex, m-1 
-2- a (.B.,) ~ 2 m (EV(m) - -m E.£oo) (A.3 ) 

m 

which in turn implies (81). 
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Appendix B 

It is sufficient to prove that EV2(m) is uniformly bounded (use the fact that -n 
k(m) converges to :!..(m) in distribution and [19, p. 164]). i.e. that 

f x Pr{..Yn (m) 2. x} dx 
o 

is uniformly bounded. 

By definition of k(m), 

~ ~ 

(A.4) 

f x Pr{vn(m) L x}dx i L~=l f x pr{~ - ! 2~=1 .E.j L x}dx (A.5) o . 0 

and so by conditioning onA for every k,=l •••• ,n, we get 

... ... ... 
f \n f f \k,-l x pr{Vn(m) L x}dx i Lk,=2 pr{Lj=l Pj ~ m(y-x)} F(dy)dx 
o 0 x 

~ ~ 

f f f \n-1 k* + x(l-F(x»dx = Lk,=O F (m(y-x» F(dy)dx 
o 0 x 

(A.6) 

where pk* denotes the k-fold convolution of F for k=1,2, ••• and FO* the 

distribution of a random variable degenerate in O. 

Hence for every n e: IN 

~ ... 
f x pr{..Yn(m) 2. x}dx~ f f U(m(y-x» F(dy)dx 
o 0 x 

(A.7) 

I::. ~ k* . 
where U(x) = Lk=O F (x) ~s 

It 1s easy to derive, using 

I::. t 
Fl (t) = f (l-F(z»dz. Hence 

o equivalently 

U(t)F l (t) 
--t"';';"'-~ 2. 

the well-known renewal functiont([l], £10]). 

the renewal equation, that t = f Fl(t-y)U(dy) 
0-

t/2 
t 2. 6 Fl(t-y)U(dy) L Fl (t/2)U(t/2) o~ 

(A.8) 

with 
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Using this observation, we find for every n € N 

= = = 
J x pr{Yn(m) L x}dx i 2m J x J F f;~x) F(dy)dx. 
a a x I 

(A.9) 

Since limx~OFI(x)/x = I and FI(x) is a strictly increasing function, we can 

find a constant M such that for every x 2. 0 

= = J (y-x) F(dy) < M [ J (y-x)F(dy) + F(x+l) - F(x)] 
x F ley-x) - x 

and so by (A.9) with ~ ~ F (=) < 00 
I 

= = 
i 2mM J x J (y-x)F(dy)(dx) + 2mM J x (F(x+l) - F(x»dx i 

a x 0 

< 2mM J x (~ - F1(x»dx + 2mM J x(l - F(x»dx 
o 0 

(A.IO) 

(A.Il) 

Using ~3 ~ =, we can easily derive that the upperbound in (A.lI) is finite 

and hence J x Pr{Vn(m) 2. x}dx is bounded by a uniform constant. 
a o 


