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Abstract. Consider the problem of scattering of an elastic wave by a three-dimen-
sional bounded and smooth body. In the region exterior to a sphere that includes the
scatterer, any solution of Navier's equation that satisfies the Kupradze's radiation
condition has a uniformly and absolutely convergent expansion in inverse powers of
the radial distance from the center of the sphere. Moreover, the coefficients of the
expansion can recurrently be evaluated from the knowledge of the leading coefficient,
known as radiation pattern. Therefore, a one-to-one correspondence between the
scattered fields and the corresponding radiation patterns is established. The acoustic
and electromagnetic cases are recovered as special cases.

1. Introduction. The Sommerfeld's radiation condition [17] imposes, upon any
scalar scattered field, the appropriate asymptotic characteristics in order for the scat-
tering problem to have a unique solution. It actually states that the behaviour of
the scattered field, far away from the scatterer, should coincide with the behaviour
of an outgoing spherical wave emanating from an oscillatory point source. Miiller
[13] and Silver [16] provided the corresponding radiation condition for electromag-
netic scattering, while in the case of elastic wave scattering, the appropriate radiation
conditions for the longitudinal as well as the transverse waves are due to Kupradze
[8]. Stoker [18], [19] attempted to replace the radiation condition, which is actually
imposed upon the spatial behaviour of the time-independent wave solution, with ap-
propriate initial conditions imposed upon the (time-dependent) solution of the wave
equation, and then find the solution of the time-independent problem by passing to
the limit as time tends to infinity. He illustrated his idea by a few examples taken
from hydrodynamics. Wilcox [26] put this idea in general framework, by showing
that Sommerfeld's radiation condition for a time-harmonic wave is a consequence
of the fact that a solution of the initial-boundary value problem represents a wave
propagating outward from the source (scatterer) with a constant velocity. His method
is based on the concept of spherical means.

It was Atkinson [1], in 1949, who first realized that the Sommerfeld's asymptotic
condition has an exact counterpart in terms of a convergent series representation
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of the scattered field in the exterior of any sphere completely surrounding the scat-
terer. In fact, Atkinson showed that any solution of the Helmholtz's equation, which
satisfies the radiation condition, has an absolutely and uniformly convergent series
representation in inverse powers of the radial distance r, in all space exterior to the
above sphere. The coefficients of this expansion depend only on direction. The
leading term of the series has the form of the Rayleigh's radiation condition [15],
[23], which is nothing else but the fundamental solution of the time-independent
wave equation whose form reflects the rotational invariance of Laplace's operator
[6]. Atkinson's expansion separates the radial from the angular dependence of the
solution and it can be seen as the wave analogue of Maxwell's multiple expansion [ 12]
for potential functions due to spatially localized sources. In this radial-angular sepa-
ration, the radial dependence is the same in all scattering problems and characterizes
the radiative nature of the scattered field, while the angular dependence incorporates
the geometrical and the physical characteristics of each particular scatterer. Atkin-
son's expansion implies that the periodic variations carried by any term of the series
have all the same form, but their amplitudes become smaller and smaller as we move
to higher and higher order terms in the series.

A few years later, Wilcox published two fundamental papers generalizing the idea
of radiation condition from a pointwise limit to an L2-type limit, hence weakening
the sufficient conditions for an integral representation of the scattered field and the
Atkinson's expansion theorem, both for the acoustic [24], as well as the electromag-
netic [25] case. A crucial step in generalizing the Muller-Silver radiation condition
for electromagnetic waves, to the corresponding L2-form was an integral identity for
electromagnetic waves proved by Stratton and Chu [20], Wilcox's work contains the
important fact that all the (orientation dependent) coefficients in the Atkinson's ex-
pansion can be recovered through a recurrence relation, via the leading coefficient,
known as scattering amplitude [22], or radiation pattern [14]. Therefore, a one-
to-one correspondence between the scattered fields and their radiation patterns was
established. A closed form expression for the scattered field in terms of the nor-
malized scattering amplitude, in the scalar case, has been obtained by Twersky [22].
Twersky's expansion formula is based upon the development of the spherical Hankel
functions in inverse powers of the radial variable. The expansion theorem brought
up the question of characterizing all the functions defined on the unit sphere that
can be radiation patterns for some scattered fields. The answer to this question was
given by Muller [14] who proved that a necessary and sufficient condition in order
for a given function to be a radiation pattern is that it is the restriction on the unit
sphere of an entire harmonic function, whose L2-norm over a sphere of radius R is
a function of exponential type in the variable R.

The two-dimensional version of Atkinson's theorem for acoustic waves was proved
by Karp [7] in a form that involves a combination of two series expansions in inverse
powers of the radial distance. One expansion is proportional to the Hankel function
H0 and the other is proportional to the Hankel function H\.

The present work studies the elastic scattering problem from the point of view
of representing the scattered field by an Atkinson type expansion, outside a sphere
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that includes the scatterer. Section 2 contains a short description of the scattering
problem in classical elasticity. The main expansion theorem is stated and proved in
Section 3. In order to facilitate reading, the proof of the theorem has been reduced to
a small number of lemmas. The scattered elastic field is a linear combination of two
series in inverse powers of the radial variable r. One involves the longitudinal part
and the other involves the transverse part of the scattered wave. The radial depen-
dence of both series is scalar, while the vectorial character of the elastic displacement
field is reflected in the coefficients of the expansion which are dependent only on the
orientation of the observation point. The convergence properties of both series in the
expansions are proved to be the same as those of the scalar case. Section 4 involves
the consequences of the expansion theorem. It is actually proved that all the coef-
ficients of the series that correspond to the longitudinal part can be evaluated from
the knowledge of the coefficient of the leading term of the longitudinal series alone.
The same is true for the transverse wave. Therefore, a one-to-one correspondence
between the longitudinal parts of the displacement fields and the longitudinal radi-
ation patterns, on one hand, and between the transverse parts of the displacement
fields and the transverse radiation patterns on the other, is established. In contrast to
the acoustic and electromagnetic scattering problems, where the recurrence relations
express the «-th coefficient of the series in terms of the (n - l)-th coefficient, in the
problem of elastic scattering, both for the longitudinal as well as for the transverse
series, the first-order coefficients are given in terms of the corresponding zeroth or-
der, while all the «-th order coefficients for n > 2 are given in terms of the (n - l)-th
and (n - 2)-th order coefficients. This is a consequence of the more complicated
structure of Navier's equation as compare with the scalar and vector wave equation.
We also obtain the well-known result, [2], [4], that the longitudinal radiation pattern
has a radial direction while the transverse radiation pattern is tangentially polarized.
These polarization properties yield some calculational difficulties in evaluating the
recurrence relations for the coefficients, as can be seen in the proof of Proposition
1. Furthermore, we show how the coefficients of the longitudinal and the transverse
expansion can be expressed via the normalized longitudinal and transverse scattering
amplitudes, which are given in [4], for each elastic scattering problem, in terms of
quadratures over the surface of the scatterer. Finally, in Sec. 5, we recover, as spe-
cial cases, the Atkinson-Wilcox theorems for acoustic as well as for electromagnetic
waves and show how the third-order recurrence relation of the elastic case reduces
to the corresponding second-order recurrence relations obtained by Wilcox.

2. The elastic scattering problem. . Let the scatterer V~ be a bounded, convex,
and closed subset of R3, with a smooth boundary S. The complement V of the region
V~ is occupied by a homogeneous and isotropic elastic medium characterized by the
constant mass density p and the Lame constants X and p. We assume that infinite
time has passed since the application of the initial disturbance, so that the transient
wave [26] has died out and the purely time harmonic dependence e~ia" has been
established. Then the time-dependent displacement field u(r) satisfies the stationary
Navier equation

pAu + (A + //)V(V • u) + pco2u = 0, (1)
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where u> is the angular frequency imposed by the assumed time harmonic dependence.
In what follows, the mass density p has been scaled out to unity.

The total field = O + u, where O denotes the incident field and u the scattered
field, has to satisfy specific boundary conditions on S. Among these, the most impor-
tant is the boundary condition for a rigid scatterer: u = 0, on S, and the boundary
condition for a cavity: Tu = 0 on S. The surface traction operator T is defined to
be [9]

T — 2/in ■ V + In div +ph x rot, (2)
where n(2) is the outward unit normal on S, which exists everywhere by the smooth-
ness of S. The field u is linearly decomposed [21] into the longitudinal wave up,
which propagates with the phase velocity cp = y/T+2Ji, and the transverse wave u5,
which propagates with the phase velocity cs — yjji, i.e.,

u(r) = up(r) + uJ(r). (3)

The longitudinal wave \xp and the transverse wave us satisfy the Kupradze radiation
conditions [8]

lim u'(r) = lim r(dru'(r) - z7fc»u'(r)) = 0, (4)
r—+oo r—► oo

lim us(r) = lim r(drus{r) - iksu*(r)) = 0, (5)
r—►oo r—► oo

uniformly over directions, where kp and ks are the wave numbers of the longitudinal
and the transverse waves respectively, which are related via

(o = Cpkp = csks. (6)

The direct scattering problem in elasticity is the following. Given an incident field O
and boundary conditions on S, find the scattered field u which satisfies Eq. (1), the
appropriate boundary conditions and the radiation conditions (4), (5). The solution
of this problem is furnished via the integral representation, [9], [4],

= i W ' Tr'T(-r•r') - r^r' ^ ' 7>*P(r')] W

which holds for every r e V. The fundamental tensor r(r, r7) is given by
i „ikp |r—r' | i piks |r-r'|

re,r') = --J V,» vrlfr7r + ^ [V, ® vr + (8)
where I is the identity dyadic. Besides its theoretical importance, this representation
has also a significant computational value since it reduces a three-dimensional prob-
lem over the unbounded region V to a two-dimensional problem over the bounded
surface 5" [3],

3. The expansion theorem. Following the elegant work of Wilcox, [24], [25], we
give the following definitions in order to simplify the statements of the theorems.

Definition 1. Let V be the exterior domain described in Sec. 2. The vector field
u: V —* C3 is called an exterior elastic wave function, if it belongs to C2(V) and
satisfies the time-independent Navier equation (1) at each point of V.
(2)The symbol on the top of a vector is used to indicate the unit vector in the same direction.

u r



ATKINSON-WILCOX EXPANSION THEOREM 289

Definition 2. The exterior elastic wave function u: V —► C3 is called an elastic
radiation function whenever the longitudinal part up and the transverse part us of u,
as in (3), satisfy the Kupradze radiation conditions (4), (5), uniformly over directions.

In order to facilitate the proof of the main expansion theorem we state and prove
the following lemmas.

Lemma 1. The fundamental tensor T(r, r7) can be written in the following form:

fp(R)r(r,r') =

where

and

CO2
^r®r_^_-±)(I_3R®R)

fc2(I-R®R)+^--l)(I_3R®R), fs(R)
(9)

R = r - r' = RR, R = |r-r'|, R= r ^
r-r'

f{R) =
gikpR

R

fs(R) = '
giksR

Proof. Set

and use the identity

R

eikR

(10)

AR) = -r

Vr ® Vrf{R) = f"(R) R ® R + - R ® R) (12)K

in (8).

Lemma 2. The action of the surface traction operator Tr>, given by (2), on the
fundamental tensor r(r, r/) can be written in the following form:

7>r(r,r') = ^ a>z p \ p R J 1 \ R R2
fs(R)

coz (13)

where

Ai = - AF ® R - 2/i(F • R)R ® R, (14)
A2 = ^[(F-R)(I-2R®R) + R®F], (15)
A3 = - 2//[(r' - R)(I — 5R®R) + F®R + R®F], (16)

and f(R), fs{R) are given by (10).

Proof. Set
F(R) = f(R)-fp(R). (17)
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Then the gradient, with respect to r1, of the fundamental dyadic r(r, r') is the follow-
ing triadic:

VrT(r,r') =

31 / F'(R)\'
oj2 V R R®I + I®R-R®R®R + ^x,®R<g)x,-

i=l
//R (F'(R) 1 R (g) R (gi R, (18)

co2 \ R
which has the following scalar and vector invariants with respect to the first tensorial
product:

//"
Vr> ■ r(r, r') = _M/.'(r)r_J_ R, (19)

Vr. x r(r,r') = - ~2 fS' W® x 1 (2°)

Moreover, the left contraction of (18) with F provides the identity:

r'-VrT(r,r') = -^/s'(i?)(f'-R)I

1 [(f' ■ R)(I - R ig> R) + r' (g> R + R <g> r']co2 V R

(21)

Substituting (19), (20), and (21) into the expression for 7Vr(r, F) and using the
identity

F x (R x I) = R ® f - (R • f')I, (22)
as well as formulae (10) and (17), we arrive, after some long calculations, to the
expression (13), with the dyadics A„, n = 1,2, 3, given by (14)—(16). This proves the
lemma.

Let 2a, a > 0, be the diameter of the scatterer V~. We choose the center of the
smallest sphere that circumscribes the scatterer as the origin O and we introduce
spherical coordinates with respect to O. Then the following is true.

Lemma 3. If u is an elastic radiation function in the domain V then, for every r > a,
2 4 r" V fu« = w L,Rn-l[fpWK(i')-fs(R)K(.i')]dS(r>), (23)

where EjJ(r'), E^(r'), for n = 1,2, 3,4, are known functions of the direction of inte-
gration r', specified by the angular variables d', <p'.

Proof. The field u has the representation (7) and, in view of Betti's third formula
[8], the surface S can be deformed to the sphere r = a. Then

«(r) = £~l mo • r„r(r,r') - r(r.r') • 7>»F(r')] dS{r>). (24)
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We use Lemma 1 and Lemma 2 to separate the R dependence of T(r, r7) and rr<r(r, r')
from their corresponding angular dependence.

This program leads to the expansion (23), with the direction dependent fields E£,
Ef,, n = 1,2, 3,4, given by

Ef(?
Ef(F
Ef(f
E*(r'

Ef(f
E!(f'
E'(F

= ik*V- At -kl(rv) R®R, (25)
= /fcj3<P • A2 + fc,2(n») ■ (I - R ® R), (26)

= -ty¥ (A, - A3) + ikp(TV) ■ (I - 3R® R), (27)
= - ks2V ■ (A2 - A3) + iks(TY) ■ (I - 3R ® R), (28)
= 3ikp*¥ • A3 - (r*F) ■ (I - 3R ® R), (29)
= liksW ■ A3 - (!T*P) • (I - 3R ® R), (30)
= E^f') = -3T • A3. (31)

This completes the proof of the lemma.
The following lemma plays a key role in our work and it is a generalization of the

corresponding Atkinson's Lemma [1],

Lemma 4. For every r > > a, the functions R~k exp{ik(R - r)}, k = 1,2,3,4,
where R = |r - r'| and r' = a, are analytic functions in the variable p = a/r. Their
Laurent series expansions converge absolutely and uniformly for r > r0 > a and all
directions 6 e [0, n], <p e [0, In). Moreover, their expansions can be differentiated
term by term with respect to r, 6, (p any number of times and the resulting series are
absolutely and uniformly convergent.

Proof. Consider the expression

R = |r — r'| = ryj 1 - 2pcosy + p2, p = j, (32)

where
cos y = r ■ f = cos 6 cos 6' + sin 8 sin 6' cos(<p - <p'). (33)

Then, for n = 1, 2, 3, 4,

/ P\ n exp{ika^1 2^c°sy+^L_ij.
R~" exp{ik(R - r)} = (^) --   p ,w. . (34)1 v J> \aJ (1 - 2/>cosy + /92)"/2 v '

The function
1 - 2p cos y + p2 = (1 - pe'7)( 1 - pe~iy) (35)

is analytic for |/?| < 1 and so is the branch of its square root that has the value +1
at p = 0. Furthermore, the function (35) has no roots inside the unit disc. On the
other hand, the function p~{[\/1 - 2pcosy + p2 - 1] has a removable singularity at
p = 0 and hence by redefining its value to be - cos y at p = 0 it becomes analytic
for \p\ < 1. Since composition, multiplication, and division preserve analyticity, the
four functions given by (34) are all analytic inside the disc \p\<\. Their expansions
in powers of 1/r can be written as

pik(R-r) +2° a (i/\e  = y l 2 3 4 (36)
Rn rm v >
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for r > r0 > a, 0 < 6' < n, 0 < (p' < 2n, where the coefficients anm depend on
the directional variables d' and tp'. The regularity properties of the series (36) are a
consequence of the fact that every power series converges absolutely and uniformly
in any compact set which is a subset of its disc of convergence. Moreover, the same
is true for the series that results from term by term differentiation. Hence the proof
of the lemma.

The expansion theorem can now be stated as follows.

Expansion Theorem. Let u(r) be an elastic radiation function for the domain r > a,
where (r; 6, tp) are the spherical coordinates of the observation point r. Then

= + (37)
M=0 M=0

which converges for r > a. The series in (37), as well as those obtained by term by
term differentiation of any order, converge absolutely and uniformly in the closed
domain r > r0 > a, 6 e[ 0, n], cp e [0, In).

Proof. By Lemma 3, the field u can be written in the form (23), where fp and
fs are given by (10). Using Lemma 4, and in particular expansion (36), with the
appropriate modifications, in each one of the eight terms in (23) we end up with
(37). As far as convergence is concerned, the same line of arguments as in Lemma 4
holds true, and that proves the theorem.

The Expansion Theorem is independent of the boundary conditions on S. It rather
reflects the radiative character of the field u outside a sphere that includes the scat-
terer. In fact, the radiation conditions themselves come out of the first terms of the
corresponding series in (37). Therefore, the Expansion Theorem provides the exact
form of the radiation function outside the region where the scattering process takes
place. The geometry of the scatterer (actual shape of S), as well as its physical char-
acteristics (boundary conditions) enter the expansion via the orientation dependent
coefficients F£ and F£.

4. Consequences of the Expansion Theorem. In this section we discuss the conse-
quences of the Expansion Theorem in connection with the behaviour of the angular-
dependent coefficients in (37). Our goal is to use the fact that u, as it is given by
(37), has to satisfy the time-independent equation (1) and find how this is reflected
in the coefficients F£ and F*.

We write the expansion (37) in the form
OO OO

u(r) = E fnWniO. <p) + ̂ TfZ(r)FsM 9) (38)
n=0 n=0

where

fnp(r) =
£? ikp f

rn+1
eiksr

fn(r) =
n = 0, 1,2 

(39)
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Lemma 5. If fn is any one of the functions (39) and F„ is a C2 vector field defined
on the unit sphere of R3 then, for every n = 1,2,...,

(i) V® V-fn(r)Fn{8, <p) = - k2fnr®x ■ F„

+ y/„[-2(n+l)f®f + f®D + D®f]-F„ (40)

+ + 1)(" + 2)r <8>r - (n + l)(f ® D + D®r)

+ D<g)D-f(8)D]-F„

where
D = + (41)88 sin# dcp

and r, 6, are the unit vectors of the spherical coodinate system, and (ii)

2 i Icyi 1
A/B(r)F„(0, <p) = -k2fnF„ - —~fnF„ + ^[B + n(n + 1)]/„F„, (42)

where B is the Beltrami operator

B = D D = -4^ (sin^4) + ~y-^T- (43)
sin 8 88 \ dd) sin 0

Proof. By long, but straightforward calculations.

Lemma 6. Under the hypotheses of Lemma 5

[MI + (A + n)V ® V + co2l] ■ Mr)¥„(6. <p) = [-k2G, + co2I] ■ fnF„ (44)

+ ~[—2(« + 1 )G 1 + G2] ■ fn^n + J2 [(" + + 2)Gi — (n + 1)G2 + G3] ■ fnF„

where

Gi = fil + {k + fi)r <g>r, (45)
G2 = 2//I + (A + /i)(D ® r + r <2> D), (46)
G3 = + (A + //)(D ® D — f ® D). (47)

Proof A consequence of Lemma 5.
A key role is played by the following lemma.

Lemma 7. If a, /? € R and a ^ /? then the countably infinite set
|r-(/i+i)^/ar( r_(',+,V'Sr}£L0

is linearly independent in the domain r > a.
Proof By definition [5], [11], it is enough to show that every finite subset is linearly

independent. A linear combination of a finite subset of our set of functions can be
written in the form

eiarPna{r-l) + ei^rP„f{r-l) = 0 (48)

where P„a and P„f are polynomials, in the variable r~{, of degree na and rip respec-
tively. We assume that (48) is identically zero for r e (a, +00). On the other hand,



294 GEORGE DASSIOS

the polynomial F„n has at most na distinct roots in the complex plane C and similarly,
the number of roots of in C are no more than rip. Since the functions e'ar and
e'Pr have no roots in C it follows that all the coefficients of both polynomials are
equal to zero. This implies linear independence and proves the lemma.

Lemma 8. (i) The coefficient in (37) has the radial direction r, while the coefficients
F£, n = 1,2,..., are given by the recurrence relations

kfo + n)(l - r ® f) ■ Ff = -ikp[-2G, + G2] ■ F£ (49)
and

kj{A + fi){I - r <g>r) -Fp = - ikp[-2nGx + G2] • Fpn_x
_[(n-l)(«G,-G2) + G3]-Fj_2 (50)

for n = 2, 3 
(ii) The coefficient Fq is orthogonal to the radial direction r, while the coefficients

Fsn, n — 1,2   are given by the recurrence relations

k*(X + n)i®i ■ F^ = iks[—2G\ + G2] ■ Fq (51)
and

k^{X + n)i®r- F; = iks[—2nG\ + G2] ■ Fs„_,
+ [(«-1)(«G,-G2) + G3]-F;_2 (52)

for n = 2, 3, 
Proof. Substituting the field u, as it is given by (37), into Equation (1) and using

Lemmas 6 and 7, we arrive at (49)-(52), as well as the n — 0 terms of the two series,
which give

/cp2(A + //)(I-f®f)-F£ = 0 (53)
and

k}{k + fi)r ® i ■ Fq = 0. (54)
Relation (53) implies that F^ is radial, while (54) implies that Fq is tangential to any
sphere with radius greater than a. This completes the proof of Lemma 8.

The leading coefficients F£ and Fq are known as scattering amplitudes [4], [22],
radiation patterns [14], scattering coefficients [10] and many other names. The fact
that F^ is parallel and that Fq is perpendicular to the direction of observation r has
also been proved by asymptotic methods [2], [4], Formulae (49), (50) provide the
tangential components of the coefficients FjJ, n = 1,2,..., via the radial radiation
pattern F£. Similarly, formulae (51), (52) provide the radial component of the co-
efficients F*, n = 1,2,..., via the tangential radiation pattern F*. In order to be
able to express the radial component of F£, as well as the tangential components
of F^ via the radiation patterns F£ and FJ, respectively, we assume the following
decomposition

F« =*Frpn + Ff„, (55)
F*=r^ + F?„, (56)
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where Frpn, Frsn are the radial components and Ff„, Fsln are the tangential vectors of
the corresponding coefficients.

Proposition 1. The radial and the tangential components of the longitudinal coeffi-
cients F£, n — 1, 2,..., are given in terms of = Frp0i by the formulae

2ikpF> = (B - 2)Fr"0, (57)
ikp Ff, = DFrp0, (58)

2nT^klfrn = (D - 2r) • [2 ikp(n - - Ln ■ Ff„_2)

-/MB^D + f-Wj-Ff,,^]. (59)

= 2ikp(n - - (I - f ® f) • L„ • Ff„_2) - (60)

where
L„ = y^-[(« - 1)(« - 2) + B]I + (D - nt) ® (D - (n - l)f) (61)

A + Pi

for each n = 2,3, 
Proof. Decompose the dyadics that appear in the expressions (49) and (50) into

their radial and angular parts as follows:

-2«Gi + G2 = [(A + n)r ® (D - 2?) -2(n - 1)(A + 2ju)r ® r]
+ [(A + ^)D®r- 2{n - 1)^(1-r®r)] (62)

for n = 1,2   and
(n — l)(«Gj — G2) + G3 =

{/ur ® r[(« - 1)(« - 2) + B] - n(X + n)x® [D - (n - l)r]} (63)
+{^(I-r®r)[(«- l)(/i-2) + B] + (A + |f)D®[D-(/i- l)f]}

for n = 2, 3,  Then introduce the corresponding decomposition (55) and project
Eqs. (49), (50) into the direction r, to obtain the radial part Ffn, and into its orthog-
onal complement, to obtain the tangential part Ff„. The corresponding projections
can be written as

ikp Ff, = D Ff0. (64)
0 = - ikp[{X + n)(D - 2f) - 2(n -l)(X + 2fi)i] • Ffn_1}

- {/*?[(" - 1)(« - 2) + B] - n(X + /i)[D - (n - l)f]} • Ff„_2),
and

k2p(X + n) Ff„ =
- ikp[(X + n)D® i - 2(n - 1)//(I - f ® ?)] • Ff„_1}
- {^(1 - r ® r)[(« - l)(n - 2) + B]
+ (A + //)D®[D-(«-l)r]}-Ff„_2)

for n = 2, 3 
Equation (66) readily provides the tangential part of Ff„ via F^_, and F£_2. In

order to obtain the radial part Frp„ also, we use Eq. (65) with n + 1 instead of n,
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substitute Ff„ from (66) and solve with respect to Frpn. The same technique is used
to obtain (57). The recurrence relations (57)—(61) are compact forms of the final
expressions we obtain, after the program is carried out. This concludes the proof of
Proposition 1.

Proposition 2. The radial and the tangential components of the transverse coeffi-
cients F*, n = 1,2,..., are given in terms of F£> = F^O + F^ip by the formulae

iksFr\ = - D Fq, (67)
2iksFsn = (I — f <g) f) • BFq, (68)

k^Frn = iks(K„ • F(„_,,) + r • L„ • F(„_2), (69)

2"T+Jlk'F'n = " ^C1 - r <8> f) - L(„+i) - F(„_,)
+ D[^(K„-F^_1)) + f-L„.F^_2)], (70)

where

K„ = D + 2^~"(A + 2/j)r, (71)
A /U,

for n = 2, 3,... and L„ is given by (61).
Proof. Similar to the proof of Proposition 1.
Propositions 1 and 2 represent an inverse type result. They state that, if the

longitudinal radiation pattern F^ is known, then the whole longitudinal field up can
be recovered outside the sphere of radius a and, similarly, the transverse field u5,
outside the same sphere, can be constructed from the knowledge of the transverse
radiation pattern F^. We summarize this property in the following theorem.

Correspondence Theorem. There exists a one-to-one correspondence between the
longitudinal radiation fields and the longitudinal radiation patterns on the one hand,
and between the transverse radiation fields and the transverse radiation patterns on
the other.

Proof. Given any longitudinal radiation function up, construct the first series in
the right-hand side of (37) and pick up the unique longitudinal radiation pattern
F^ as the coefficient of r~x exp{ikpr} in the first term of the series. Conversely,
given any longitudinal radiation pattern F£, use formulae (57)-(60) to evaluate all
the longitudinal coefficients F£, n = 1,2 The unique field up that corresponds to
F£ is the first series in the right-hand side of (37). In a similar way, we can show the
corresponding result for the transverse field, and this completes the proof.

Using asymptotic methods, it is proved in [4] that the leading term approximation
of the scattered field in the radiation zone has the form

pikp r _ piksr _ piksr / i \
»(,) = &(t.k)fs-7+,»(f.k)»^ + ,,(t.k)^ + o(;3), r-oo, (72)

where the normalized spherical scattering amplitudes gr, gg, g9 are given in terms
of surface integrals over the surface of the scatterer (formulae (46)-(53) in [4]).
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Therefore, the radiation patterns

Fg = 8r[T'^i, (73)
iKp

Fq - + IfMp (74)
iks iks

are given in terms of surface integrals that incorporate both the geometry of the
scatterer, via the surface of integration, as well as the physical characteristics of the
scattering region, via the values of the displacement and the traction fields on the
boundary of the scatterer. Using (57), (58) the coefficient is given by

2kpFfi = - (B - 2)gr(r, k), (75)
kp"n = -D*r(r,k), (76)

and (59), (60) can give any coefficient F£ in terms of the radial scattering amplitude
gr(i, k). Similarly, (67), (68) imply

k*F}x = D • [g0{v, k)8 + gv{r, k)£], (77)
2/c/Ff, = - (I - f ® f) • B[g0(r, k)6 + gr{.r,k)£], (78)

while (69), (70) give any other coefficient F£ in terms of gg(r, k) and gv(i, k).

5. Acoustic and electromagnetic waves. The case of acoustic waves can be recovered
from the elastic problem if we set k = -fi, in order to reduce the Navier equation
to the classical wave equation, and restrict attention to wave functions of the form
u = uk, where k is a constant propagation vector. More precisely, setting k = -fi
into the radial recurrence formula (65) we obtain

2ikni ■ F„ = f • [n(n - 1) + (79)

which in view of the scalar restriction F„ = fn k takes the form

2iknf„ = [n{n - I)+ B]f{n_l), n= 1,2,..., (80)
which is exactly Eq. (5) in Wilcox's paper for acoustic waves [24],

The electromagnetic case comes out of the transverse radiation field u*, for which
r • Fo = 0, which reflects the solenoidal character of the electric and the magnetic field
in free space. Specifically, setting k — -ju into (67), (69) and the equation for the
transverse field corresponding to (66), we obtain

ikFrl = - D • F0, (81)
2iknFrn = r • [n{n - 1) + B]F(„_i), (82)

2ikn{\ - r ® f) ■ F„ = (I - r ® r) • [n{n - 1) + B]F{„_1). (83)

The condition A • u = 0 implies

ikFrn — - D • F(„_,). (84)

Also, the spherical decomposition of BF yields

BF = [B/v + 2Fr - 2D • F]f + [BFe + DeF]0 + [B+ D^ip (85)
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where the differential operators De, Dv, used by Wilcox [25], are given by

D<F = 2§_^_f#_2i2ii^£, (86)
d® sin 0 sin 6 d*P

+ 2-^-f - (87)
dFr ^ cos ^ 1

sin 0 dtp Sin2 q dip sin2
In view of (85), Eqs. (82) and (84) imply

2iknFr[„+l) = [n(n-l) + B]Fm, n = 1,2,... (88)

while the 9 and ft projections of (83) yield

2iknFg„ = [n{n - 1) + B]F0(„_1) + DeF(„_1)( (89)
2iknF9n = [n(n - 1) + B]/>(„_i) + DvF(„_l), (90)

for n = 1,2,  Equations (81), (88), (89), and (90) are exactly the equations for
the corresponding electromagnetic problem given by Wilcox, in page 124 of [24],

Both for the acoustic and the electromagnetic case, the recurrence relation that
determines the coefficients in the corresponding expansions, in terms of the radiation
patterns, are of the second order. On the other hand, the coefficients of the expansion
of an elastic radiation function are determined via recurrence formulae of the third
order. This is a consequence of the higher complexity of the Navier equation as it
compares to the classical wave equation.
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