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Abstract Atmospheric rivers (ARs) are now widely known for their association with high‐impact

weather events and long‐term water supply in many regions. Researchers within the scientific community

have developed numerous methods to identify and track of ARs—a necessary step for analyses on gridded

data sets, and objective attribution of impacts to ARs. These different methods have been developed to

answer specific research questions and hence use different criteria (e.g., geometry, threshold values of key

variables, and time dependence). Furthermore, these methods are often employed using different reanalysis

data sets, time periods, and regions of interest. The goal of the Atmospheric River Tracking Method

Intercomparison Project (ARTMIP) is to understand and quantify uncertainties in AR science that arise due

to differences in these methods. This paper presents results for key AR‐related metrics based on 20+

different AR identification and trackingmethods applied toModern‐Era Retrospective Analysis for Research

and Applications Version 2 reanalysis data from January 1980 through June 2017. We show that AR

frequency, duration, and seasonality exhibit a wide range of results, while the meridional distribution of

these metrics along selected coastal (but not interior) transects are quite similar across methods.

Furthermore, methods are grouped into criteria‐based clusters, within which the range of results is reduced.

AR case studies and an evaluation of individual method deviation from an all‐method mean highlight
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advantages/disadvantages of certain approaches. For example, methods with less (more) restrictive criteria

identify more (less) ARs and AR‐related impacts. Finally, this paper concludes with a discussion and

recommendations for those conducting AR‐related research to consider.

1. Introduction

Over the past several years, interest in atmospheric river (AR) science and applications has increased rapidly.

Beyond the now well‐known impacts of heavy rain and flooding (e.g., Lamjiri et al., 2017; Neiman et al.,

2008; Ralph et al., 2013), ARs have been shown to have applications in areas as diverse as avalanche hazard

(Hatchett et al., 2017), dust transport (Ault et al., 2011), and postfire debris flows (Oakley et al., 2017).

Furthermore, the study of ARs has become global in scope, and international in terms of participation, as

evidenced by the well‐attended 2018 International Atmospheric Rivers Conference (Ramos et al., 2019).

The American Meteorological Society (AMS) Glossary of Meteorology defines an AR as “a long, narrow,

and transient corridor of strong horizontal water vapor transport that is typically associated with a low‐level

jet stream ahead of the cold front of an extratropical cyclone.” The development of this definition, a process

described by Ralph et al. (2018a), was marked by open engagement with the atmospheric and geosciences

community throughout the process and should be considered a major success in the field. However, the ele-

gance of this definition depends on its qualitative description of ARs, whereas, in practice, the peer‐reviewed

literature contains dozens of quantitative definitions of ARs, as needed in analysis and modeling. These

quantitative definitions are manifested as different AR identification and tracking methods that researchers

have developed to answer a wide variety of questions. Note also that the large majority of these methods

were developed prior to the development of the AR definition within the AMS Glossary of Meteorology.

Each individual method identifies and/or tracks ARs on the basis of selected criteria being met, as summar-

ized in Figure 1. A first step in development of these methods is often the choice of a thresholding variable

and magnitude, which serves as the minimum requirement for identifying ARs. The thresholding variable

can be integrated water vapor (IWV; e.g., Wick et al., 2013) but is most commonly IWV transport (IVT),

and the magnitude can be either absolute (e.g., IVT ≥ 250 kg m−1 s−1; e.g., Rutz et al., 2014) or relative

(e.g., IVT ≥ 85th percentile of local climatological IVT; e.g., Lavers et al., 2012). Research has shown that

using IVT extends medium‐range predictability for high‐impact hydrological events (Lavers et al., 2017),

and recent field campaigns have used probabilistic IVT forecasts to determine AR location and intensity

(Cordeira et al., 2017). Once the thresholding process is applied to the data, features meeting or exceeding

the threshold are examined with respect to geometric parameters such as length, width, shape, axis, and

orientation. Throughout this study, methods with lower‐magnitude thresholds and less geometric require-

ments will generally be referred to as “less restrictive methods,” whereas methods with higher‐magnitude

thresholds and more geometric requirements will generally be referred to as “more restrictive methods.”

Note also that some methods, particularly those based on machine learning techniques, do not directly

use any thresholds as requirements. Temporal requirements may also be chosen (i.e., either AR identifica-

tion is independent of time [time slicing], or it is dependent on criteria being met for a certain duration [time

stitching]). The choices described above lead to many possible permutations, and while some methods fea-

ture similar criteria, others vary widely. Of course, in addition to using different identification and tracking

methods, many researchers examine different regions, using different data sets, and different periods of

records, to do so. More recently, machine learning techniques have been developed to identify and track ARs

(e.g., Mudigonda et al., 2017; Muszynski et al., 2019; Radić et al., 2015).

These different methods produce differences in AR climatologies and, consequently, differences in the

impacts attributable to ARs. These differences produce uncertainty in operational weather research and

forecasting, water management, and climate projections, which require a current baseline of AR climatology

and impacts to assess future changes. The differences in identified ARs that can be observed during a single

event are highlighted using a case from 0000 UTC 15 February 2014, shown in Figure 2. Notice that some

methods identify an AR only over the greatest values of IVT offshore, others extend near just inland of

the coast, and some extend well into the continental interior. These differences have major consequences.

For example, one question the water management community might ask is, “what fraction of precipitation

is attributable to ARs, and how might that change under future climate change scenarios?” Before even
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exploring climate change scenarios, one needs to answer the first question, and the answer depends on

which method is chosen. Figure 3 shows the fraction of cool‐season or annual precipitation attributable

to ARs based on three studies (Dettinger et al., 2011; Guan & Waliser, 2015; Rutz et al., 2014). These

studies found broadly similar spatial patterns, but quite widely varying values from southern California

(~15–35%) to coastal Washington (~25–60%). It is worth noting that in addition to different AR identification

methods, these studies also used different data sets, different periods of record, and different methods of

attributing precipitation to ARs, all of which contribute to this range.

It is critical to remember that each AR identification and trackingmethod was developed to answer a specific

question or set of questions and that these questions vary widely from one study to the next. Having a sense

of these original questions better informs the reader as to the original intent or goal of each method, as

described in the supplemental material provided by method developers. For example, Ramos et al. (2015)

examined the relationship between persistent ARs and extreme precipitation over the Iberian Peninsula;

Rutz et al. (2014) identified ARs and their impacts over the complex topography of the western United

States; and Guan and Waliser (2015) produced a global climatology of ARs and their characteristics.

Furthermore, Shields and Kiehl (2016a, 2016b) and Gershunov et al. (2017) explored the climate scale varia-

bility of ARs along the North American West Coast. Still other methods are using machine learning techni-

ques to determine whether ARs can be identified without the use of defined thresholds (e.g., Muszynski

et al., 2019). With such a variety of different questions asked, and such different goals pursued, it should

not be surprising that many different results have been found. Nevertheless, a growing awareness of the

uncertainties that these differences produce has led to the development of a community‐based project to bet-

ter understand and quantify them.

The goal of the Atmospheric River Tracking Method Intercomparison Project (ARTMIP; Shields et al., 2018)

is to quantify and understand the uncertainties in AR climatology (e.g., frequency, duration, and intensity),

precipitation, and related impacts that arise from different AR identification and tracking methods, and how

uncertainties in these AR‐related metrics may change in the future. Furthermore, ARTMIP aims to under-

stand the implications of those uncertainties in terms of our recent, current, and future climate. A few recent

studies have focused on this topic. Huning et al. (2017) examined the sensitivity of AR‐attributable snowfall

in California's Sierra Nevada to AR detectionmethods based on two different AR catalogs. Guan andWaliser

(2015) examined the sensitivity of AR detection to intensity/geometry thresholds and input data sets, but

only based on a single AR detection algorithm. Ralph et al. (2018b), in an initial pre‐ARTMIP study, quan-

tified uncertainties in AR‐related metrics using ~10 AR detection algorithms but focused on only one loca-

tion along the California coast. This paper provides a systematic and global intercomparison between

Figure 1. Schematic diagram illustrating the diversity of AR identification and tracking methods found in current litera-

ture by categorizing the variety of parameters used as criteria and then listing different types of choices available per

category.
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different methods by quantifying the uncertainty in current (1980–2017) AR climatology on a global scale,

using over 20 AR identification and tracking methods. To do so, it leverages a variety of metrics, which

are described in more detail in the following sections. An assessment of method‐related uncertainty

affecting AR climatology under climate change scenarios will be the subject of another paper, discussed at

the end of section 4.

2. Data and Methods

The progression of ARTMIP is organized into “tiers,” and this study is a summary of results from the Tier 1

phase of the project. The data used in Tier 1 of ARTMIP are described at length in Shields et al. (2018), and a

brief overview is also given here.

A key aspect of ARTMIP is that analyses are performed using the same atmospheric data set, over the same

period of record, and over the entire globe. This enables a clean comparison of AR‐related metrics across all

methods, whereas previous studies used different atmospheric data sets, different periods of records and

examined only certain regions. Note, however, that somemethods' criteria explicitly limit their results to cer-

tain regions, and a mask is used to indicate these regions. Basic quantities such as IWV and IVT, which is

often a derived variable, were precomputed for ARTMIP to ensure that all algorithms use exactly the same

data. The atmospheric data for these calculations comes from the Modern‐Era Retrospective Analysis for

Research and Applications Version 2 (MERRA‐2) reanalysis (Gelaro et al., 2017) for the period of January

1980 through June 2017, at a horizontal resolution of 0.625 × 0.5° and a 3‐hr temporal resolution. The

ARTMIP catalogs are then produced by developers applying their identification and tracking methods to

these data. For each 3‐hr time slice, each grid point is flagged with a 0 for “AR conditions do not exist” or

a 1 for “AR conditions exist.” Catalogues produced for Tier 1 as well as the source MERRA‐2 data used by

all ARTMIP participants are available on the Climate Data Gateway. MERRA‐2 source data can be found

at https://doi.org/10.5065/D62R3QFS (NCAR/UCAR Climate Data Gateway), and ARTMIP Tier 1 output

data catalogues, also housed on the Climate Data Gateway, online (doi:10.5065/D6R78D1M). Table 1 sum-

marizes all the methods participating in ARTMIP with notation specifying Tier 1 algorithms only.

Key results are presented along selected, roughly meridional transects along the North American West

Coast, through interior western North America, and along the EuropeanWest Coast (Figure 4). These trans-

ects are selected because most regional methods have been developed, and produce data, for one of these two

regions. The coastal transect points are determined by selecting all MERRA‐2 reanalysis grid points that

Figure 2. Example of how AR identification and tracking methods differ over the northeastern Pacific, based on MERRA

Version 2 data from 0000 UTC 15 February 2014. Gray shading represents IVT (kg m
−1

s
−1

), and colored contours

represent the spatial regions designated as ARs by the various methods. Note that only algorithms available in this region

are shown.
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have fractional land/sea cover between 32°N and 55°N (and 130–115°W) for North America, and between

35°N and 62°N (and 15°W to 10°E) for Europe. The interior transect points are determined by subjectively

selecting grid points that represent a significant topographic “crest” between 32°N and 55°N. The interior

transect facilitates comparison between results for AR‐related metrics along a coastline, which lies down-

stream of an ocean, and results for AR‐related metrics over an interior region, which lies downstream of,

and embedded within, complex topography.

This paper will present a number of results based on grouping methods into “clusters” that have similar

approaches to identifying ARs. Throughout this section, refer to Figure 5 for a summary of which clusters

each method is grouped into, and Table 1 for more in‐depth information regarding each method. Note also

that many groups have joined ARTMIP and contributed data since the beginning of this analysis and are not

listed here but can be found online. Their areas of focus include South America (Viale et al., 2018) and Polar

regions (Gorodetskaya et al., 2014), among others. The first key cluster pair is that differentiating between

methods using absolute thresholds (e.g., IVT ≥ 250 kg m−1 s−1) and methods using relative thresholds

(e.g., IVT ≥ 85th percentile of climatological IVT). This is done because these are fundamentally different

ways of identifying and tracking ARs, and the visualization of results benefits from the distinction.

Throughout this paper, the terms absolute and relative will be italicized when used in this context. There

is also a subtle, but important difference among the relative methods themselves: those whose thresholds

vary as a function of latitude (latitude‐dependent relative methods) and those that do not (latitude‐indepen-

dent relativemethods). Latitude‐dependent relativemethods use thresholds based on the climatology of each

grid point and can be expected to produce smaller meridional gradients in AR statistics. Latitude‐indepen-

dent relative methods use one threshold based on the climatology of a given region and can be expected to

produce larger gradients in AR statistics, which will likely be more similar to results produced by absolute

methods. Furthermore, this paper includes one method based on machine learning (TDA_ML; Muszynski

et al., 2019), which defies many of the threshold‐based groupings outlined above. It is currently employed

over the western Unites States but could be readily applied to other regions.

Another distinction made in this study, and key cluster pair, is that between global and regional meth-

ods, which simply describes the area over which the method was originally developed and applied.

Masks for each regional method are found in the supplemental material of the experimental design

paper, Shields et al. (2018).

Finally, a subjective distinction will at times be made between methods that are either less restrictive or

more restrictive. Here, “less restrictive” generally denotes a method or methods with less restrictive

Figure 3. Fraction of total cool‐season precipitation attributable to ARs from (a) Dettinger et al. (2011) and (b) Rutz et al.

(2014). (c) As in panels (a) and (b) but for annual precipitation from Guan and Waliser (2015). These studies use different

AR identification methods, as well as different atmospheric reanalyses, observed precipitation data sets, and methods of

attributable precipitation to ARs.
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criteria required for AR identification, leading to a greater number of ARs being identified. Similarly, “more

restrictive” generally denotes a method or methods with more restrictive criteria required for AR

identification, leading to a smaller number of ARs being identified. Future work will quantify the

“restrictiveness” of such methods, but these generalizations will be used throughout this paper.

3. Results

This section describes climatological characteristics of ARs based on the ARTMIP methods used in Tier 1.

These characteristics are highlighted via a few key metrics, including AR frequency and duration. Here,

results are presented either along selected transects or in a zonal‐mean framework to facilitate a more

focused analysis.

3.1. AR Frequency

This section discusses AR frequency, which is defined as the percentage of time that a given location is

experiencing AR conditions (i.e., is located within the spatial footprint of an AR). For example, if a given

method produces an AR frequency of 10% at some location, it means that this location is within the spatial

footprint of ARs, as identified by that method, 10% of the time from January 1980 through June 2017, inclu-

sive of all months. AR frequency along the North American and European West Coasts, as well as through

interior western North America, varies greatly as a function of method used (Figure 6). Focusing on the

North American West Coast, nearly all methods exhibit a rapid increase in AR frequency from a minimum

near 32°N toward a maximum near 45°N, followed by a more gradual decrease northward toward 56°N

(Figure 6, top). This distribution closely resembles that of North Pacific storm track density shown by

Lukens et al. (2018; their Figure 4b), among others. In general, both less restrictive criteria and absolute

thresholds lead to more dramatic changes in AR frequency as a function of latitude, with the “Rutz”method

exhibiting the greatest maximum (~14%) and range (~12%) along this transect. The AR frequency of the

“Guan_Waliser”method is an exception to the generalized statements above—it exhibits a gradual increase

as a function of latitude and a small range (~4%) relative to the number of events it identifies. A similar beha-

vior is also seen with Brands_v1. These characteristics arise from the fact that they are both percentile‐based

Figure 4. Selected transects along the North AmericanWest Coast (left panel, black dots), through interior western North

America (left panel, red dots), and along the EuropeanWest Coast (right panel, black dots). The coastal transect points are

determined by selecting all MERRA‐2 reanalysis grid points that have fractional land/sea cover between 32°N and

55°N (and 130–115°W) for North America, and between 35°N and 62°N (and 15°W –10°E) for Europe. The interior

transect points are determined by subjectively selecting grid points that represent a significant topographic “crest”

between 32°N and 55°N.
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relative methods that use a latitude‐dependent IVT threshold, where the direct influence on AR frequency

from the climatological meridional gradient in IVT tends to be smoothed out. Such a smoothing effect is

less obvious with “Brands_v2” and “Brands_v3”, likely because the fixed lower limit of IVT becomes

dominant compared to the less restrictive percentile thresholds in these two methods, making them

inclined toward absolute methods. In a similar sense, relative methods that use latitude‐independent IVT

thresholds (“Payne”, “Lora_NPac”, “Lora_global”) agree better with absolute methods, because for a given

region the IVT threshold in these latitude‐independent relative methods is nothing but a fixed value.

Relative methods can vary substantially in their methodology, from percentile‐ and climatology‐based

thresholds (“Brands,” “Guan and Waliser,” “Lavers,” “Lora,” “Mundhenk,” “Payne and Magnusdottir,”

“Ramos,” “Viale,” and “Walton”) to thresholds based on spatial anomalies (“Gorodetskaya” and “Shields

and Kiehl”). Interestingly, the AR frequency from the machine learning method, “TDA_ML,” is

characterized by a maximum of just 2% near 39°N and declines to 0% north of 45°N, where many

methods produce their larger frequency values. Muszynski et al. (2019) note that this method frequently

produces false negatives (i.e., it fails to detect ARs) when an AR merges with another AR or “some other

event with high concentration of water vapor and similar topological structure, such as an extratropical

cyclone.” This would happen with higher frequency in the more active storm track at latitudes north of

45°N, which may explain the rapid drop‐off in AR detection associated with this method.

Focusing on the selected transect through interior western North America, the AR frequency is greatly

reduced for nearly all methods (Figure 6, center). However, the “Guan_Waliser” method is a remarkable

outlier here, as it exhibits an AR frequency (~8–10%) only slightly lower than at the same latitudes along

Figure 5. Tables showing the names of ARTMIP Tier 1 methods grouped into (top) absolute/relative/machine learning

clusters and (bottom) global/regional clusters. For the bottom table, the region(s) over which data are used from each

method are given in parenthesis following the method name. Note that this is not a comprehensive list of all AR identi-

fication and tracking methods found in scientifically relevant literature; only those methods used in this study are shown.
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the North American West Coast. This clearly results from being a less

restrictive and relative method. The AR frequency of other methods is

much lower (~1–4%), with the “Rutz” and “Brands_v1” methods, owing

to their less restrictive thresholds, being the largest of these at most lati-

tudes. Most other methods exhibit a coastal maximum near 45°N (albeit

of varying magnitude) that shifts northward to an interior maximum near

48°N. This shift arises because ARs making landfall near 45°N preferen-

tially extend inland toward the east‐northeast along the relatively low‐

elevation corridor of the Columbia River Basin, as shown by Rutz et al.

(2015, their Figure 3). Additional, secondary, corridors of inland penetra-

tion are located south of 32°N and north of 52°N, and all of these corridors

play an important role in heavy precipitation events (Alexander et al.,

2015) and growth of vegetation (Albano et al., 2017) over interior regions.

In contrast, areas downstream of major topographic barriers feature a lar-

ger decrease from coastal to interior frequency due to AR decay, as moist-

ure is more effectively removed by orographic precipitation. This is

particularly true for ARsmaking landfall between ~32°N and 38°N, which

are severely disrupted by the southern Sierra Nevada Mountains (eleva-

tion 2–4 km), drastically lowering the inland frequency between ~38–

44°N (following a typical trajectory of inland penetration; see Rutz et al.,

2015, their Figure 3).

Along the European West Coast, “Rutz” identifies the greatest AR fre-

quency nearly everywhere, and diverges markedly from

“Guan_Waliser” between 44°N and 60°N. This divergence is likely due

to a higher climatological value of IVT at these latitudes, which generally

causes absolutemethods to identify a greater number of ARs than relative

methods. Other methods such as “Lora,” “Mundhenk,” and “Tempest”

follow a distribution very similar to “Rutz,” but with smaller amplitudes.

Once again, the fairly good agreement between the absolute method of

Rutz and latitude‐independent method of Lora is not surprising. The dra-

matic jump in AR frequency near 45°N may be due to some combination

of climatology (i.e., placement of the storm track; e.g., Lukens et al., 2018)

and the greater number of coastal transect points at latitudes north of

45°N. It is worth noting that during the ARTMIP 1‐month experiment

described in Shields et al. (2018; their Figure 3), the human‐control analy-

sis yielded a greater AR frequency than any automatedmethod along both

coastal transects. (The human‐control analysis consisted of two graduate students counting “by eye” all ARs

making landfall for the North American and European coastlines for the month of February 2017.)

Clearly, different AR identification and tracking methods produce widely varying results for AR frequency

along coastal transects. It is important to remember that the criteria of each individual method used in

ARTMIP have been developed to answer specific scientific questions, often driven by regional and/or

impacts‐specific considerations. Since different questions were asked, it should be no surprise that different

methods are used and different results produced. Nevertheless, while the ARTMIP methods do not agree on

absolute values of AR frequency, they do exhibit remarkable agreement in their latitudinal distribution,

except for an outlier (“Guan_Waliser”), which, among all the methods examined in this study, is the only

relativemethod that both has a global coverage and uses percentile‐based, latitude‐ and longitude‐dependent

IVT thresholds. Also, despite generally large intermethod differences, Brands_v2 and CONNECT500 yield

practically identical results on both continents, which is quite surprising since the two methods have been

developed independently.

The ARTMIP methods' good agreement regarding the latitudinal distribution of AR frequency is more

clearly seen by normalizing each method as follows: for each method, the largest and smallest value along

a given transect are given values of 1 and 0, respectively, and all values are then normalized to this scale

(Figure 7). For example, if the largest and smallest AR frequency along a given transect are 24% and 8%,

Figure 6. AR frequency of ARTMIP methods for selected transects (a) along

the North American West Coast, (b) through interior western North

America, and (c) along the European West Coast. Note that some methods

are only available over certain regions.
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respectively, a value of 12% will be normalized to 0.25. Exceptions to good

agreement (e.g., “TDA_ML,” “Shields,” and “PNNL_lq”) are more

prominent at lower latitudes, where they identify a relatively larger

number of ARs than most methods (the machine learning method,

“TDA_ML,” is an outlier here). The “Guan_Waliser” method is another

exception owing to its steady rise with latitude throughout the North

American coast, which appears more dramatic when normalized

precisely because it is so gradual in absolute terms. These normalized

results can be further examined by clustering methods according to key

differentiating criteria such as whether absolute or relative thresholds

are used (Figure 8). Focusing on the median of the absolute and relative

clusters (the thick black and blue lines, respectively) reveals excellent

agreement in the distribution of AR frequency.

These results suggest that the ARTMIPmethods are not identifying funda-

mentally different features (as could be inferred from the nonnormalized

results), but rather that their numbers are simply scaled as a function of

how restrictive their criteria are. To investigate this further, Figure 9 pre-

sents, for each method, composites of IVT magnitude and identified ARs

anytime that method identifies an AR at a point along the northern

California coast (39°N, 123.75°W). There are notable differences: Less

restrictive methods are characterized by a smaller composited AR because

they identify both weak and strong events (e.g., “Guan_Waliser,” “Rutz,”

and “Tempest”), whereas more restrictive methods are characterized by a

larger composited AR because they identify only strong events (e.g.,

“CONNECT700” and “PNNL_LQ”). In addition, while most methods'

composite ARs exhibit a west/southwest to east/northeast orientation,

those based entirely or partly on IWV have a more zonal orientation

(e.g., “Goldenson” and “Shields”). However, the methods' composited

AR footprints generally cover the same region. The bottom right panel in

Figure 9 highlights this aspect—anytime the “PNNL_LQ”method, one of

the most restrictive, identifies an AR at the coastal point, the number of

other methods identifying ARs within the domain shown are counted,

and the average over all “PNNL_LQ” ARs is shown in this panel. The

results indicate that when one of the most restrictive methods identifies

an AR at the coastal point, most other methods (~15), which are less restrictive, also identify an AR near this

point, and this number decreases with distance as a function of decreasing IVT. Hence, more restrictive

methods' AR composites are shown to be an approximate subset of their less restrictive counterparts.

There are advantages and disadvantages to this normalization approach. One key advantage is that baselin-

ing the distribution of AR frequency along these transects is necessary to assess changes predicted by climate

models; these results increase confidence in the general shape of the latitudinal distribution. One key disad-

vantage is that AR‐related impacts cannot simply be normalized—emergency management is much more

interested in how often these impacts will be encountered than in the general shape of AR frequency along

the coast. Thus, more work is needed to constrain the range of AR frequency depicted above, and this is dis-

cussed in more detail in section 5.

3.2. AR Duration

This section discusses AR duration, which is defined as the continuous length of time that a given location is

experiencing AR conditions (i.e., is located within the spatial footprint of an AR). For example, if a given

method produces an AR duration of 10 hr at some location, it means that when this location is within the

spatial footprint of ARs, as identified by that method, the average duration of such conditions is 10 hr from

January 1980 through June 2017, inclusive of all months. AR duration along the North American and

European West Coasts varies as a function of method used, but not as greatly as AR frequency

(Figure 10). Focusing on the North American West Coast, most methods exhibit a gradual increase in AR

Figure 7. Normalized AR frequency of ARTMIPmethods for selected trans-

ects (a) along the North American West Coast, (b) through interior western

North America, and (c) along the European West Coast. Note that some

methods are only available over certain regions.
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duration from 32°N toward a maximum near 42–44°N (matching the

maximum in AR frequency), followed by a steadier decrease northward

toward 50°N, plateauing north of there (Figure 10, top). In their pre‐

ARTMIP study, focused on Bodega Bay (~38°N along the northern

California coast), Ralph et al. (2018b) showed that a group of methods fea-

turing lower IVT thresholds (“Rutz,” “Guan_Waliser,” and “Gershunov”)

clusters strongly in both frequency (~23 events per year) and mean event

duration (~24 hr). Figure 4 of Ralph et al. (2018b) shows that this agree-

ment, in terms of the number of events (which can be related to AR fre-

quency, given the similar duration), is primarily the product of the

fortuitous latitude at Bodega Bay, where results from “Guan_Waliser”

cross over with those of “Rutz” and “Gershunov” (Figure 6). Figure 10

also shows that these two methods agree on duration at this latitude.

More restrictive methods, which typically detect fewer ARs, may also

translate into ARs having shorter average durations (e.g.,

“CONNECT700,” “TDA_ML,”, “Shields and Kiehl”). However, this is

not necessarily the case for specific events, as can be seen by examining

the AR identification time series shown later in Figure 12 (top panels).

In general, both less restrictive method criteria and absolute thresholds

lead to greater AR duration, with the “Rutz” and “Gershunov” methods

described above being among the largest along this transect (the

latitude‐independent “Lora_global” following closely behind). The

“Guan_Waliser” method also produces large AR durations, including

the largest south of ~37°N. In addition, the “Guan_Waliser” method also

produces the largest mean AR duration (as it does mean AR frequency)

through interior western North America (Figure 10, center). These char-

acteristics arise from the fact that it is a relative method that uses

percentile‐based, latitude‐ and longitude‐dependent IVT thresholds, as

explained earlier. In fact, north of ~46°N, this method produces slightly

larger mean durations along the interior transect than it does at similar

latitudes along the coastal transect, perhaps because its criteria preferen-

tially select for more powerful (and hence, longer‐lived) events over

regions where IVT is climatologically weaker. In Europe, the “Lavers”

and “Ramos” methods cluster closely together, which is interesting since

these two methods were developed within this region (Figure 10, bottom). Over this region, for many meth-

ods, there is little change or a slight decrease in mean event duration as a function of increasing latitude,

although the less restrictive “Rutz” method is an exception, peaking at 33 hr near 50°N. As with AR fre-

quency, machine learning methods tend to cluster toward lower values of AR duration.

The mean AR duration, after each method is normalized from 0 to 1 and then clustered, shows that the rela-

tive distributions of most methods are in good agreement along the North American and European West

Coast (Figure 11). This agreement, however, is not as robust as that observed for AR frequency. For the

North American West Coast, relative methods produce relatively greater durations between 35°N and

43°N and absolute methods produce relatively greater durations between 47°N and 55°—a similar pattern

is observed along the European West Coast. These relative differences as a function of latitude are not as

apparent for AR frequency (Figure 7), suggesting that while relative and absolutemethods share similar dis-

tributions in overall AR activity, relative methods tend to observe longer duration events further south.

3.3. AR Concurrence

This section analyzes the extent to which the ARTMIP methods agree or disagree on the identification of AR

conditions along the North American West Coast during events of varying intensity, and the relationship

between the methods' identification of ARs conditions and observed precipitation. To do so, the methods'

identification of AR conditions along a selected coastal transect during two events, one strong and one weak,

are explored. It is important to note that this analysis and the results shown in Figure 12 are based on the

Figure 8. Normalized and clustered (based on absolute or relative thresh-

olds) AR frequency of ARTMIP methods for selected transects (a) along

the North American West Coast, (b) through interior western North

America, and (c) along the European West Coast. Note that some methods

are only available over certain regions.
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peak IVT (blue time series in top panel) and the presence (or absence) of AR conditions (black dots in top

panel) along the entire coastal transect, and not at an individual point.

The first event (12–16 February 2014) is characterized by a broad area of IVT ≥ 250 kg m−1 s−1making land-

fall along the U.S. West Coast and extending inland, with areas exceeding the 85th percentile of climatolo-

gical IVT embedded within the core (Figure 12a). This event produced heavy precipitation along the coastal

and the interior northwestern United States, triggering a series of avalanches that resulted in 10 fatalities

(Hatchett et al., 2017). Most of the ARTMIPmethods identify AR conditions along the coastal transect either

throughout, or nearly throughout, the entire period. Some methods, such as “Brands_v2,” “Connect500,”

and “Payne,” are very sensitive to periodic surges and lulls in IVTmagnitude, identifying ARs during the for-

mer. Methods that are more restrictive, such as “Connect700,” “PNNL1_hagos,” “PNNL_lq,” and

“TDA_ML” do not identify AR conditions as frequently, particularly at times when peak IVT along the coast

drops below their more restrictive thresholds. Furthermore, it must be noted that somemethods, such as the

“PNNL” methods above, only identify ARs if and when they intersect the coast, but not before or after.

The second event (23–24 October 2006) is characterized by a broad area of IVT≥ 250 kg m−1 s−1 terminating

along the coast of British Columbia, with the 250 kg m−1 s−1 contour overlapping the northern edge of the

selected transect (Figure 12b). Precipitation is very light, and the authors are not aware of significant impacts

associated with this event. The ARTMIP methods generally disagree as to whether or not AR conditions

occur along this transect, and the disagreement extends beyond differentiation into absolute and relative

methods. The “Rutz” and “Tempest”methods most frequently identify an AR along the transect during this

time period—both are based on an absolute threshold of IVT ≥ 250 kg m−1 s−1, but the “Rutz”method uti-

lizes an Eulerian framework for identifying ARs, whereas the “Tempest” method utilizes a Lagrangian fra-

mework. Certain relativemethods such as “Guan_Waliser,” “Lora,” and “Shields” also identify an AR along

Figure 9. (all except bottom right) For each method, composites of IVT at all times when that method identifies an AR at

the coastal location of 39°N, 123.75°W (black circle). Blue color shading represents IVT magnitude and purple contour

indicates IVT of 350 kg m
−1

s
−1

. (bottom right) Shading indicates the number of methods identifying an AR anytime the

“PNNL_LQ” method identifies an AR at 39°N, 123.75°W.
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this transect nearly 50% of the time (or during adjacent time steps). Other

methods, such as “PNNL1_hagos” and “PNNL2_lq,” only identify

instances when AR conditions are met at the coast (i.e., landfalling ARs)

so very few instances were denoted as AR conditions for this AR that

barely made landfall along the coast of British Columbia.

One key point is that there is a difference between identifying AR condi-

tions at one time step and identifying an AR event, which is often defined

as having some minimum duration (such as the 12‐hr minimum in

Figure 10). AR duration plays a key role in storm‐total precipitation and

streamflow (Ralph et al., 2013), and along with peak IVT intensity, forms

the basis of a forthcoming AR scale, which categorizes the strength and

impacts of ARs (Ralph et al., 2019). A further consideration is that while

prolonged AR duration often drives impacts over land, the peaks and

troughs in IVT intensity along the coast are of great interest to those focus-

ing on the physical processes involved in strengthening, maintaining, or

weakening ARs. Finally, based on this limited analysis, ARTMIP methods

exhibit greater agreement regarding those storms that are more meteoro-

logically impressive and associated with heavier precipitation. Of course,

significant meteorological events do not always produce significant

impacts, and many factors need to be considered, but it is encouraging

that all else held constant, a large majority of methods agree to classify

“the big ones” as ARs.

3.4. AR Seasonality

In this section, we assess AR seasonality by calculating, at each latitude,

the number of methods that yield a maximum AR frequency during a

given month (Figure 13; i.e., for any latitude, the sum across all columns

will be equal to the number of methods for that transect). The month of

maximum AR frequency along the North American West Coast is charac-

terized by a gradual shift from north to south during the course of the bor-

eal cool season (Figure 13, top). More specifically, it occurs between 48°N

and 54°N (near British Columbia and Vancouver Island) during October,

42–48°N (Washington and Oregon) during November, 36–42°N

(Northern California) during December, and south of 36°N (Southern

California) during January. This result agrees well with the results for

peak IVT intensity shown by Dettinger et al. (2018), among others. The month of maximum AR frequency

should not be confused with AR frequency—in other words, the blue shading indicating a December max-

imum near 37°N means that a large majority of methods agree that AR frequency, at this latitude, features a

maximum in December. It does not mean that the December AR frequency is greater here than some other

location, though it might be.

Along the interior western North America transect, the month of maximum AR frequency is quite varied as

a function of latitude (Figure 13, center). North of ~45°N, the pattern is similar to that along the coast, with

the month of maximumAR frequency gradually shifting southward September through November. South of

~41°N, this southward shift continues, to some extent, into December and January, but is less clearly seen

because of the influence of the monsoon circulation, which produces a maxima during September and

October at these latitudes. Perhaps the most unexpected phenomenon shown here is the June maximum

between 41°N and 45°N. At these latitudes, during June, seasonally increasing moisture interacts with a

jet stream that remains sufficiently strong to produce a relatively large number of ARs. However, given a

warmer atmosphere in June than during winter months, it is likely that many of these ARs fail to fully satu-

rate the atmospheric column and produce less precipitation than ARs of similar IVT magnitude during the

winter, particularly over lower elevations.

The month of maximum AR frequency along the EuropeanWest Coast is characterized by a rapid shift from

north to south concentrated during September–October, at the onset of the boreal cool season (Figure 13,

Figure 10. AR duration of ARTMIPmethods for selected transects (a) along

the North American West Coast, (b) through interior western North

America, and (c) along the European West Coast. Note that some methods

are only available over certain regions. Only AR events lasting ≥12 hr

qualify.
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bottom). More specifically, it is maximized north of 55°N during

September and south of 55°N during October (similar to the season-

ality of these same latitudes along the North American West Coast;

Gershunov et al., 2017). At some latitudes, such as those near

Scotland or southern Spain, some methods identify December as

the month of maximum AR frequency. One possible explanation is

that these latitudes can observe landfalling ARs from a greater variety

of directions (see the inset maps of grid points used for coastal trans-

ects), and the tendency to do so may vary by month. It is also possible

that some of this is due to a more fragmented European West Coast

versus that of North America. For both the North American and

European West Coasts, it is notable that at least 1 or 2 methods iden-

tify January as the month of maximum AR frequency at nearly every

latitude. This results from a wide variety of methods identifying

January along the North American West Coast, and the “Lavers”

(further south) and “Shields” (further north) methods consistently

identifying January along the European West Coast.

3.5. AR Zonal‐Mean Area, Poleward IVT, and “Efficiency”

One oft‐quoted result, developed from an early series of seminal

papers on ARs (Newell et al., 1992; Zhu & Newell, 1998), is that

ARs are responsible for ~90% of poleward water vapor transport in

the midlatitudes, despite encompassing only ~10% of global circum-

ference at any given latitude and time. This section derives motiva-

tion from this early work and explores related metrics across

various ARTMIP methods. Results shown are limited to globalmeth-

ods, which can be compared to each other because they consider all

latitudes and longitudes. In contrast, regional methods cannot be

compared because they consider only certain regions.

3.5.1. Zonal‐Mean Area

The first metric examined here is the zonal‐mean AR area (i.e., the

time‐mean spatial footprint, along a given latitude band, of identified

or tracked ARs), expressed as a fraction of global circumference, for

each global method (Figure 14, top). Most of the global methods are

characterized by a maximum zonal‐mean AR area in the midlati-

tudes (~10% of global circumference), a rapid decrease toward higher latitudes, and a gradual decrease

toward lower latitudes. The rapid decrease toward higher latitudes is due to rapidly decreasing mean water

vapor (and hence, IVT) at these latitudes, whereas the gradual decrease toward lower latitudes is dominated

by decreasing mean wind (and hence, IVT) further from the mean storm track. One notable exception is the

“Rutz”method, which identifies a large fraction of the intertropical convergence zone as an AR, since it does

not account for climatology and has no width requirement. In general, absolutemethods exhibit greater var-

iance in zonal‐mean AR areas as a function of latitude than relative methods. In addition, less restrictive

methods predictably identify greater zonal‐mean AR areas overall than more restrictive methods.

Here, the “Guan_waliser” method is interesting in two respects. First, it identifies larger zonal‐mean AR

areas at higher latitudes of both hemispheres than any other method. This arises because this method uses

a latitude‐dependent 85th percentile IVT threshold, where the direct influence on AR activity from the cli-

matological meridional gradient in IVT tends to be smoothed out, resulting in amore gradual decrease in AR

occurrence toward high latitudes, as also explained earlier. Second, for the same reason above, the fractional

zonal‐mean AR area identified is remarkably stable throughout the midlatitudes of both hemispheres at

nearly 10%, which is the value from Zhu and Newell (1998) for the fraction of global circumference encom-

passed by ARs. A number of other methods (i.e., “Rutz,” “Lora_global,” “Lora_npac,” “Tempest,”

“Mundhenk,” and “Connect500”) also approach this value at low or middle latitudes, but their distributions

are more variable as a function of latitude.

Figure 11. Normalized and clustered (based on absolute or relative thresholds)

AR duration of ARTMIP methods for selected transects (a) along the North

American West Coast, (b) through interior western North America, and (c) along

the EuropeanWest Coast. Note that somemethods are only available over certain

regions. Only AR events lasting ≥12 hr qualify.
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The midlatitude (~30–60°N/S) global circumference occupied by ARs is in the range of ~2–15% when con-

sidering all globalmethods, excluding the “CONNECT”methods (for which the range is lower, due to their

fairly restrictive thresholds). This is important for three reasons. First, being significantly below 50% means

that even the least restrictive methods examined here (such as “Rutz”) are identifying discrete features that

are making large contributions to IVT relative to their size. Second, the average global circumference occu-

pied in the core of the midlatitudes (~45°N/S) being ~5–15% means that these features occupy more space

than the cold‐frontal zones associated with extratropical cyclones, and therefore the concept of an AR is dis-

tinct and useful. Finally, it is encouraging that these results, based on 5methods and ~38 years of global data,

align so well with those discussed by Zhu and Newell 20 years ago.

3.5.2. Zonal‐Mean Poleward IVT

The second metric examined here is the AR‐related zonal‐mean poleward IVT (i.e., poleward IVT occurring

within the spatial area of ARs; Figure 14, middle). For all methods, the AR‐related zonal‐mean poleward IVT

is maximized in the midlatitudes. The variation in the magnitude of its maximum and meridional range

clearly exhibits a dependence on the threshold magnitudes chosen for identifying ARs, which is most clearly

seen using the absolutemethods. For example, “connect500” attributes a greater amount of zonal‐mean pole-

ward IVT to ARs than “connect700,” simply because the former uses an IVT threshold of 500 (versus 700) kg

Figure 12. ARTMIP methods' identification of AR conditions (dots) along a selected transect (hatched in the spatial

panels), peak IVT (light blue line, with values below 250 kg m
−1

s
−1

dashed) and mean precipitation (blue line) along

the transect. Composite of IVT (IVT ≥ 250 kg m
−1

s
−1

and IVT ≥ 85th percentile contoured as black dashed and black

solid lines, respectively), composite of IWV (IWV ≥ 20 mm contoured as a solid black line), and cumulative precipitation

for events centered on (a) 12–16 February 2014 and (b) 23–24 October 2006. The time steps composited for each event are

lightly shaded in the top panel. Listed methods use relative thresholds if italicized, no thresholds if bolded, and absolute

thresholds otherwise.
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m−1 s−1, and identifies ARs as spatially larger features. Similarly, the

“tempest” and “rutz”methods, based on 250 kg m−1 s−1, attribute an even

greater amount of zonal‐mean poleward IVT to ARs, with “rutz” attribut-

ing more than “tempest” because it is less restrictive with other criteria.

The relative “lora” method, with a less restrictive threshold requirement

of IVT ≥ 100 kg m−1 s−1 above climatology, attributes nearly as much

zonal‐mean poleward IVT to ARs as “rutz.” The other relative methods

“guan_waliser” and “mundhenk” have more restrictive criteria, and attri-

bute smaller fractions of zonal‐mean poleward IVT to ARs. The “guan_-

waliser” method is notable because of its relative smoothness at high

latitudes, being the most generous in attributing zonal‐mean poleward

IVT to ARs north of ~55°N. It is interesting that this is roughly the same

latitude at which the AR frequency of the “guan_waliser” method

becomes greater than that of “rutz” and “lora” along the North

American and European West Coasts (Figure 6).

3.5.3. Zonal‐Mean AR Efficiency

The final metric examined in this section is the zonal‐mean AR “effi-

ciency,” defined, in terms of the two metrics examined previously, as

the ratio of zonal‐mean poleward IVT to the fractional (i.e., unitless)

zonal‐mean spatial area of ARs. It is referred to here as the zonal‐mean

AR efficiency because it describes the quantity of poleward water vapor

transport per unit area of AR. One inherent problem with this metric is

that efficiency, as defined above, is naturally higher for more restrictive

AR identification and tracking methods. However, it is still interesting

to explore this metric, and particularly how it changes as a function

of latitude.

The methods with the largest zonal‐mean AR efficiency across most lati-

tudes are “CONNECT500” and “CONNECT700” (Figure 14, bottom).

This is not surprising given that the fairly restrictive criteria of IVT ≥

500 and 700 kg m−1 s−1 limits the number of ARs identified by these

methods to only the strongest of those identified by other methods. In fact,

the lack of events due to these restrictive criteria is clearly seen to affect

the results over high latitudes. The other methods cluster more closely

together, particularly over mid and high latitudes, although the “guan_-

waliser” method identifies more ARs over Antarctica, owing to its less

restrictive criteria, and hence, the efficiency is lower. In the tropics, the

“rutz” method, which was designed for midlatitude applications, is the

least efficient, as it often identifies regions of broad tropical moisture

transport as ARs. In contrast, the “lora” method becomes more efficient

at these latitudes, since it requires that IVT exceed the climatological

mean by 100 kg m−1 s−1. Finally, AR efficiency using the “mundhenk”

and “tempest” methods, which are based on IVT ≥ 94th percentile of

the anomalies above the climatology and IVT ≥ 250 kg m−1 s−1, respectively, are relatively steady across

all latitudes.

In summary, this section shows that most global methods used within ARTMIP broadly reproduce the clas-

sic results of Zhu and Newell (1998) in terms of AR size and significance for global water vapor transport.

3.6. Spread Among Methods

This section explores the relative difference between results for each individual method and the all‐

method median for AR frequency, the month of maximum AR frequency, and the seasonal range of

AR frequency (Figure 15). Results are presented along seven selected transects: the Pacific Northwest

(PNW; 41–52.5°N), Northern California (NorCal; 35–41°N), Southern California (SoCal; 32–35°N), the

interior western United States (WUS_In; 32–54°N), South America (SAmer; 18–56°S), the United

Figure 13. AR seasonality (month of maximum frequency) of ARTMIP

methods for selected transects (a) along the North American West Coast,

(b) through interior western North America, and (c) along the European

West Coast. Note that some methods are only available over certain regions.

Color shading indicates the number of methods for which a given month is

the month of maximum AR frequency at each latitude.
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Kingdom (UK; 49–60°N), and Iberia (Ib; 35–48°N). This analysis is fairly exhaustive, and a full descrip-

tion of every aspect would be very lengthy, so this section focuses on the highlights. This analysis offers

some insight as to which methods produce results closer to the median, and which methods produce

results further from the median, perhaps even being characterized as outliers. Here, relative difference

for a given region and given method is calculated as the difference between a given method and the

all‐method median normalized by the all‐method median.

For AR frequency, the methods closest (lighter color shading) to the all‐method median (<±36%) are

“Goldenson,” “Mundhenk,” “Payne,” and “Shields,” whereas the methods furthest (darker color shading)

from the all‐method median (>±60%) are “CONNECT700,” “Gershunov,” “Guan_Waliser,” “PNNL2_lq,”

and “Rutz” (Figure 15, top). Generally, the methods closest to the all‐method median are relative methods,

with the exception of “Goldenson,” whereas the methods furthest from the all‐method median are absolute

methods, with the exception of “Guan_Waliser.” This breakdown by absolute/relative is not too surprising

since absolute methods tend to accentuate climatological differences while relative methods tend to dimin-

ish them. Of those methods furthest from the median, the two methods identifying much lower AR fre-

quency are “CONNECT700,” which uses a high IVT threshold of 700 kg m−1 s−1, and “PNNL2_lq,”

which has a number of restrictive criteria (Table 1). The three methods identifying much higher AR fre-

quency are “Gershunov” and “Rutz,” which have similar and less restrictive criteria, and

“Guan_Waliser,” which also has fairly low criteria (85% climatological IVT) for a relative method. It is

Figure 14. ARmean area (top), poleward IVT (center), and “efficiency” (bottom) of the ARs identified and tracked by the

various ARTMIP methods.
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worth noting that most methods are relatively far from the median for AR frequency along the transect

through the interior western United States, which results partly from differences in how methods assess

ARs over complex terrain, and partly from calculating percentage differences between small numbers.

Another point of interest is the rather notable differences in the three “Brands” methods, which shows

that relatively minor changes to the AR identification method (e.g., the threshold percentiles) can

significantly alter results. Finally, the regional methods “Lavers,” “Ramos,” and “Viale,”which are available

over the United Kingdom, Iberia, and Chile, respectively, all produce a lower AR frequency than the median

(i.e., global methods) over these regions. One possible explanation for this interesting result is that regional

methods are more finely tuned to their respective areas, and that this is manifested as more restrictive

criteria. For example, both “Lavers” and “Ramos” use time‐dependent percentiles based on climatological

IVT, and “Viale” imposes the restriction that an AR must be associated with a frontal system. The machine

learning technique, “TDA_ML,” produces AR frequencies below the median, possibly because the algorithm

Figure 15. Diagrams showing the relative difference of results from each ARTMIP method to the all‐method median for

themetrics of annual (top) AR frequency, (center) month of peak AR frequency, and (bottom) seasonality (or range) of AR

frequency. Results are shown for coastal transects of the Pacific Northwest (PNW), Northern California (NorCal),

Southern California (SoCal), the interior western United States (WUS_In), South America (SAmer), the United Kingdom

(UK), and Iberia (Ib).
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employed byMuszynski et al. (2019) exhibits a fairly strong resolution‐dependent decrease in the “sensitivity

score” (the proportion of identified ARs that are correctly identified) as resolution increases, with over 25%

of features being misclassified (relative to their training data set) as non‐ARs at high resolution. Muszynski

et al. (2019) hypothesize that this is due to an interaction between the decrease in smoothness of

the IWV field as resolution increases and the underlying topology‐based method that they use to identify

potential ARs.

The month of maximum AR frequency is also examined (Figure 15, middle), and the following examples

assist with interpretation: the median month of maximum AR frequency over the United Kingdom is

September (i.e., peak month of 9), whereas for “CONNECT700,” it is October (i.e., peak month difference

of 1). Similarly, the median month of maximum AR frequency over SoCal is February (i.e., peak month of

2), whereas for “Goldenson,” it is December (i.e., peak month difference of −2). In many cases, there is

no difference between the all‐method median and the month of maximum AR frequency identified by most

methods, though there are some notable exceptions. For SAmer, both the “Guan_Waliser” and “Viale”

methods, the latter of which is focused on this region, feature a month of maximum frequency 4+ months

later than the median of February. This effectively means that whereas most methods are identifying the

maximum in Austral Summer, these methods identify the maximum in Austral Winter, which is possible

because the storm track in this region is less seasonally variable than over the Northern Hemisphere (e.g.,

Trenberth, 1991). The “Shields” method has a tendency to identify frequency maxima a few months later

than the median over nearly every region with the exception of SoCal, and this may be due to the tendency

of this method to detect only the stronger storms, typically in midwinter, when the eddy‐driven jet is further

south. Only the “Lora” and “Tempest” methods show no deviations from the median over all regions,

though a few other methods come close.

The third metric assessed here is the seasonality (i.e., range) of AR frequency (Figure 15, top), and many

results are similar to those for AR frequency itself. The methods closest (lighter color shading) to the all‐

method median (<±30%) are “Brands_v1,” “Goldenson,” “Mundhenk,” and “Payne,” the latter three of

which are all close to the median for AR frequency as well (Figure 15, top). The methods furthest (darker

color shading) from the all‐method median (>±40%) are “CONNECT700,” “PNNL1_hagos,” “PNNL2_lq,”

“Rutz,” “Shields,” and “TDA_ML.” As with AR frequency, the methods closest to the all‐method median

are relativemethods, with the exception of “Goldenson,” whereas the methods furthest from the all‐method

median are more mixed. Of those methods furthest from the median, the four methods identifying much

weaker seasonality are “CONNECT700” and the “PNNL” methods, which are both quite restrictive, and

the machine learning technique, “TDA_ML.” The two methods identifying much stronger seasonality are

“Rutz” and “Shields,” the latter of which features a larger range in AR frequency across most regions, despite

having a smaller AR frequency in a few of them. As with AR frequency, most methods are relatively far from

the median for the range in AR frequency along the transect through the interior western United States. Of

the global methods, “Lora_global” and “Rutz” exhibit a stronger seasonality over all regions, whereas

“CONNECT700” exhibits a weaker seasonality over all regions except SAmer. As with AR frequency, the

regional methods “Lavers,” “Ramos,” and “Viale” all produce a weaker seasonality than the median (i.e.,

global methods) over their respective regions.

For both the AR frequency and the seasonality (i.e., range) of AR frequency, it is notable that each method

generally exhibits either a positive or a negative relative difference from the median across all transects.

Exceptions to this generalization are most commonly noted along the interior western U.S. transect, which

is the only one located amidst complex topography far from a coast. Hence, the ARTMIP methods used to

identify ARs do not seem particularly sensitive to the region in which they are employed.

4. Discussion

Results based on the ARTMIP methods have been described in terms of “clusters,” which are groupings of

methods that approach AR identification and tracking similarly in a few critical ways. These clusters differ-

entiate between methods with very different approaches, and often very different results, without knowing

the nuances of each individual method within the cluster. The three cluster pairs this text has focused on, as

discussed in section 2, are absolute/relative, global/regional, and the more subjectively defined less/more

restrictive. The subdivision of relative methods into latitude‐dependent and latitude‐independent relative
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methods has also been noted. There are many other cluster pairs (e.g., length/no length, or time‐slicing/time‐

stitching) that have been omitted from this study in the interest of brevity. In each of these cluster pairs, both

clusters feature advantages and disadvantages, some of which are discussed below.

The absolute and relative clusters are perhaps the most fundamentally different in their approach to identify-

ing ARs. One key advantage of absolute methods is that they ensure a minimum physical threshold is met

before features are identified as ARs, which can be useful when considering only stronger events. Some

methods, such as “CONNECT700” (threshold IVT ≥ 700 kg m−1 s−1), are designed to consider only the

strongest events. Furthermore, ARs identified following an absolute method are sometimes comparable

across regions, provided the appropriate threshold is carefully chosen to pursue specific applications. In that

regard, a relative method might be particularly useful when a single absolute threshold does not work well

across all the regions of interest—an example being over polar regions, where a temperature‐adjusted (i.e.,

climatology‐dependent) AR threshold has proven useful in detecting AR landfalls (Gorodetskaya et al.,

2014). Another good example is the lengthy southwestern coast of South America, which stretches from

18–56°S and encompasses a wide range of climatological IVT values. Some methods combine relative and

absolute thresholds to leverage the advantages of each. For example, the latitude‐dependent relative

“Guan_Waliser” method combines a relative threshold (IVT ≥ 85th percentile of climatological IVT) with

an absolute threshold (IVT ≥ 100 kg m−1 s−1), the latter of which eliminates extremely weak features, par-

ticularly closer to the poles.

Another key advantage of relativemethods is that they facilitate the pursuit of AR science in regions where it

is more difficult to do so using absolutemethods. For example, imagine one wants to investigate the impacts

associated with the inland‐penetrating AR depicted in Figure 2. The “Guan_Waliser”method may be a good

choice since it identifies a broad inland region as being located within the AR (other relative methods have

more restrictive criteria and identify less area within the AR), and many impacts within this region could be

AR related. Of course, it may be that in some cases this region is too broad, and choosing an absolutemethod

that still highlights the inland penetration of the AR, but focuses more closely along its axis or region of core

intensity, is appropriate. These are very difficult decisions that need to be made based on the specifics of the

question being asked.

Climate change poses yet another point for consideration. As atmospheric temperature and moisture

increase following the Clausius‐Clapeyron equation, IWV will increase, and IVT will increase (unless

increases in water vapor are offset by decreases in wind). As the background moisture field increases, abso-

lute methods using thresholds based on the current climatology may struggle to distinguish between this

increased backgroundmoisture and coherent ARs resulting from dynamical processes. Hence, relativemeth-

ods using thresholds based on climatology may be better suited to assess relative changes in ARs due to

dynamic and thermodynamic factors between our current climate and that of the future. For example,

one can compare two relative methods—one in which the percentile threshold is applied to the respective

climatology of the present and future (to isolate the dynamic factor) and one in which the percentile thresh-

old is applied to the present climatology and then the corresponding absolute threshold is used in the future

(hence including both thermodynamic and dynamic factors)—to separate the dynamic and thermodynamic

effects. On the other hand, impacts are generally not considered in relative terms, and one must be careful in

this regard. Forthcoming work by the ARTMIP community will address this issue in depth by examining

ARTMIP methods under future climate scenarios, and data processing is already underway.

Another important set of clusters examined in this study is that of global and regional methods. One key

advantage of globalmethods is simply the global coverage of results, unlike regionalmethods, which are lim-

ited. Another, more speculative, advantage of global methods is that their development may benefit from

using a global perspective rather than a focus on one region, where ARs may frequently take on character-

istics not observed in most locales. In contrast, one key advantage of regional methods is that they are

specifically tuned to ARs and AR‐related impacts over a specific region and hence may be the most useful

for answering key science questions particular to those regions.

A final distinctionmade, qualitatively, throughout this study is that between less restrictive andmore restric-

tive methods—a very subjective distinction based on their criteria, and usually only useful when comparing

one method to another. One key advantage of less restrictive methods is that they facilitate AR science and

impacts in regions where ARs are very rare using more restrictive methods (e.g., the usefulness of
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“Gorodetskaya” over polar regions, and “Guan_Waliser” or “Rutz” over continental interiors). Of course,

the disadvantage is the reverse—less restrictive methods may result in the attribution of impacts to ARs,

when in fact the associated dynamics and vapor fluxes are very weak, or merely remnants of a once‐robust

AR. Researchers need to carefully weigh the advantages and disadvantages of their approach to answering a

given scientific question. It is important to remember that in this paper, distinctions between less restrictive

andmore restrictive methods can really only be made within a cluster (work is underway to more objectively

quantify restrictiveness across clusters). For example, Figure 6 (middle) makes every method seem restric-

tive in comparison to the less restrictive relative “Guan_Waliser” method, when in fact there are also more

restrictive relative methods (e.g., “Payne”), less restrictive absolute methods (e.g., “Rutz”) and more restric-

tive absolute methods (e.g., “Tempest”). In the case of “Tempest”, greater restrictiveness arises because

objects are required to remain long and thin across time, whereas ARs tend to spread out as they encounter

land. Finally, one key advantage of using more restrictive methods is that they highlight only the strongest

events, which will likely (though not always) produce the most severe impacts.

A number of ARTMIPmethods are based on the identification of features meeting certain geometric criteria,

throughout which either IVT ≥ 250 kg m−1 s−1 (e.g., “Brands,” “Gershunov,” “Rutz,” and “Tempest”) or

IWV ≥ 20 mm (e.g., “Goldenson,” “Hagos,” “Ralph,” and “Wick”). In addition, the recently developed AR

scale, described by Ralph et al. (2019), establishes IVT ≥ 250 kg m−1 s−1 as the minimum threshold required

to categorize an event as an AR. The AR science community increasingly recognizes the importance of water

vapor transport within ARs and now strongly favors IVT over IWV for diagnosing such features. Therefore,

IVT ≥ 250 kg m−1 s−1 seems to be a reasonable starting point. However, there are many cases in which IVT

of this magnitude will be primarily beneficial, and it becomes worthwhile to identify only stronger, more

hazardous ARs. This is one rationale for higher minimum thresholds such as 500 or 700 kg m−1 s−1, as used

in “CONNECT500” and “CONNECT700,” respectively. The rationale for a higher minimum threshold can

also be climatologically and/or regionally based, as is the case for the very high background moisture field

over the southeastern United States, a region in which 500 kg m−1 s−1 was used by Mahoney et al. (2016;

results not available for this study). It should also be noted that IVT thresholds below 250 kg m−1 s−1 can

be useful both in regions with climatologically lower IVT, and in cases where long‐duration, low‐intensity

IVT events may produce significant impacts.

A number of relative methods use thresholds based on IVT ≥ 85th percentile of climatological IVT, along

with an absolute IVT threshold that serves as a floor, or minimum IVT requirement, to identify features

as ARs (e.g., “Guan_Waliser,” “Lavers,” “Payne,” “Ramos,” and “Viale”). Still other relativemethods thresh-

old based on IVT exceeding daily climatology by some raw value such as 100 or 250 kg m−1 s−1 (e.g., “Lora”

and “Walton”), or use some other method (e.g. “Gorodetskaya,” “Mundhenk,” and “Shields”). Among these,

“Guan_Waliser” is the least restrictive due to a minimum IVT requirement of only 100 kg m−1 s−1, and this

causes its AR frequency (and results directly associated with AR frequency) to be clear outliers in polar

regions and continental interiors where IVT is climatologically low. That said, it is an extremely useful out-

lier, because it often identifies regions downstream of mountain barriers as within an AR, whereas most

other methods do not. It can be argued, based on the AMS Glossary definition, that these regions are not

necessarily located within the spatial footprint of an AR. However, the usefulness is found in identifying

and attributing impacts to the ARs likely responsible for them, even if the spatial footprints of these ARs,

and their impacts, do not directly overlap. The “Gorodetskaya” method, from which results were not avail-

able for this study, also identifies ARs (and AR‐related impacts) in regions of very low IWV/IVT, having been

designed specifically to identify intrusions of anomalouslymoist air into polar regions. To bemore consistent

with the AMS Glossary definition, such features could potentially be described as “decaying” ARs, or by

some other term, which indicates that they are no longer associated with the extratropical cyclones

and/or dynamic processes critical to their genesis.

Quantifying the uncertainty in AR‐related impacts (and how they may change in the future), most of which

are in some way related to precipitation, is a major motivation behind ARTMIP. Some sense of impacts can

likely be inferred from the results for AR climatology highlighted in this study. However, a more complete

assessment of the advantages and disadvantages associated with individual methods and with certain clus-

ters will be possible only after some quantification of the uncertainty in AR‐related precipitation takes place.

Future ARTMIP work plans to address this subject.
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Finally, ARTMIP expects to produce a number of new results and publications over the coming years. The

most salient of these is a pair of Tier 2 summary papers, which will present results from all ARTMIPmethods

applied to output from a high resolution version of the Community Atmospheric Model (Wehner et al. 2014)

and available CMIP5 models under historical and RCP8.5 forcing scenarios. Numerous studies (e.g.,

Espinoza et al., 2018; Gao et al., 2016; Shields & Kiehl, 2016a, 2016b; Warner et al., 2015) have already exam-

ined changes in AR climate and impacts under climate change scenarios, but, as with studies of current AR

climate and impacts, these suffer from uncertainty that arises due to the usage of different AR identification

and tracking methods. The Tier 2 summary papers will quantify these uncertainties. In addition, ARTMIP

participants have already planned a number of studies on topics ranging from quantifying differences in

ARs based on the reanalysis product used to trends in ARs over time, and a variety of other topics.

5. Recommendations

The results presented in this study indicate a large degree of uncertainty in the climatological characteristics

of ARs resulting from differences in themethods used to identify and track them. This uncertainty is reduced

within “clusters” of methods that share similar approaches to AR identification and tracking, but even then,

uncertainty arises due to differences in thresholding variable and magnitude, geometric considerations, and

other criteria. As stated in the introduction, this should not be surprising—each method was developed to

answer a different question, and different answers naturally arise. This diversity benefits the community

in that it offers a wide variety of approaches to answering new questions that may arise. Nevertheless, the

AR science community will be interested in recommendations regarding which of these methods or clusters

best answers their questions.

Here, the authors provide generalized recommendations regarding the types of AR identification and

tracking methods that are most advantageous for certain applications, and ideas regarding future

method development.

The authors generally recommend absolute methods for studies focused on the relationship between ARs

and large‐scale atmospheric patterns, dynamic processes, and physical mechanisms for our current climate

in the midlatitudes (~30–60°N/S). The AR science community increasingly recognizes these features, parti-

cularly as they relate to extratropical cyclones, as playing a key role in defining the AR, as well as intense

water vapor transport (see the AMS Glossary definition). These methods have the advantage of being based

on fixed, observable thresholds (e.g., 20 mm of IWV or 250 kg m−1 s−1 of IVT), which are well suited to

answer questions related to AR dynamics such as their growth, maintenance, and decay. Hence, these meth-

ods are preferred at midlatitudes, where the dynamics associated with extratropical cyclones typically drive

the life cycle of ARs. Absolute methods are also recommended for most weather forecasting applications

because they are straightforward and intuitive, though forecasts based on anomalies, percentiles, or return

intervals can be very effective in communicating to more knowledgeable audiences. Finally, it must be

remembered that AR‐related impacts can occur well outside the spatial footprint outlined by absolutemeth-

ods, particularly when the threshold used is more restrictive.

The authors generally recommend relative methods for studies focused on attributing a wide variety of

hazards (e.g., heavy rainfall, flooding, and wind) to ARs. These methods have the advantage, as was

described at length above in reference to the “Guan_Waliser” method, of placing regions far from the core

of an AR within the spatial footprint of the AR, which facilitates the attribution of impacts within that foot-

print to the AR itself. These methods are preferred at tropical and subtropical latitudes, because they often

more effectively filter the broad regions of IVT that occur throughout the tropics. They are also preferred at

polar latitudes, because they often identify features that are climatologically anomalous, despite having low

IWV or IVT values relative to midlatitude features. Hence, these methods are well suited to answer questions

related to the occurrence and impacts of climatologically anomalousmoisture surges around the globe, but it

must be remembered that some results may not translate well from one region to another.

The authors, at this time, defer recommendations regarding studies involving climate change until the Tier 2

analyses have been completed. It is likely that there will be advantages and disadvantages to both absolute

and relative methods, just as there will be to both sides of any number of other cluster pairs.
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The authors recommend more restrictive methods for studies focusing on dynamic processes related to the

core of the AR and for studies focused on a subset of generally stronger ARs, which more restrictive methods

will select. For studies related to the attribution of precipitation and other impacts to ARs, the authors

recommend carefully considering the goals and objectives of each study. One advantage of less restrictive

methods is that identified ARs are associated with larger spatial footprints, which aid in evaluating all

impacts potentially related to ARs. However, these larger footprints can cause the average impacts associated

with ARs to be quite low, which could prove misleading to the public. Hence, more restrictive methods may

be more suitable for highlighting the extreme impacts that occur typically along the axis of greatest IVT

within an AR.

The authors also recommend that studies focusing on a particular region should consider basing their ana-

lyses on regional methods developed to assess that region. These methods may take into account important

regional characteristics of ARs and their impacts, whereas those focused on other regions, or global methods,

may not. Of course, previously developed methods will not be sufficient to answer certain questions, and yet

other studies might benefit from using global methods, which facilitate comparisons between different parts

of the world.

The authors recommend a few directions for future work in the area of AR identification and tracking

method development that would benefit the AR science community. The AMS Glossary defines an AR as

“a long, narrow, and transient corridor of strong horizontal water vapor transport that is typically associated

with a low‐level jet stream ahead of the cold front of an extratropical cyclone.” The AR science community is

increasingly recognizing the key role of dynamic processes in terms of defining the AR (personal correspon-

dence with participants and observation of presentations at 2018 International Atmospheric Rivers

Conference). Hence, the first recommendation is to emphasize methods based on IVT, which incorporates

wind as well as moisture, over those based on IWV. In this regard, wind serves as a proxy variable for a

number of dynamic processes, and is fundamental to the moisture transport associated with ARs. The

second recommendation is development of an interactive online tool that allows researchers to compare

multiple methods, along with other relevant layers (e.g., IWV, IVT, geopotential height, temperature, and

precipitation), in real time. This tool would assist researchers in determining whichmethods are most useful

for their specific applications. The third recommendation is that future work should consult the ARTMIP

archive and literature provided online. This provides future studies with the contextual background of what

methods already exist, which studies have been performed, and how new results best fit into this emerging

field of study.

ARTMIP has produced, and will continue to produce, an astonishing quantity of data that can be mined to

improve our understanding of ARs and their impacts. The authors anticipate, and indeed already plan, a

number of studies that will address various topics, and others are encouraged to do the same. The general-

ized recommendations above are the authors' best guidance at this time, but they are by nomeans a panacea.

While we think that these recommendations are useful, the history of science suggests that the most inter-

esting results will arise only when they are ignored. We welcome those developments.

Data Availability Statement

All ARTMIP data (including the MERRA‐2 source data) are available from the Climate Data Gateway,

DOI:10.5065/D6R78D1M (ARTMIP Tier 1 Catalogues), DOI: 10.5065/D62R3QFS (MERRA‐2 source data).
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