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Abstract. An incident disturbance propagates in a thermoelastic medium of the Biot
type and it is scattered by a bounded discontinuity of the medium. On the surface of
the scatterer any kind of boundary or transmission conditions, that secures well posed-
ness, can hold. The scattered field consists of three kinds of displacement and two kinds
of thermal waves. With the exception of one of the displacement waves, namely the
transverse elastic wave, all other four scattered waves exhibit exponential attenuation as
a result of the coupling between the longitudinal elastic and the thermal disturbances.
We show that the displacement field can be expanded in three uniformly and absolutely
convergent series in inverse powers of the distance between the observation point and the
geometrical center of the scatterer. For the thermal wave a corresponding expansion with
two series holds true. Each one of these three elastic and two thermal series describes
the corresponding scattered wave and their validity is extended up to the sphere that
circumscribes the scatterer. The leading coefficients in the two displacement series of the
longitudinal type have only radial components which coincide with the corresponding ra-
dial scattering amplitudes. For the transverse displacement series the leading coefficient
has only tangential components which coincide with the angular scattering amplitudes.
An amazing result, which was not noticed before, is that the thermal scattering ampli-
tudes, appearing as leading coefficients in the thermal expansions, are proportional to the
corresponding radial longitudinal amplitudes of the elastic expansions. In other words,
both scattering amplitudes of the two thermal waves carry no independent information
about the scattering process. Finally, an analytic algorithm is provided which leads to
the reconstruction of all five series from the knowledge of the three leading coefficients
coming from the expansions for the displacement field alone. Consequently, if the radial
and the tangential scattering amplitudes of the displacement field are given in the far
field, then the exact displacement and thermal fields can be recovered all the way down
to the smallest sphere containing the scatterer. In an equivalent component form we
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claim that the nine elastic and the two thermal expansions can be completely obtained
once the two longitudinal and the two transverse elastic scattering amplitudes are given.

1. Introduction. In the first page of his monumental survey article [13] on the contri-
butions of Rayleigh to scattering theory, Victor Twersky states: "So much of Rayleigh's
work is "scattering theory" in the general sense the term is used today, and so much
of it has been the basis for subsequent applications and extensions, that 11 Rayleigh" and
11 scattering" are practically synonymous". We are among those that can detect no exag-
geration in such a statement. Indeed, the mathematical theory of scattering of waves by
obstacles was formulated by Rayleigh in a series of over one hundred papers in the fifty
years extent between 1870 and 1920.

Rayleigh introduced an asymptotic form for the scattered field at infinity. He assumed
that in the far field the scattered wave arrives in the form of a point-generated field with
an amplitude that is dependent on the geometrical and physical characteristics of the
scatterer. This is Rayleigh's radiation condition [13] and Rayleigh's scattering ampli-
tude, which were introduced on the basis of physical arguments. A crucial instance in
the development of scattering theory was the 1912 Sommerfeld's paper [12], where the
behaviour of the scattered field at infinity was imposed by an asymptotic condition, which
was dictated by the mathematical demands for well posedness and it was compatible with
physical reality. A second important instance of scattering theory, less recognized but
of great value, especially in inverse scattering theory, occurred in 1949 when Atkinson
published his work "On Sommerfeld's Radiation Condition" [1], Atkinson proved that
the asymptotic condition of Sommerfeld can be replaced by a uniformly and absolutely
convergent series representation of the scattered wave outside the smallest sphere that
contains the scattering obstacle. This is an expansion in inverse powers of the radial dis-
tance and its leading term recovers Sommerfeld's Radiation Condition. The importance
of Atkinson's work was pointed out by Wilcox [14] seven years later when he proved
that once the leading coefficient of the series is known, all other coefficients are obtained
through a recurrence relation. Since the leading coefficient is the scattering amplitude
this means that, if the scattering amplitude is measured in the far field, then the exact
scattered wave is recoverable up to the circumscribing of the scatterer sphere. This is an
impressive inverse scattering result.

Atkinson's theorem provides the wave analogue of Maxwell's multipole expansion [11]
in potential theory. The important difference between the two expansions is the follow-
ing. In Maxwell's expansion the multipole moments that appear as coefficients of the
expansion are independent, while in Atkinson's expansion all coefficients can be recov-
ered from the leading one. This difference reflects the dynamic structure of the wave
field as it compares to the static character of the potential.

Wilcox [15] extended Atkinson's theorem for electromagnetic scattering in 1959, where
he proved that a corresponding reconstruction of the full series from the leading coef-
ficient of the electric field was also possible. For Maxwell's equations, the algorithm of
reconstruction was much more complicated than the scalar case of acoustical scattering.
A further extension to elasticity was obtained by one of the authors in 1988 [4], where
one can find a detailed historical guide on radiation conditions and exterior expansion
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theorems. For elastic wave scattering the expansion of the scattered wave involves two
series, one for the longitudinal and one for the transverse wave. As was expected, the
main difficulty was focused on the development of the analytical algorithm that recovers
all the coefficients of the expansions in terms of the leading ones. An appropriate decom-
position of the coefficients into radial and tangential spherical components confirmed
such a reconstruction. It was proved that the expansion of the longitudinal scattered
wave is recoverable from the radial scattering amplitude alone, and that the same is true
for the transverse scattered wave, where the corresponding expansion is recoverable only
from the tangential scattering amplitude. As far as relative expansion theorems in two
dimensions are concerned the only contribution known to the authors is Karp's work [9].

The theory of thermoelastic scattering was developed in a series of papers [3, 5, 6,
7, 8] by Kostopoulos and the authors. Thermoelasticity couples the hyperbolic charac-
ter of elastic wave propagation with the parabolic behaviour of heat conduction. As a
result of this coupling, thermal waves are generated and, at the same time, the elastic
waves exhibit exponential attenuation. Hence, the effects that one field has on the other
are not symmetric and this is reflected upon the lack of selfadjointness of the governing
thermoelastic operator. The thermoelastic coupling gives rise to three elastic and two
thermal waves. Two out of the three elastic waves are longitudinal pressure waves and
they are coupled with the two scalar thermal waves. The third elastic wave is a trans-
verse shear wave that is not affected by the thermal field since it has an equivoluminal
character. We refer to the first longitudinal elastic wave as the elastothermal wave, since
it reduces to the longitudinal wave of classical elasticity whenever the coupling param-
eters tend to zero. The second longitudinal elastic wave recovers the thermal field, as
the system decouples, and it is known as a thermoelastic wave. As is expected from
such a coupled system of equations, thermoelastic scattering problems involve a high
level of mathematical complexity. In order to compactify some of this complexity a four-
dimensional formulation has been proposed [5] which involves the three components of
the displacement field plus the temperature field.

In this work we study the form that Atkinson's theorem assumes in the theory of
thermoelasticity. The formulation of thermoelastic scattering is outlined in Sec. 2. In Sec.
3 we develop Atkinson's theorem for thermoelastic waves and in Sec. 4 we describe the
algorithm that leads to the reconstruction of the full expansions (the leading coefficients
of the three out of the five series are known). Equivalently, in component form, four
scalar functions are enough to reconstruct in full the eleven scalar series involved in the
expansion of the displacement and the temperature fields. This is a rather complicated
and by no means straightforward mechanism that demands an appropriate resolution
of interwoven sequences of coefficients. In any case, it is of interest to see here that
the thermal far-field patterns are not needed to obtain the full expansion, since the
scattering amplitudes associated with the temperature fields are proportional to the
corresponding amplitudes associated with the longitudinal displacement fields. Finally,
all previous forms of this expansion theorem in acoustics, electromagnetism, and elasticity
are recovered in Sec. 5, as special cases of its thermoelastic version. The large amount of
analytic calculations, at the dyadic and triadic level needed in this work, forced us to find
a way to isolate and compactify the basic formulae that come from generic calculations.
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These are collected in the Appendix and they form a useful set of formulae for calculations
with point sources and fundamental solutions in continuum mechanics.

2. Thermoelastic scattering. Consider a compact subset V~ of M3, with a
smooth boundary S, which we will refer to as the scatterer. The complement V of
V~ provides the exterior medium of propagation and it is occupied by a linear isotropic
and homogenous thermoelastic medium of the Biot type [2]. The Biot medium is charac-
terized by the Lame elastic constants X, p, the constant mass density p, the coefficient of
thermal diffusivity k, and the two coupling constants 7 and r/. Suppressing the harmonic
time dependence exp{— iut} with frequency u>, the Biot system assumes the following
spectral form:

fxAu + (A + /j)VV • u + puj2u = 7V61, (1)

A6 + q8 = —iu;r;V ■ u, (2)

where u is the elastic displacement field, 9 denotes the temperature variation field, and

iuJ ti\q = — (3)
K

is a spectral thermal constant.
From (1) we observe that the temperature gradient acts as a source for the displace-

ment field, while (2) implies that the sources for the temperature field are controlled by
the divergence of the velocity field (the factor — iw comes from the time derivative of u).
The system (1), (2) can be unified into a four-dimensional formulation with the help of
the unified field

U(r) = (tii(r),u2(r),u3(r),0(r)) (4)

and the block matrix operator

L = (AtA + pw2)I3 + (A + M)VV
qur/S/

—7V
A + q (5)

where I3 is the identity dyadic in three dimensions. In fact, the system (1), (2) is now
written as

LU = 0 (6)

and the solution space is reduced to the kernel of L. The dispersion relations [5] charac-
terizing (6) are given by

k\ + ^2 = 9(1 + e) + kp, (7)

k\kl = qkp, (8)
c2sk2s=u2, (9)

where k\, are the complex wavenumbers of the elastothermal and the thermoelastic
wave, respectively, ks is the wavenumber of the uncoupled transverse wave, kp is the
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wavenumber of the longitudinal wave in the absence of thermal coupling, and

* = (io)
A -f- 2 fi

is the dimensionless thermoelastic coupling constant [10]. Prom (9) we see that the
transverse elastic wave is not affected by the existence of the temperature field and it
behaves exactly the same way as it does in the classical theory of elasticity. Consistency
with physical reality demands that for j = 1,2

kj = — + idj, Vj > 0, dj > 0 (11)
vi

where V\,V2 are the phase velocities and d\,d,2 are the dissipation coefficients for the
elastothermal and the thermoelastic waves respectively.

The unified incident plane wave that excites the scatterer assumes the general form

[5]
$(r) = A1 eikl^'r (k, ft) + A2eik*r{/32 k, 1) + Aseik^r( b, 0) (12)

where yl1, ^42, ̂ 4S indicate the amplitudes of the waves corresponding to the three wave
numbers fci,fc2,/cs, respectively, k is the direction of propagation, b is the polarization
vector of the S-wave, which is perpendicular to k, and

ikiqKr) , s
Pi = tP-1, (13)

are the appropriate factors that force to live in the kernel of L.
A set of radiation conditions at infinity and another set of boundary conditions on S

are prescribed in [5] which are not repeated here since they are not important for our
expansion theorem. What is important is the following integral representation [5] of the
scattered field U which incorporates the above conditions:

U(r) = f [U(r').RC»(9r-,n')iT(r,r')
4lTJs . (15)

-E(r,r')-R(dr',n')U(r')]ds(r')

where "T" denotes transposition, the operator "(*)" is defined by

A(*)(7,3kt?) = A(9kt7,7), (16)

and the thermoelastic surface traction operator R assumes the form

T(9r,n)R(<9r,n) =

with

—711

n-V (17)

T(<9r, n)u(r) — 2/xn ■ Vu(r) + AnV ■ u(r) + /Ltn x (V x u(r)) (18)

being the elastic surface traction operator, and E is the fundamental solution of the
operator L. The form of E is very important for our work since it is this particular
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function that carries the r-dependence of U in the representation (15). The fundamental
solution is expressed as

~ ~ pifci|r-r'| _ pife2|r-r'| _ _ifcs|r-r'|
E(r'r') = 7T + D2(ar)—— + Ds(dr)-———r- (19)

where

D1(9r) poj2(kf - k?2)

B2{dr) = pco2(k2 - fc22)

(fc2 - fc2)VrVr
-g«;T)fcpVr

{kl - fc2)VrVr

7^Vr

-qnr]kfyr

Pu>2{kp - kj)

7 k]yr
pu2{kl - kl)

pu)z
k%, + VrVr

0

(20)

(21)

(22)

Representation (15) can be modified [5] to express the scattered field in terms of the
total field

¥(r) = $(r) + U(r) (23)

and the total surface traction field in the form

U(r) = ^- [ [^(r') ■ R(*)(dr', n')ET(r, r')
477 Js

- E(r,r') • R(ar',n')^(r')]rfs(r'),
(24)

which is appropriate for application of boundary conditions.
Asymptotic analysis of (24) for r —> oo leads to the following far-field forms:

U(r) = U1(r) + U2(r) + Us(r), (25)

U>) = GHf,k)e-*'/>(^r)+o(^), r ^ oo. (26)

U!(r)=C'(y)t-i''lfc,l+()f3i-'l1 (27)i>2 J \r2ed2r J '

Us(r) = Gs(f,k)h I —+ o(oo, (28)
c, / Vr2

where the scattering amplitudes G1, G2, Gs are given in [5]. Their exact form, which is
rather complicated, is not important for the present work. Decomposing the asymptotic
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expressions (25)-(28) into their elastic and thermal parts we arrive at

u(r) = u1 (r) + u2(r) + us(r), (29)

ux(r) = gl(r,k)e~dirh (^r) r + 0 V r -> oo, (30)
Vi J \r2edlT

u2(r) =5r(f»k)e"d2r/i ( r + 0 () , r -> oo, (31)
V2 J yr2ed2r

W \ . ^ ( 1
2uS(r) = [5e(r,k)0 + 4(f,k)£]/i ( — r J +0 ( ) , r -> oo, (32)

for the three types of displacement fields, and

0(r) = 61(r)+62(r), (33)

e'(r) = <"(r,k)e-',"/.(^r)+o(;3l;7), r - oo, (34)

02(r) = t2{i,k)e~dirh (—r) + O ( , ' , ) , r ^ oo, (35)
kV2 J \r2ed2T

for the two types of temperature fields.
The elastic scattering amplitudes corresponding to the u1 and u2 fields are radial

functions expressing the longitudinal character of these fields, while the us field generates
a tangential scattering amplitude that establishes its transverse character. Besides the
geometrical attenuation described by the Hankel function h, the waves u1, u2, d1, and 92
exhibit also the physical dissipation expressed by the exponentials exp{—dir}, i = 1,2.
On the other hand, the field us, which is not coupled with 9, exhibits no such dissipation.
Complete expressions for , and I2 can be found in [5].

3. The expansion theorem. In this section we develop the expansion theorem
of Atkinson, starting form the representation (24). Our first task is to apply all the
differentiations on E involved in the operators D1, D2, IDS. This is a long and very
tedious project which was performed in a systematic way with the help of the basic
formulae give in the Appendix. Then, an even more complicated procedure is needed to
obtain the form of R(*^ET. Finally, for the proof of the theorem we need to express the
representation (24) in terms of inverse powers of |r — r'|, where r is the observation point
and r' is the surface point of integration.

We introduce the vector

R = r — r' = RH (36)

and the notation

En(r,r') Ei2(r,r')E(r,r') =
E2i(r, r')

for the 4-D fundamental solution, and

^22(r,r')

Rw(ft./,n')ET(r,r') EL(r,r')
Ej2(r,r')
£22(r>r')

(37)

(38)
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for the 4-D fundamental stresses. The exact forms of (37) and (38) are given in the
Appendix.

Furthermore, we define the following 3-D dyadics associated with E:

A^(r') = ^ (1.3 - 3RR), (39)
pujz

Ag(rO = (-l)nfc"~(1p£)gAg(r/)> n = 1,2, (40)
1 2

Ai(r') = -iks A%(r'), (41)

AJ(r') - -iknA^r'), n= 1,2, (42)

Af (r') = — (I3 — RR), (43)

(_l)n+l k2n - q

A + 2/i k\ —A"(r ) = \ , o.. 1.2 , 2RR> n = !.2, (44)

and the 3-D dyadics

BS(r') = [(n' • R)(I3 - 5RR) + n'R + Rn'], (45)

B?(r') = (—!)"'k2\2il + e)qBUr'), n= 1,2, (46)
kf — k.

Bf(r') = -iks BJ(r'), (47)

BJ(r') = -ifcnB?(r'), n = l,2, (48)

B§(r') = 3(n' • R)(I3 - 4RR) + 3Rn' + 2n'R, (49)

(r° = i+Xfcf-4[2"(A' ■fi)(l3 ~eM)
- - (-l)n£a -

+ 2^(n'R + Rn') - An R] + . 2 , 2 n'R, n=l,2, (50)
k\ k2

BJ(r') = -iks[{n' • R)(I3 - 2RR) + Rn'], (51)

+ (-l)"+'rt„-5~n'R, n = 1,2, (52)

associated with R(*)Et.
With the help of the above 3-D dyadics, given by (39)-(52), we can express the

coefficients of inverse powers of the distance function |r — r'| in the expressions E and
R(*)ET. This step also demands long calculations which we do not include here. The
end result of these calculations is the expression

■ gifcilr-ar'l

(53)
H^(ar')eifc2'r_af'' + H® (af')eifcs'r~af'']|r - ar'\-nds{r')
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where a is the radius of the sphere circumscribing S, S2 denotes the unit sphere in R3,
and the functions H1, H2, and Hs involve the boundary values of '5'. In fact, we obtain
the expressions

HJ(r') = *(r')-V?(r'), a = l,2,a, (54)

and

H^(r') = ¥(r') • V"(r') - W°(r') • R(3rS n')*(r'), (55)

which hold for a = 1,2, s and n = 1,2,3. The 4-D dyadics W" express the surface field
E and they are given by

w3V) =

Wj(r') =

W22(r') =

W|(r') =

Af(r')
0

A^(r')
qKT)6~R.

, a = 1, 2, s, (56)

7^R
0

A|(r')
qnrjS R

—7<5R
0

Aj(r') 0
0 0

(57)

(58)

(59)

I" A}(r') —ifci7<5R
Wi(r0 = —  , (60)

ikinqr/oR

Wi(r') =

WJ(r') =

Aj(r') i/c27^R

-ik2nqri6R

Af(r') '

(61)

(62)

where

^ (A+ 2 M)(fc?-fc22)' (63)
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Similarly, the 4-D dyadics V" express the surface traction field R^ET and assume the
following forms:

where

V4 (r'

V^(r'

V§(r'

V|(r'

V^(r'

V22(r'

V|(r'

V}(r'

V?(r'

Vf(r'

BJ(r')
0 0

a = 1,2, s, (64)

B^r') 2nqr]iJ,6a(r')
—7<5a(r') 0

B§(r') —2Kqri^Sa(r')
7<5a(r') 0

Bg(r') 0 "
~o (IT '

B^1"') —2ikiKqri^,6a(r')

iki"fSa(r') ^^(n'-R)

B^r') 2ik2nqr]ii6a(rl)

-S(A'-R)

—Kqrni5(2k\h{r') — k2s n')

-1ySkjti ■ RR

Bf(r')
-y5k%h' • RR

KgrifiS^k^b^') — k^h')

ihkT0kf(n'-R)

Bf(r' 0

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

a(r') = n' • (I3 — 3RR), (74)

b(r') = n' • (I3 - RR). (75)

Expression (53) is obtained from the representation (24) via deformation of the surface of
integration from S to the circumscribing sphere of radius a. This deformation is possible
because of Betti's third identity [10] and the lack of singularities in the region between
S and S2.

Atkinson [1, 4] proved that for every r > ro > a the functions
„ik(R-r)

K(r,0,<f)= Rk , k= 1,2,3,4, (76)

where R = |r — r'| and |r'| = a, are analytic functions in the variable a/r and that
their power series expansions converge absolutely and uniformly for r > r0 > a for all
directions r € S2. Consequently, their expansions can be differentiated term by term
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with respect to r,6,<p any number of times and the resulting series are also absolutely
and uniformly convergent.

Applying the above Atkinson's Lemma to the representation (53) we arrive at the
following form of the Atkinson-Wilcox Theorem for thermoelastic waves.

Theorem. Let U be the unified scattered thermoelastic wave that corresponds to any
mathematically consistent boundary condition on the scatterer, and let a be the radius
of the sphere that circumscribes the scatterer. Then for any r > a

pikir F1 fr") pik2r F2 (r\ piksr p>2 /f \
u(r) = — y ^ + — y ^ + — y ^ (77)

p ' J pTl p pTL rp / J pTl

n=0 n=0 n=0

and the series converge absolutely and uniformly on the closed domain r > r0 > a,
9 £ [0,7r], ip e [0,2ir).

Note that the elastothermal and the thermoelastic waves, which are represented with
the first and the second series, respectively, are dissipated at the rates d\ = I in k\ and
d-2 = Irrik-2, respectively. The last series in (77), which represents the transverse elastic
wave, exhibits no dissipation.

From the asymptotic forms (26)-(28) we conclude that

FS(f) = — i^G^r.k), (78)
UJ

Fo(f) = —i —G2(r, k), (79)
UJ

Fo(r) = -i —Gs(r,k). (80)
UJ

Hence the leading terms of the series in (77) are recognized as the thermoelastic scattering
amplitudes.

Expansion (77) can be decomposed into the displacement and the temperature fields

Fn(r) = (u^(r),^(r)), (81)

F2(r) = (u2(r),02(f)), (82)

F'(f) = «(r),0), (83)

for n = 0,1,2,... to imply the expansion

un(r) , ei/c2r A u2(r) eiksT ^ <(f)
u r + y- "nl'V + unlrJ (84x

' J rpTt rp rpTl iy» rpTlp ' J pll p pll rp ' J rp 11

n=0 n=0 n=0

for the displacement field, and

(85)rr* ' -J rr*TL rp ' -J rr*TLp ' pit p p II

n=0 n=0

for the temperature field.
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For the leading coefficients in the above series, relations (30)-(32) and (34), (35)
confirm that

= ~i—5r(f>k)r, (86)
UJ

= -i— ffr(r,k)f, (87)
UJ

= -i — (5l(r,k)0 + s*(r,k)£), (88)
UJ *

= -i—£\r,k), (89)
LJ

= -i-i2(r, k). (90)
UJ

So, the three vectorial coefficients u/,, Uq, Uq and the two scalar coefficients 0q,0q are
given in terms of the six scalar amplitudes gj., g2, gse, g^, £l, and £2.

4. Reconstruction of the expansion. For the scalar case of Atkinson's theorem,
Wilcox [14] substituted the scattered field into the equation of Helmholtz and he derived
a recurrence formula for the coefficients of the expansion. We can do the same here and
use the uniform convergence of (77) to apply the operator L term by term. Unfortunately,
this project does not lead to a recurrence formula for the reconstruction of the coefficients
F*, F2, F®, n > 1, in terms of Fj, Fq, Fg. Hence, we have to decompose the fields in their
spherical components according to the following procedure.

By Lemma 7 in [4] the functions

fn(r) = ^r, n = 0,1,2,..., (91)
ikor

/» = ^+T> n = 0,1,2,..., (92)

= T. n = 0,1,2,..., (93)

are linearly independent. In the interest of using this property we substitute (84), (85)
into (1) and (2) and then invoke uniform convergence to differentiate term by term. From
Lemma 6 in [4] we obtain for every n = 0,1,2,... and a = 1,2, s

[(MA + pu,2)I3 + (A + /x)VV] ■ (fZ(r)K(r))

= [~k2cAi + pu%] ■ (/»W<(f))

+ ^[-2(n + l)Aj + A2] • (/"(r)<(r)) ^

+ \l(n + !)(n + 2)Ai - (n+ 1)A2 + A3] • (/"(r)<(r))

where

Ai = /jl3 + (A + n)rr, (95)

A2 = 2/iI3 + (A + n) (Dr + fD), (96)

A3 =/iI3B+(A + /i)(DD-fD) (97)
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with

V = r-|- + -D, (98)
or r

D = ^ + ^^-, (99)
06 sin 0 o<p

and
® ( . d \ 13B = D- D = —- sin - (100

sin 9 ad \ 06 J sin 6 dp2
is the Beltrami operator.

Furthermore, we derive for a = 1,2 and every n = 0,1,2,, the expressions

[A + <?](/»^(r)) = ~(kl - q)(f%(r)6Z(r))
2 ilc n 1 (-^-01)

- -7-(/naWC(f)) + ^[B + n(n + l)](/na(r)^(f)),

V(fZ(r)e%(r))=ikMZ(r)0%(i))i
1 (102)+ -[D-(n + l)r](/„tt(r)^(f)),

and
V ■ {fn(r)K(*)) = ikar ■ (/£(r)<(r))

1 (103)
+ -[D-(n+l)r].(/>)<(r)).

Therefore, in view of (94), (101)-(103) and the linear independence of (91)—(93), Eq. (1)
is reduced to three sequences of equations. The sequence

[pu2I3 - fcj Ai] • u* (r)

+ ik\ [—2nAi + A2] • u* _ 1 (f)
~ (104)

+ [n(n - l)Ai - (n - 1)A2 + A3] • u* _2(r)

= ifci7r0i(r) + 7[D - nr^^r), n = 0,1,2,...,

that connects the coefficients of the elastothermal part, the sequence

[poj% - k\Ai] ■ u£(r)

+ ifc2[-2nAi +A2] -u2_j(r)
~ ~ ~ (11)5)

+ [n(n - l)Ai - (n - 1)A2 + A3] ■ u^_2(r)

= ik2jr0l(r) + 7[D - nrj^.^r), n = 0,1,2,...,

that connects the coefficients of the thermoelastic part, and the system

[pu213 - fcgAi] • <(r)

+ iks[-2nAi + A2] • u^_2(f) (106)

+ [n(n - l)Ai - (n - 1)A2 + A3] ■ <_2(r) =0, n = 0,1,2,...,

that connects the coefficients of the purely elastic transverse wave.
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Similarly, Eq. (2) is reduced to the sequence

ikiqurjr ■ u* (r)

+ qnr]\D - nrl • u* ,(r)
(107)

= (*i ~ q)0n(r) + 2iki(n -

~[B+ (n- 1 )(n - 2)]01n_2{r), n = 0,1,2,,

and the sequence

ik2qKriT ■ u2n{r)

+ qKr][T> - nr] • u2, (r)
(108)

= (^2 " qWK*) + 2ik2(n - 1 )6'n_1(f)
- \B + (n - 1 )(n - 2)]0*_2(r), n = 0,1,2,... .

The transverse part of u yields no corresponding sequence, since us is solenoidal and
therefore (29) implies that

V • u(r) = V ■ u1 (r) + V • u2(r). (109)

Relations (106), that furnish the connection between the coefficients of the transverse
wave, coincide with the corresponding relations in classical elasticity [4]. Therefore, we
can use Proposition 2 in [4] to express

<(f) =<n(f)f + u?n(f) (110)

where

<n(r) = <(?) r (111)

are the radial components, and

<(r) = <(r).(I3-rr) (112)

are the tangential components of u® for each n > 1, in terms of the leading tangential
coefficient ug as it is given by (88).

In particular, we obtain

iksusri(r) = -D • Uo(f), (113)

2iksustl{r) = (I3 - rr) • Bug(r), (114)

fcs<n(r) = iksK„ • <_i(r) + f ■ L„ ■ <_2(r), (115)

2nV U2„s
ksutn(r) = -iks{h - rr) • Ln+1 • <_j(r)

where

\ i , "s~tn\ / ""iro / —il-tl ~n— ivy . .A + M (116)
+ D[ifcsK„ • u®_i(r) + r ■ L„ • u'_2(r)],

K„ = D + 2"-"(" + 2")r (117)
A + /X
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and

Ln = - [(n - l)(n - 2) + B]|I3 + (D - nf)(D - (n - l)r) (118)
A + fl

for every n = 2,3,....
We next investigate the solvability of the systems (104), (107) and (105), (108) that

carry the thermoelastic coupling. We restrict consideration to the elastothermal wave
(u1,#1), since the thermoelastic wave (u~,02) behaves in exactly the same way. All we
have to do to obtain the corresponding results for (u2,#2) is to replace the superindex 1
by the superindex 2 and the wavenumber fcj by k^.

We begin with the case n = 0, where (104) and (107) yield the system

(\ + 2n)(k2 - k'l)rr ■ u£(r)
~ (119)

+ - ki)(h - rf) • u£(r) = ikarO^r),

ikiqnrji • uj(f) = (k\ - q)0l{i). (120)
If we introduce the spherical decomposition

u«(r) = «Jn(f)r + ujn(r) (121)

where

urn(r) = u,U?) ■ r, (122)

uL(r) = u,1, (f) • (I3 — rf) (123)

for n = 0,1,2,..., then the relation

(A + 2^)(fcp-fci) _ ik 17
ik\qnr] fc2 — g'

which is a consequence of (7), (8), and (10), implies that both (119) and (120) lead to

0i(f) = l^qKr]ulro(r). (125)
k1 — q

Formula (125) shows that the temperature scattering amplitude i1 is proportional to the
displacement scattering amplitude g].. In fact,

^(f,k) = k) (126)
Ki ~ q

and this relation can be confirmed from formulae (87) and (98) in [5], although it was
not noticed there because of the complicated expressions that g* and l1 assume.

Projecting Eq. (119) into the orthogonal complement of r we recover the well-known
result

(I3 - fr) • uj(f) = 0, (127)

which proves that the scattering amplitude of the longitudinal wave u1 is radial.
In exactly the same way we obtain

*(f) = §F50yr) (128)
k2 — q
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and

(I3 - rr) • ujj(f) = 0. (129)

For n > 1 the situation is much more complicated and we start by defining, for n =
1,2,..., the following dyadics, which represent the basic radial and angular decomposi-
tion:

M{=(A + 2 ri(kl-k*)rr, i = 1,2, (130)
Ni = A*(fc2 - As?)(I- rr), i = l,2, (131)

M2(n) = (A + /i)r(D - 2f) - 2(n - 1)(A + 2/x)ff, (132)

N2(n) = (A + fx)Dr - 2(n - 1)^(1 - rr), (133)

M3(n) = firr[B + (n — l)(n - 2)] - n(A + /i)r[D — (n — l)f], (134)

N3(n) = //(I - rr)[B + (n — l)(n - 2)] + (A + /u)D[D - (n - l)r], (135)

Then

pcj2I3 - = Mj +N}, (136)

-2nA1+A2 = M2(n)+N2(n), (137)

(n - lXnAj - A2) + A3 = M3(n) + N3(n). (138)

Note that

D ' u* (r) = 2uln{r) + D • ujjr), (139)

f • Su* (r) = (B- 2)uln(f) + r ■ Bu\n(r). (140)

In view of the relations (130)-(134) the elastic equation (104) is written as

(Mj +N}) -u*(r) -ihjre^r) = 7(D - nr)0*_i(r)

- ifci(M2(n) + N2(n)) ■ u^_x(r) - (M3(n) + N3(n)) • u^_2(r)

and the thermal equation (107) is written as

ikiqnriulnif) - {k\ - q)0*(r) = 2ikl(n - l)0i_1(f)
- qnr](D — nr) ■ u^_j(f) - [B + (n - l)(n - 2)\6ln_2{r).

A further decomposition of (141) into radial and angular parts yields

f ' M| -u?\(r) -ifci7^(f)

= -n7^_j(f) - ik\i ■ M2(n) • u^r) - f • M3(n) • u^_2(f)

for the radial projection and

N} • ujj(r) =7D6»^_i(r) -ifc1N2(n) • u^_j(r) - N3(n) • u*_2(r) (144)

for the tangential projection.

(141)

(142)

(143)
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Equation (144) cannot be solved with respect to u* since is a genuine projection
from R3 and R2 and therefore it is not invertible. Nevertheless, if the spherical decompo-
sition (121) is considered, then the projection operator I3 — rr defining N} degenerates
to the identity on the orthogonal complement {r}1" and therefore it is invertible in {r}-1.

In this case (144) implies

H{k2s - kl)uln(r) = 7D6£_1(r) - ifciN2(n) • u^r) - N3(n) • u^_2(f) (145)

and since ^ Eq. (145) furnishes the tangential component of u^, for every n =
1,2,....

Next we use (124) to rewrite (143) as

ikxqKTiulnif) - {kj - q)91n(r) =  —0i-i(f)

,2_ _ 2 _ , _ (146)
_ . M2(n) ■ <_,(*) + • M3(n) • u*_2(r).

7 «i7

The radial component ulrn and 6\ are coupled by the system of equations (142) and
(146). This system, as it stands, is inconsistent since the left-hand sides coincide but the
right-hand sides do not. Nevertheless, the two equations come from the two governing
equations of the Biot system (1), (2). Hence, (142) and (146) have to be consistent and
this demands that their right-hand sides coincide.

Consequently, the equation

in(k? — q) , kf -<7„ N 1
I 'gn-i(r) - ■ M2 n) • r)fci 7

+ ^^f'M3(n)'Un-2(f) (147)

= 2ik1(n - l)0*_i(r) - qK,r](D - nr) • u^.^f)

- [B+ (n — l)(n — 2)]0T1i_2(r),

which is the condition of consistency for the system (142), (146), provides a second
independent equation connecting u^n_1j and O^-i-

Indeed, if we use (139), (140) and the expression

,k' D ■ (N2(b) ■ <_,(*)) (148)
H{k2s - k\)

SlFfcf)D-(N3W-<-2(f))
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for n = 1,2,..., then Eq. (147), for n + 1 in place of n, yields

iki(X + 2ii)[(n + 1 )eq - 2n(kl - fcp)]u*„(r)
+ 7\{n- 1 )k\ + (n+ l)q]^(r)

(A + 2^)k\ - nq~= ik\ 1 - n{k* - k~)
- ik\D ■ (N2(n) • u^(r)) - D • (N3(n) • <_2(f))]

+ (^1 - 9)r ■ M3(n + 1) • u^_t(r)

- ik\i[B + n(n - l)]^_j(r).
(149)

Equations (142) and (149) form now a new system for the determination of u\.n and 9\.
The determinant of the coefficients of the unknowns is given by

D(n) = 2inki(\ + 2 n){k\ — k\)(k\ — q). (150)
Since kf ^ fcf and k'j q it follows that all these new systems are uniquely solvable for
every n = 1,2,... and they express u].n and ()ln in terms of previous known coefficients.

More precisely we obtain

uln (r) = Dn, n = 1,2,..., (151)D[n)
ne(rt)

d''^ = -WT' » = (152)
V(n)

where
Du{n) = 7[(n - l)kj + (n + \)q]{2iki(n - l)0^_1(f)

- qnr)(D - nr) ■ u^_i(r) - [B + (n - l)(n - 2)]6»?1,,_2(r)}

(A + 2n)kl - nq+ iki(k1 - q) h^n-iC*)
(153)

De(n) = —k^qKr]

H(k?s - kf)
- ikiD ■ (N2(n) • u^r)) - D ■ (N3(n) ■ u?\_2(f))]

+ (kl ~ q)2r ■ M.j(n + 1) • u^Jr)
- ik\"f{k\ - q)[B + n(n - l)]#^^?),

- i^D ■ (N2(n) • ui_j(r)) - D • (N3(n) • <_2(f))]

+ iki{k\ - q)qnr)i ■ M3(n + 1) • u^_x(r)

+ k\qnrpi[B + n(n - l)]^_j(r)

- iki(X + 2n)[(n + 1 )eq - 2n(fc2 - fcp)]{2z/ci(n - 1)0^ 2(r)

- g«r/(D - nr) • u^^f) - [B + (n - 1 )(n - 2)]6»?\_2(r)}
(154)

and D(n) is given by (150).



ATKINSON-WILCOX THEOREM 789

Recapitulating our results we see that all five series in (84), (85) can be completely
reconstructed once the leading coefficients of the three elastic series in (84) are given.
The algorithm of reconstruction demands the following steps.

Step 1: Obtain 6q in terms of u*0 from (125).
Step 2: Repeat Step 1 for 9q.
Step 3: For n = 1, 2,... obtain u].n and 9\ from (151), (152).
Step 4: Repeat Step 3 for v?rn and
Step 5: For n = 1,2,... obtain \i\n from (145).
Step 6: Repeat Step 5 for ufn.
Step 7: For n = 1,2,... obtain usrn and in terms of ug, from (113)—(116).
Therefore, the radial scattering amplitude gl reconstructs the first series on the right-

hand side of (84) and (85). Similarly, the radial scattering amplitude gl reconstructs
the second series on the right-hand side of (84) and (85). Finally, the third series on
the right-hand side of (84) is reconstructed from the angular scattering amplitudes gg
and g^. All together, the eleven scalar series appearing in (84) and (85) are completely
reconstructable from four scalar functions, the amplitudes and 9%-

5. Reduction to acoustics, electromagnetics, and elasticity. In this section,
we will show how all previous versions [1, 4, 14, 15] of the Atkinson-Wilcox theorem can
be recovered by considering special limits of the parameters.

We start with classical elasticity [4]. This is obtained by considering the limiting case
where the coupling constants e, 7,7; tend to zero. Then we obtain

lim fcj = kp, (155)
£—>0+

and by virtue of

lim ki = q (156)
£—>0+ ^

V(ks ~ kl) = (X + n)kl, (157)

!~2
lim

£"—>0+

(A + 2(it)fc2 — M
Kk'i - kf)

The determinant (150) assumes the limiting value

(158)
p

lim D(n) = 2nikp(\ + 2/z)(fcp — q)~ (159)

and the radial component u\n, given by (151), (153), (150), reduces to

,li5+"™"') = 2SMIT2wD' ^(n)' u"-,(f)

tHiSSi'i'('+1K-1(i| (m)
1 -D ■ N3(n) ■ <_2(f)

2nkl(\ + 2 fi)p
r).— HP

*rn
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Substituting (133), (134), and (135) into (160) and using relations (99) and (100) we
conclude that

U-(f) = 2mfcp(A + 2M){(A + i)(f) +&-IB + n(n - !)]<_,(?)

- [2(n - 1 )n + (n + 1)(A + /x)]D ■ <_x(f)
+ [4(n - 1)m + n(n + 1)(A + m)]^(ti_1)(r)}

1 -{/iD-[B+(n-l)(n-2)]u£_2(r)
(161)

2nkp(X + 2/j,)
- 2/if • [6 + (n - l)(n - 2)]u£_2(r)

+ (A + n)B[.D - (n - l)r] • <_2(r)}

where we have also used the fact that if a vector field is radial then it belongs to the
kernel of the operator D - 2r. That is,

(D - 2r) • (f/(f)) = 0 (162)

or

(D • r)/(f) = 2/(f), (163)

which shows that 2 is an eigenvalue of the scalar operator D • r. Further use of (163)
allows us to rewrite (161) as

= 2mfcp(A + 2M){(A + + I*-[B + n{n - l)K_j(f)

- 2(n - l)/z(D - 2r) -<_j(f)

- (n + 1)(A + fi){D - nr) ■ u^_x(r)}

A -f- \i

(164)

2nk?,(\ + 2fx)(D-2f) Ln-upn_2{r)

where Ln is given by (118).
Using (118) for (n + 1) once more we arrive at

<^-2n4(A+VD-*>- 2ikp(n - l)r£—" Ln ■ <_2(f)
A -f- /J,

2nkl(\ + 2/u) ̂ (n-i)(r) + r ' Ln+1 ' u«-iW]'
(165)

which coincides with formula (58) in [4] that provides the radial component of u£ in
classical elasticity.

The tangential component of u*, as it is given by (145), in the limit as e tends to zero
furnishes the following tangential component of classical elasticity:

ufn(f)=£hm ujn(f)

ik ~ 1 ~ (166)
  iN2(n) • <_,(?) - —N3(n) • <_2(f).

(A + rfkl ""1W (A + n)kj
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Using (133), (135) and some calculations we can rewrite (166) as

p ^ikp(n 1)/^ p / ~ * 1 -pv p f~\
U-(r) = (A + ll)k» U^"D(r) + ^DV-D(r)

- p(I- ff) • |^-[S+ (n- l)(n- 2)]I3 (167)

+ (D - nf)(D - (n - l)f)| • <_2(r),

which coincides with relation (60) in [4] that provides the corresponding tangential com-
ponent in classical elasticity. Finally, since the relative formulae for the transverse wave
in thermoelasticity are exactly the same with those in classical elasticity, it follows that
the Atkinson-Wilcox theorem in elasticity is completely recovered from its thermoelastic
version.

Then we move to the next in lower complication case which is that of electromagnetism.
The electromagnetic waves correspond to the transverse part of the solution of Eq. (1)
in the decoupled case 7 = 0, when we choose A = —/i. In this case, formulae (113)—(118)
derive, for n = 1, 2, 3,...,

Eri(f) =• E0(r), (168)

Ern{f) = + n(n - !)]En-l (?) (169)

for the radial components of the coefficients of the electric field, and

Et„(f) = - ?r) • [B + n(n - l)]E„_i(r) (170)

for the corresponding tangential components, where k = ks. Expressions (168)-(170)
coincide with the corresponding expressions in [15] that were given by Wilcox for elec-
tromagnetic scattering.

Finally, the original acoustic version of the theorem [1], and the recurrence formulae
given in [14], can be recovered from the longitudinal part of the decoupled case 7 = 0,
when A = — fi and u = uk. That will conclude the relations

un(r) = ^-[B + n(n-1)]itn_i(r) (171)

for every n = 1,2,... which were obtained by Wilcox in [14].
Concluding, we see that all previous versions of the Atkinson-Wilcox theorem are

recoverable from the general thermoelastic scattering problem. It is of interest to in-
vestigate what general conditions on the form of a hyperbolic operator, or on the re-
duced spectral elliptic operator after we consider harmonic dependence, will allow for an
Atkinson-Wilcox type expansion theorem for the general scattered field.

Appendix: Basic formulae. Let

R = r - r' = 7?R (A.l)
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where R denotes the unit vector in the direction of R. We define the generic function

ikR
f{R) = - (A.2)

which provides the following fundamental solutions for the Helmholtz equation:

pikiR

/l(i?) = ~?T' (A'3)
piki R

MR) = (A.4)
eik.R

fs{R) = (A.5)
pikp Ft

fP(R)=—j~- (A.6)

Straightforward calculations derive the vector field

Vrf(R) = f'(R) R, (A.7)

the dyadic field

and the triadic field

VrVrf(R) = f"(R)RR + - RR),

f"(R) f(R)VrVrVr/(i?) = /'"(fl)RRR + ( [R(I3 - RR)

+ R(I3 - RR)213 + (I3 - RR)R]

(A.8)

(A.9)

where the exponent 213 specifies the order of the tensorial factors in the corresponding
triadic, i.e.,

abc"13 = bac. (A.10)

Any gradient Vr can be replaced by the gradient Vr< in (A.6), (A.7), (A.8) with a
simultaneous change of sign, i.e.,

Vr = -Vr/ = VR. (A.11)

The components of the above tensorial fields are obtained from

f'(R)=(ik-^\f(R), (A.12)

f"(R) = (-k2 - ~ /(jR), (A.13)

f(R) = + ̂  + f -±)m- (a.14)
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Using appropriate scalar and vector invariants of (A.7) and (A.8) we evaluate the surface
tractions that are generated by the dyadic fields VV/ and /13. These are

T(<9r', n')(VrVr/(/?)) = -f"'(R)ti ■ (AI3 + 2/j,RR)R

Hn'-R)(%-3RR) (A.15)

-j- ̂ uRn (A -|- /x)n R]

and

T(9r',n')(/(i?)I3) = -f\RMn' • R)I3 + 4n' + An'R], (A.16)

With the help of the above formulae we derive the following analytic expressions for the
fundamental dyadic (37):

En(r"r } =  RR

(.ep - 4)f[(R) - (,ki - kDm - (kj - ki)fs{R)
pcu2(kj - kl)R

fs(R)

(I3 - RR)

I3, (A.17)

^ „ 7,A10,Ei2(r'r) = ~ P^-kD R' (A-18)

E2i(r,r') = Ei2(r,r'), (A.19)
7

^ „ {kl-kl)h{R)-{kl-kl)h{R)
E22(r, r ) = p- to—rr • (A-2°)

Since

and

we can easily deduce that

lim k\ = k2 (A.21)
£^0+ p

lim k% = q = i% (A.22)
e—»o+ k

lim En(r,r') = r(r.r') (A.23)
»o+

where

~ , fH(R) -fs(R)~~r(r, r ) = - " , RR
pu-

fp(R) fs(R)^j3_f^+fatf) j3
(A.24)

pu2R

is the fundamental dyadic of classical elasticity [4, 10].
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Similarly, for the dyadic of the fundamental stresses (38) we obtain

E'n(r,r') = k*R3
(l-ihR)^ }lV)qh{R)

«1 —

-(! - ihR)*% J]_~t2e)qfi{R) - (1 - iksR)fs(R)
«1 ^2

x [(n' • R)(I3 - 5RR) + ii'R + R'n']

{k\-q)fl{R)-(kl-q)h{R) , ~
 (X + 2Mkf-kl)R |2"(n 'R)1I'"liI®)

+ 2/x(n'R + Rn') - An'R] (A-25)
eq

[(1 - ik\R)fi(R) - (1 - ik2R)f2(R)]h'R(k'i - kl)R
ikx{k\ - q)f\(R) - ik2(k% - q)f2(R) _ AI3 + 2/iRR^

k\ — k2 A + 2 fj,

^4^[3(n' • R)(I3 - 4RR) + 3Rn' + 2n'R]
R

iksfs(R)[(ti ■ R)(I3 - 2RR) + Rn'],

2 qe/j,
yi¥[{

(kjfi(R)-k22f2(R))n'-(i3-RK) (A.26)

E!2(r,r,) = 7(fc2 _ tf)R2 K1 - ikiR)fi(R) - (1 - ik2R)MR)}n' ■ (Is - 3RR)

, ,2 I ( D\ 1,2 .

7(k\ - k\)

7(fc? - fc2)ihW-MR))#,

E2i(r>r') = ~ (A + 2/x)(fc2 - fc2)fi2 ̂  ~ iklR^^ ~ ^ ~ ik2R)f2{R)]n' ■ (I3 - 3RR)

7 {k\h{R)-klf2{R))
(A + 2/i)(fcj — fc|) '

(A.27)
and

„ (^l - kpH1 - ikiR)fi(R) - (kj - fc*)(l - ikiR)f2(R)~ ,, „0>
B»(r'r 1 = " (fcj - t|)fl " R <A 281
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