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The Asymptotic Relative Efficiency 

of Mixed Statistical Tests 
EDWARD A. FEUSTAL, MEMBER, IEEE, 

Abstract-Mixed statistical tests are described. It is shown that 

these tests have a much higher efficiency than conventionally used 

statistics such as the sign test and polarity coincidence correlation 

without the high operational complexity of the Wilcoxon, Mann- 

Whitney, Kendall 2, or Fisher-Yates: Terry-Hoeffding tests. 

I. INTRODUCTION 

I 

N THE PAST ten years important results were 
obtained in the theory of distribution-free or non- 
parametric tests. Engineering interest was focused 

on the use of these statistics in detection theory, par- 
ticularly in the sonar problem. The nonparametric detec- 
tor is appropriate when insensitivity to change in input 
statistics, a fixed false alarm rate independent of input 
statistics, and sampled-data processing of input are desired. 

In applications such as sonar where very large samples 
are availamble, the asymptotic relative efficiency (ARE) 
is the usual figure of merit for a detector. An additional 
consideration is the complexity of implementation. Simple 
detection tests such as the sign test and polarity coinci- 
dence correlator have very low efficiencies, but are easily 
implemented requiring O(N) operations on the N obser- 
vations. Complex detection tests which require ranking 
such as the Wilcoxon and Mann-Whitney have high 
efficiencies but require O(N’) operations. 

A class of statistical tests is proposed in this paper 
that has relatively high efficiency with intermediate 

complexity. This class is called the class of “mixed 
statistical tests.” A mixed statistic is a threshold test 
which is derived as follows. The N observations from 
each of k channels (samples) are divided into p groups 
of m observations. An intermediate statistic on each of 
the m observations appropriate for k channels reduces 
kN observations to p values. The p values are summed to 
form the final value which is compared with the threshold. 

The advantage of this procedure is that the asymptotic 
relative efficiency as a function of m approaches its 
maximum value rapidly with increasing na and only 
requires O(m”p) = O(mN) operations. Hence recent 
advances in digital techniques allow real&me imple- 
mentation of these more efficient statistical techniques. 
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In this paper the ARE of mixed statistics which use the 
Wilcoxon, Mann-Whitney, Kendall, and Fisher-Yates: 
Terry-Hoeffding procedures as intermediate statistics are 
investigated, and digital implementations are developed. 
These schemes allow increases of 30 percent to 200 percent 
in efficiency over sign tests and related techniques under 
the assumption of Gaussian noise input. 

II. ASYMPTOTIC RELATIVE EFFICIENCY AND EFFICACY 

The tests considered in this paper are based on the 
Neyman-Pearson criteria. Under these criteria, the prob- 
ability of detection fi is maximized while the false alarm 
rate is constrained to be less than a fixed level 01. Thus 
the optimum test is generally uniquely determined if 
the probability distributions of signal and noise are 
known. Nonparametric tests are suboptimum tests which 
are applicable when only some general properties of the 
signal and noise are known and are not uniquely deter- 
mined. Hence a further criterion is necessary to order 
the performance of such detectors. The selected criterion 
is Pitman’s asymptotic relative efficiency.“’ It is par- 
ticularly appropriate in the case of weak signal detection. 
If the hypothesis is taken to be noise alone and the 
alternative to be signal plus noise, the asymptotic relative 
efficiency applies when the alternative approaches the 
hypothesis-that is, the signal-to-noise ratio approaches 
zero. Specifically, it relates the number of samples required 

to maintain the false alarm rate below Q( while the prob- 
ability of detection is p in one detector to the number 
required for a second in the limiting case: 

where 

; 

is the probability of false alarm not to be exceeded; 
is the probability of detection to be maintained; 

Ni is the minimum number of observations required 
for detector die 

It is assumed that both d, and d, are consistent. 
The tests of interest are threshold tests. A statistic SN 

based on the N observations is compared with a threshold 
C(N) which has been determined in an a priori fashion 
from the required value of (Y. In most previous electrical 

engineering work, functions on SN, C(N) were used to 
calculate the ARE in an extremely laborious fashion. 
Statisticians have used a concept known as efficacy.“’ 
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It is a measure of efficiency for one test which may be 
directly compared to that of another to obtain the ARE: 
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to preclude real-time application. Herein lies the justi- 
fication for mixed statistical tests. 

A mixed statistic is the sum of p observations of an 
intermediate statistic X7 operating on independent groups 
of m independent data points taken from each of k 
simultaneous channels or “samples.” The subscript I 

denotes “intermediate” and subsequently stands for the 
exact intermediate statistic used (X for sign test, etc.). 
N = mp is the total number of data points for each 
sample, and will be used to calculate the ARE with 
respect to any other k-sample test for fixed false alarm 
rate and probability of detection. The work involved 

is O(m”p). The question is, “What is the asymptotic 
relative efficiency of the mixed statistic as a function 
of m?” The answer is that the ARE rises sharply with 
increasing m, usually within the range 6 < m 5 15 to 
between 80 and 90 percent of the efficiency of the highly 
efficient rank statistic. 

An intuitive motivation for this procedure is the idea 
that nonparametric techniques are transformations which 
convert arbitrary distributions into known ones, usually 
very close to Gaussian distributions for 20 or 30 obser- 
vations. It is known that the optimum method of 
combining independent Gaussian samples for detection 
is to add them. The intermediate statistic serves to convert 
data from an arbitrary distribution to “almost” Gaussian 
data which are then summed and detected. The fact 
that the ARE of the mixed statistical test is sharply 
monotonic with m confirms this intuitive approach. 

The discussion to follow first investigates the one- 
sample case and then the two-sample case. The k-sample 
case will be discussed at a later date. Three types of 
statistics will be investigated: the Wilcoxon (and subse- 
quently the similar Mann-Whitney and Kruskal-Wallis), 
the Kendall T, and the Fisher-Yates: Terry Hoeffding 
(FYTH) (and subsequently the k-sample expected rank- 
correlation test of Rushfort and Daly). 

A simple, one-sample, distribution-free test that has 
been throughly investigated”’ is the sign test: 

ARE (d,, d,) = + 69 2 

where Sj is the efficacy of the ith test. The advantage 

of efficacy is ease of calculation with complicated tests. 
There are two forms of efficacy, one for the one-channel 

case and one for the t.wo-channel case. The two-channel 
test calculates a statistic on the sets {xi/; = 1, . . . , m} 
and (y,/i = 1, ..a , n} where the first set is from the X 
channel and the second is from the Y channel. Depending 
on the detection problem, Y may be a reference channel 
or an independent signal channel. 

The two-channel form follows: 

& = lim 
E,(P) - E&s’) 1 

A, Varg’ (8”) r(l - rw 
(3) \+ cc 

where it is assumed that 1) the central limit theorem ap- 

plies to the statistic SN, 2) A*=IcN-” KEY -EH(XN), 
and 3) 0 < y < 1 is the proportion of observations in 
the X channel (usually $), or alternatively: 

The one-channel form is very similar: 

(4) 

where all but condition 3) apply. Alternatively, this 
latter form may be written:’ 

&,@N) = lim _[PS"(M-1 - Ps‘@N2 

’ 
03 

N-C= 12 Var, (X”) 

where ~~“(0) is the mean X” for signal 0. 

III. MIXED STATISTICAL TESTS 

The sample mean test, a well-known parametric test 
which is optimum for independent Gaussian observations 
of known variance, requires about 22 000 samples for 
O( = 0.001, 0 = 0.95 and signal-to-noise ratio (SNR) = 
-30 dB. For this large number of observations, the 
central limit theorem should apply. It also shows the 
reason why only simple tests have been used in the past. 
The amount of computation for a sign test is O(N) while 
the amount of computation for the Wilcoxon is O(N’). 
Yet the ARE of the sign test for normal alternatives 
is only about 0.63, whereas the ARE of the Wilcoxon 
for normal alternatives is about 0.95. If the Wilcoxon 
is used, a saving of about 30 percent in the sampling 
time results, but the processing time becomes so long as 

1 Suggested by a reviewer. 

Y 

S’i = C sgn xi (7) 
2=1 

or equivalently, 

s:: = 2 u(xJ (8) 2=1 

z&J = 
1 si2.0 
0 otherwise. 

The ARE of this detector in location testing with respect 
to the student’s t-test for Gaussian alternatives is 2/r. 
The Wilcoxon, one-sample detector is a general extension 
of this detector and calculates the statistic:[41 
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The ARE of this detector with respect to the student’s 
t-test for Gaussian alternatives is 3/r. 

The following question arises: If p observations of 
the output of a Wilcoxon operating on m data points 
are summed and a decision is based on the statistic’ 

where 

what is the ARE with respect to the optimum parameter 
test for Gaussian alternatives? First the efficacies for 
mixed statistics from one channel will be calculated. 

For sufficiently small 0: 

pp(cze) = a/.+(8). (13) 

For a sequence of alternatives 6 = JC’N-l”, the efficacy of 
the mixed test based on 

is 

p-1 
A!? = c S’;(i), 

t=” 
N = mp 

E(S’r) = lim bsn-O~‘N-~‘~) - ~,sdO1~ 
A-m h?’ Var, (SN) 

= lim p’[~s-(lc’N-“2) - ~s~‘~(O)l* 
s-1 m p/c” Var, S” 

Y2N-’ [psm(km-1’2) - p,ypn(0)]” 
= lim p Ei 

N-cc 1~” Varw (Sm) 

= &(AYj). 

(14) 

(15) 

(17) 

(18) 

In precisely the same manner, the efficacy of the two- 
channel mixed statistic is shown to be 

E(SN) = qs;). (19) 

Returning to the question, we find that 

24(m - 1 + 4)’ 
ARE = 4~(2m + l)(m + I) 

= 2/7r m=l (20) 

-+ 3/7r m-+00 

Most interesting is the functional curve of the ARE 
versus m plotted in Fig. 1. Starting at 0.637 and rising 
to 0.955 at infinity, by m = 6 the ARE has reached a 

value of 0.863. 

2 SWN has been used both for the mixed statistic and for the 
original to save subscripts. The meaning should be clear from the 
context. 

1.0 .. 

0.9 .- 

0.8 -- 

0.7 .- 

06 .. 

05 .- 

04 -. 

0.3.. 

02 -- 

01 .. 

Yii,ii,::I::!:: :: !::::::i::.::::,::‘::: 
4 8 12 16 20 24 28 Y 36 40 

GROUP SIZE M 

Fig. 1. Asymptotic relative efficiency versus group size 
for mixed Wilcoxon. 

TABLE I 

Type ARE X Work 

1) Sample Mean Test 1.000 22 400 
2) Wilcoxon Test 

0(2.2X104) 
0.955 23 500 

8) B-point Mixed Wilcoxon 
0(5.5X10*) 

Test 0.863 26 000 
4) Sign Test 

0(1.6x105) 
0.637 35 000 0(:3.3x104) 

Consider what this means in a practical situation, 
Let N be the number of data points for student’s test 
required for o( and p for: 

H :x, - NO, ~1 

K :z; - W/J, d (21) 

N = (a-‘(1 - ai) - +-‘(I - p))” 2 

for o( = 0.001, p = 0.95, A’ = 22.4 

N = 22.4 
NOISE POWER 

SIGNAL POWER 
(22) 

Suppose the above ratio is 30 dB. Table I then 
summarizes the average number of samples required for 
four tests for Gaussian alternatives and indicates the 
order of magnitude of the work involved. Of the non- 
parametric tests, the B-point mixed Wilcoxon is clearly 
superior to the sign test in efficiency and to the Wilcoxon 
test in the amount of work that is required. 

When digital hardware is utilized to implement the 
mixed Wilcoxon, a real-time processor is possible for 
typical rates of 2 MHz. A single (m - 1)-tap delay 
line and +m(m + 1) threshold devices plus a binary 
adder are sufficient. A detector for m = 3 is shown in 
Fig. 2. Since the output of the binary counter can be 
taken in parallel, no analog-to-digital conversion is 
necessary before transmission. In addition, the information 
rate for transmission to a central processing point is 
reduced in the same manner as in the sign detector, 
a desirable feature for sonobouy detection. 
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show that for a test using 

where 

g-1 

xp = c x:(i) (26) 
x=0 

ST(i) = g b-&l ii{1 + sgn (xim+j - Zim+k) 

.sgn bimci - gim+k)l (27) 

SUM AND THRESHOLD 

BINARY COUNTER 

Fig. 2. 

IV. TWO-SAMPLE TESTS 

While one-sample tests are very useful in giving 
information about mean location changes (or more 
generally when the signal is of any known form), they 

are not very useful when the signal is unknown. If 
two samples with independent noises are available, the 
presence of a common signal can be detected by testing 
for correlation or some other statistical test on dependence. 
A common method is polarity coincidence correlation 
(Pcc).‘+**l The basis statistic for PCC is: 

SL = 2 sgn xi sgn yi (23) 
i=l 

or alternatively 

(24) 

where the difference is a shift in the mean. Although 
such processing is extremely simple, t.he ARE is about 
(2/7r)’ with respect to the parametric detector which 
measures the sample correlation for Gaussian inputs, 
and the ARE with respect to the ideal Neyman-Pearson 
scheme is +(2/7r)2.‘5’ Several other statistics are of a 
similar type. The Kendall 7(‘] is one such example: 

fT= 2 2 $11 +sgn(x( -Xj)Sgn(y, - y,)}. (25) 
i=l j=i+l 

The ARE for this test with respect to the correlator 
is 9/a’. Then the ARE of the Kendall detector with 
respect to the PCC is 9/4. This is a large improvement, 
but is accompanied by a good deal of additional work. 

The success of the mixed method for the sign test 
gives rise to the hope for a similar result here. Calculations 

the ARE with respect to the correlator for Gaussian 

alternatives is: 

ARE (4, G = [;;;;2,] (fy. (2s) 

The functional curve of the ARE of PCC compared to 
the m-data point, summed Kendall test is interesting 
(see Fig. 3). Starting at a value of l/2 for m = 2, it 
increases slowly, reaching 27126 at m = 4 and 1.62 at 
m = 10. At m = 29, it is 2. For m = 10, only 5/8 as 
many samples are required for the Kendall mixed statistic 
as for the PCC detector. One possible implementation 
is shown in Fig. 4. m(m - 1) threshold devices are 
required and m(m - 1)/2 exclusive-OR devices. All can 
be constructed from diodes and simple differential amplifier 
circuitry, which is very commonly microminaturized. 

In some instances it may be desirable to utilize a 
test for randomness instead of one for independence. In 
this case the two-sample Maru-Whitney[l’l *[11’ appears 
to be the “best” distribution-free test. It is well known 
that the Mann-Whitney has an ARE of 3/n with respect 
to the two-sample student’s t test. Again we are interested 
in the sum of p observations of the Mann-Whitney 
operating on two samples of m data points: 

Skdk~ = 2 2 sgn (G~+~ - Ykm+j > (29) 
a=1 j=l 

The ARE for this case is: 3/a(2m/2m + l), m I 1 
(see Fig. 5). By the time m = 5, the ARE is about 91 
percent of the full value or 0.864 with respect to the 
Mann-Whitney. For any continuous distribution, the 
worst possible ARE for the Mann-Whitney or the 
Wilcoxon has been shown to be 0.864.[121 The preceding 
analysis remains valid for these distributions providing 
the factor 3/n is replaced by 0.864. This means that for 
any continuous distribution the ARE with respect to 
student’s t test should not fall below (0.864)2 for the 
five-data-point mixed statistic. An implementation for 
this statistic involves more threshold units than the 
others mentioned previously, requiring m” threshold gates 
in addition to the binary adder. An implementation for 
m = 3 is given in Fig. 6. 
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Fig. 3. Asymptotic relative efficiency versus grow size 
for mixed Kendall. 

XZ+--- 

, 4 8 12 16 20 24 es 32. 36 40 

GRO”P SIZE M 

Fig. 5. Asymptotic relative efficiency versus group size 
for mixed Mann-Whitney. 

0 T THRESHOLD 0 X XOR ’ @ BINARY COClNTER 

Fig. 4. 

Analogous to the normal scores test for one sample is 
the Fisher-Yates: Terry-Hoeffding test (FYTH) for two 
samples.L’31 Suggested by Fisher and Yates, it remained 
for Terry[l*l to show the optimal properties. Chernoff 
and Savagell’l have shown that for hypotheses and 
alt,ernatives with absolutely continuous densities the 
ARE of the FYTH against student’s two-sample t must 
always be equal or greater than 1 with the equality holding 
for the case of normal alternatives. Capon[“’ has shown 
that the test is the locally most powerful rank test for 
Gaussian alternatives. With all these advantages, one 

asks: “Why has it not been implemented?” A glance 
at the statistic is sufficient to show why. The FYTH 
statistic is: 

(31) 

XI 
K3 

DELAY 2T 

IX2 

Y, i DELAY 2T I 

Y3 Yl 

Y2 

0 THRESHOLD : 43 BINARY 

i: i-----l COUNTER 

f 

3- 

Fig. 6. 

where a< is the expected value of the ith smallest order 
statistic drawn from the absolute normal population 
of zero mean and unit variance. zi, is the l(0) function 

which has value 1 if the ith smallest observation is 
drawn from the first sample. It is immediately clear 
that for large N, the implementation is a horrendous 
problem; N coefficients must be provided, 2N items must 
be ranked, O(4N2), the proper coefficients must be selected, 
and then a sum must be computed. 

As expected, the mixed statistic proves itself con- 
siderably easier to implement. The test will consist of 
the sum of p observations of the statistic operating on m 
data points of two samples. In Appendix I, the ARE of 

this mixed statistic is calculated with respect to the 
two-sample student’s t test as: 

ARE (d,, dz) = & g iE(s, 2m) 1” (32) 

where 

E(s, 2m) = a,. 

Unfortunately, there is no simple interpretation of this 

expression. Ruben has shown[17’ that the resulting value 
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may be approximated by hyperspherical simplices to 
within 0.1 percent for m = 100. In Fig. 7, the ARE is 
plotted. Observe that between 15 and 20 samples are 
required for a high ARE. Lehmann and Hodges”81 have 
discussed the advantages of the Ma,nn-Whitney as com- 
pared to the FYTH and have concluded that for prob- 
ability distributions with heavy tails the Mann-Whitney 
has a higher efficacy. 

Because the mixed statistic requires only a small 
number of comparisons for a relatively high efficiency, 
an implementation, as in Fig. 8, is considerably more 
complicated than the Mann-Whitney or the Kendall T 
since pure digital hardware cannot be used, but the 
greater efficiency that it possesses may warrant its use. 
The system then requires (2m - 1)m threshold gates, 
m binary adders of size (2m - l)m, a diode selector 
matrix for selecting coefficients, 2m coefficient generators, 
an analog summer, and an A-D converter for trans- 
mission. By using a commutator and hold circuitry, one 
adder and a simpler selector matrix may be used. 

APPENDIX I 

Fig. 7. Asymptotic relative efficiency versus group size 
for mixed Fisher-Yates: Terry-Hoeffding. 

Y -J- 
Y3 

ONE-SAMPLE TESTS 

Let xi, i = 1, ..a , N be independent samples of a 
random process. To test the hypothesis-alternative pair: 

H : xi = ni 1 ni Gaussian, mean 0, variance c2 

vs. K : zi = p0 + niJ pLo is a positive constant. 

The optimum Neyman-Pearson detector calculates 

g xi = sN. (33) 

It - ,c _ BINARY 

I: 
- COUNTER 

-I 
:L- 

SELECTOR 
BINARY MATRIX A- D 

2c - 
_ COUNTER 

z-- 
AND CONVERTER 

SUMMER 

:: - BINARY 

::- COUNTER 
3e - 

0 
GATED THRESHOLD 

Fig. 8. 

Let N, be the number of samples required for false alarm when 

rate ac and probability of detection p. In the limit as 
N, -+ 03, when p0 -+ 0 and since Varh- (S”) = Varr, (S”), 

a-‘(1 - a) - +-‘(I - /3) = A = ___ fiG’o (34) and 
u 

NG = $ A2 (35) 
(40) 

where CD-’ is the inverse to the normal distribution ARE (&, d,) = $$ = ;. (41) 
function of zero mean and unit variance. For the non- a 

parametric sign detector For the Wilcoxon one-sample detector: 

Sz = 2 sgn xi 
i=l 

under the same H and K: 

E&S:) = N,(p - q) = N(1 - 2@(-w’fli)) (37) 

E&‘Nw) = Npz + 
NW - 

2 
1) pl 

(43) 

(44) where p = Pr(xi > 0) and 4 = 1 - p 
VarH (so> = N(2N + l)(N + 1) 

w 
24 

Var, (X3 = N,&) (38) where: pz = Pr(zi > 0) and p, = Pr(zi + zi > 0). 
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Making a series expansion yields The second test d, is a correlation test which for known 

EK(Sg) - EH(SE) = N(N -$g dz)po for p,,/~. small. variance and 
au 

(45) H, : (xi } , (vi ) statistically independent Gaussian 

Then for the mixed statistic based on the Wilcoxon uz = a, = ui, l-&z = Py = 0, 

S; = 2 (23; - E(JY;/~~ = 0)) (46) 
K, : {xi}, {yi) correlated Gaussians 

and for pm = N, 
ur = ffy = ui, PL, = k&J = 0, 

is 

E(xN,) = N cm - ’ + -v% 

dz& pLi 
(47) 

Var (x$) = N (2m + l)crn + ‘) 
24 

(48) Then 

24(m - 1 + X4!)’ 
ARE (dGf dw) = (2m + l)(m + l)G (49) 

s,m= gyi. 
* 

EKz(S’3 = pm 

VarB, [X:1 = m 

uzs = 0 

2 
uzt, = PCzfly 

(53) 

(54) 

(55) 

which agrees as m + 03 : ARE (dG, dw) = 3/7r and for and the limiting distribution for e/lc - N(mp, m). 

m = 1: ARE (da, dw) = 13/r, the result for the sign The Kendall 7 statistic is: 

detector. 

APPENDIX II 

sy=- 2 
m(m - 1) @ hii 

TWO-SAMPLE TESTS 
where 

Here two parametric test results are required: the 
number of observations for the student’s t, two-sample 
test, and the number required for the correlator. The 

hii = $( 1 - sgn (xi - xJ sgn (yi - yJ) 

EIca(S+J = [ 1 - fsin-l p] 

hypothesis-alternative pair for the first detector, d,,, is and 

H : {xi}, (y,) are statistically independent with bivar- 

iate normal distribution jEK,(S:) - ER,(ST)( -3 p for small p. 

fT4 = F(Y) Kendall[g’ gives the variance of ST as: 

K : {xi ), {yi ) are statistically independent with 

F(x) = JYY - e>, e = positive constant. 

The student’s t statistic is’121: 

VarH2 Sr = 2(2m + 5, . 
9m(m - 1) 

Let N = pm. The statistic 

t2 
(2 - g)” !%?T$z 

-= 
2m - 2 2’ 

md + m2s2 
(50) 

Then 
This is the optimum parametric test for determining 

location shift with a Gaussian model of unknown variance 
where m, is the number of observations in the first sample, 

mz in the second, m, + m, = m and s: and SE are the and 
respective sample variances. In this case s, and s2 are 

(61) 

E(S’y) =+ : for small p (62) 

known and m, = mz = m so 

2 _ 1 (2 - id” t 

2m - 2 5 (s:j 

if sf = 8: = u2 

= 2 (2 (Xi - yi))2. 
mu i=l 

This tends to normality with increasing m with 

and variance 2u2/m. 

var (p) = 2@m + 5) . 
9N(m - 1) 

(51) Then 

ARE (d,, d,) = &+~‘s’j = 
0 
f ’ 2;g ; 2) 

(52) 
which for 

mean 0 9 
m--t 00 =+y- 

7r 

(56) 

(57) 

(58) 

(59) 

(60) 

(63) 

(64) 
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The statistic for PCC is and that the variance is: 

SKX = 

EK,(X&) = f sin-’ p 

(65) 

(66) 

(67) 

Then the ARE (d,, d,,,) = (2/a)‘. 

If, instead of a test for dependence, a test for homo- 

geneity is desired, i.e., H, vs. K,, the Mann-Whitney 

or Fisher-Yates: Terry-Hoeffding tests are used. Here 

it is expected that one channel will contain noise alone. 
The Mann-Whitney test statistic for m samples in one 

channel and n in the other is: 

has: 

Var (S$$) = z (m + n + 1) 

and incremental expectation 

The sum N = pm, and 

For n = m: 

3 2m 

=?rm 

ARE (42, Giw) = (f)($$ 

Var (C?) = Q - ‘) inf G 

where 

inf G,, = E{~&~~gP(@ ~oz~~2~ 

and -yM = m, N = mp. Then let 

e= &CG. 
i=l 

Var (e) = p Var (C?) 

E(e) = pE(C’;) 

(69 

(70) 

(71) 

A zz kM-‘/’ 

x = kN--‘/’ 

A = p1’2x 

d d dx - = -.-- 
dA ax dA 

(72) 

(73) = inf G,,. 

From Kendall:‘121 

(74) Var,, (C?) = 

Alternatively, the Fisher-Yates: Terry-Hoeffding sta- 

tistic may be used. This statistic is for equal sample sizes: inf G,, = j& {$ fi VW, W12}. 
s-1 

C? = i $ E[xi, 2m]x, (75) From Ruben:“” 
* 1 

where E[xi, 2m] is the expected value of the ith smallest 
6 = $ g [E(i, M)]’ 

observation of 2m drawn from a normal population of 
zero mean and unit variance and zi is the indicator 

M-l 
- ___ (M - l)(M - 2)(M - 3) 

function having the value 1 if the ith smallest observation 
-M+l”‘+ (M + l)(M + 2)(M + 3) a3 ’ 

is from the first sample. 2m - 
Capon”” has shown that the efficacy of this detector Ez Z 2m G 

using K, and H, is simply: 

E* = inf G,, (76) 
ARE (dta, d,,,,) ‘v & G. 

(77) 

(7% 

(79) 

(W 

(81) 

@a 

(83) 

(84) 

(85) 

(86) 

(87) 

(88) 

(8% 

(90) 

(91) 

(92) 

(93) 
.  .  

(94) 

(95) 
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Differentiation of Karhunen-Lobe Expansion 

and Application to Optimum Reception 

of Sure Signals in Noise 

T. T. KADOTA 

Abstract-The first part of this paper is concerned with dif- 

ferentiation of the Karhunen-Lo&e expansion of a stochastic 

process. In particular, we establish that the expansion series can 

be differentiated term by term while retaining the same sense of 

convergence, if the covariance R(s, 1) has a continuous second 

partial derivative and the sample function x(t) is almost surely 

differentiable. The result can be generalized to the case of higher- 

order differentiation. Namely, if (iP/as~ i3P) R(.s, t) is continuous and 

x(t) has the nth derivative xcn)(t) almost surely, then the series can 

be differentiated term by term n times, and the resultant series 

converges in the stochastic mean to +)(f) uniformly in t. 

In the second half, the above result is applied to the problem of 

optimum reception of binary signals in Gaussian noise. Suppose 

the binary sure signals are ml(t) and mp( t) and the noise covariance 

is R(s, t). Then we prove the well-known conjecture that the 

optimum receiver correlates the observable waveform with the 

solution g(t) of the integral equation s R(s, t)g(s) ds = m,(f) - m,(t) 

even if the solution contains &functions and their derivatives. This 

result can be generalized to the case of Wary sure signals. 

Manuscript received May 17, 1966; revised October 7, 1966. 
The author is with the Bell Telephone Laboratories, Inc., Murray 

Hill,-N. J. 

I. DIFFERENTIATION OF KARHUNEN-LO$VE EXPANSION 

s 

UPPOSE we have a second-order stochastic process 

Ix(t), --T 5 t 15 Tl with zero mean and a con- 
tinuous covariance R(s, t). Then, according to the 

Karhunen-Lo&e theorem,L1l x(t) can be expanded in 
terms of the orthonormalized eigenfunctions +bi(t), i = 
0, 1, 2, * ** ) of R as follows: 

x(0 = F &(X)~i(O, (1) 

where the coefficients are defined almost surely by 

W = .c’, x(t)#i(t) dt, i = 0,1,2, *** , (2) 

and the series converges in the stochastic mean to z(t) 
uniformly in 2, namely, 

Jim E 
n-m ii 

40 - g ti(4tii(t) ’ = 0 
11 

uniformly with respect to t, -T 5 t I T. 




