
The Atomos Transactional Programming Language Brian D. Carlstrom

The Atomos Transactional 

Programming Language

Brian D. Carlstrom, Austen McDonald, Hassan Chafi, 

JaeWoong Chung, Chi Cao Minh,

Christos Kozyrakis, Kunle Olukotun

Computer Systems Laboratory

Stanford University

http://tcc.stanford.edu



The Atomos Transactional Programming Language 2

Transactional Memory

• Reasons to use Transactional Memory (TM)

� Replace mutual exclusion with concurrent transactions

� Remove challenges to programming with locks 

• Challenges

� Long running transactions without lower level violations

• Easier to use one big transaction than having to split into chunks

• Application libraries and runtimes want to update encapsulated state

� Transactional conditional waiting with hardware support

• Software transactional memory (STM) systems have an arbitrary 

number of transactional contexts in memory, allowing some to be idle

• Hardware transactional memory (HTM) systems have a fixed number 

of transactional contexts in silicon, don’t want to busy wait



The Atomos Transactional Programming Language 3

The Atomos Programming Language

• Atomos derived from Java

� atomic replaces synchronized

� retry replaces wait/notify/notifyAll

• Atomos design features

� Open nested transactions
• open blocks committing nested child transaction before parent

• Useful for language implementation but also available for applications

� Watch Sets
• Extension to retry for efficient conditional waiting on HTM systems

• Atomos implementation features

� Violation handlers

• Handle expected violations without rolling back in all cases

• Not part of the language, only used in language implementation



The Atomos Transactional Programming Language 4

synchronized versus atomic

Java
...

synchronized (hashMap){

hashMap.put(key,value);

}

...

Atomos
...

atomic {

hashMap.put(key,value);

}

...

Transactional memory advantages

• No association between a lock and shared data

• Non-conflicting operations can proceed in parallel



The Atomos Transactional Programming Language 5

The counter problem

Application
atomic {

...

this.id = getUID();

...

}

static long getUID () {

atomic {

globalCounter++;

}}

JIT Compiler
// method prolog

...

invocationCounter++;

...

// method body

...

// method epilogue

...

• Lower-level updates to global data can lead to violations

• General problem not confined to counters:

� Application level caching

� Cooperative scheduling in virtual machine



The Atomos Transactional Programming Language 6

Open nested solution to the counter problem

• Benefits

� Violation of counter just replays open 

nested transaction

� Open nested commit discards child’s 

read-set preventing later violations

• Issues

� What happens if parent rolls back 

after child commits?

� Okay for statistical counters and UID 

� Not okay for SPECjbb2000 object 

allocation counters

• Need to some way to compensate if 

parent rolls back

• Solution

� Wrap counter update in 
open nested transaction

atomic {

...

this.id = getUID();

...

}

static long getUID () {

open {

globalCounter++;

}

}



The Atomos Transactional Programming Language 7

Transaction Commit and Abort Handlers

• Programs can specify callbacks at end of transaction

� Separate interfaces for commit and abort outcomes
public interface CommitHandler { boolean onCommit();}

public interface AbortHandler { boolean onAbort ();}

� DB technique for delaying non-transactional operations

� Harris brought the technique to STM for solving I/O problem

• See Exceptions and side-effects in atomic blocks. 

• Buffer output until commit, rewind input on abort

� In Atomos, commit of open nested transaction can register 

abort handler for parent transaction

• This allows for compensating transaction for object counter example



The Atomos Transactional Programming Language 8

wait/notifyAll versus retry

Java
public int get (){

synchronized (this) {

while (!available)

wait();

available = false;

notifyAll();

return contents;}}

Atomos
public int get (){

atomic {

if (!available)

retry;

available = false;

return contents;}}

Transactional memory advantages

• Automatic reevaluation of available condition

• No need for explicit notifyAll



The Atomos Transactional Programming Language 9

Transactional Conditional Waiting

• When condition false, wait until 

read set violated

� Leverage violation detection for 

efficient wakeup

� When violation happens

• Rollback waiting transaction

• Move thread from waiting to ready

• Approach scales well in STM

� No practical limit on number of 

transactional contexts

• However HTM has limited 

number of hardware contexts

� Can we overcome this issue?

Consumer Producer

available? No

available=true

commit

available? Yes!

violation

rollback



The Atomos Transactional Programming Language 10

xfer read-set

Hardware Transactional Conditional Waiting

• Instead of using one HW 
context per waiting 
transaction

� Merge waiting read sets 
into one shared context

• Our VM already has 
dedicated VM scheduler 
thread

� Use as shared context

• Challenges

� How can we 
communicate read set 
between threads?

� How can shared context 
handle violations for 
others?

SchedulerConsumer Producer

available? No

a
v
a
i
l
a
b
l
e
=
t
r
u
e

c
o
m
m
i
t

available? Yes!

violation

rollback

B

A

A

reschedule A



The Atomos Transactional Programming Language 11

Violation Handlers

• Violation Handlers solve both challenges

� Thread can register handler for violation callbacks
public interface ViolationHandler {

boolean onViolation (Address violatedAddress);}

• How can we communicate read set between threads?

� Use open nested transaction to send command to scheduler

� Scheduler ViolationHandler receives commands

• How can shared context handle violations for others?

� Scheduler maintains map of addresses to interested threads

� non-command violation moves threads from waiting to ready



The Atomos Transactional Programming Language 12

Common case transactional waiting

• Issues with transferring the 

read-set on retry

� Need HW interface to 

enumerate read-set

� Want to minimize size the 

number of addresses

� Want to prevent overflow of 

HW transactional context

• Solution

� Program usually only cares 

about changes to a small 

subset of its read-set

� This watch-set will usually 

only be a single address

public int get (){

atomic {

if (!available){

watch available;

retry;}

available = false;

return contents;}}



The Atomos Transactional Programming Language 13

Hardware and Software Environment

• The simulated chip multiprocessor TCC Hardware (See PACT 2005)

For detailed semantics of open nesting, handlers, etc., see ISCA 2006

• Atomos built on top of Jikes RVM 

� Derived from Jikes RVM 2.4.2+CVS using GNU Classpath 0.19

� All necessary code precompiled before measurement

� Virtual machine startup excluded from measurement

16 bytesBus width

8 entries fully associativeVictim Cache

3 pipelined cyclesTransfer Latency

100 cycles latency, up to 8 outstanding transfersMain Memory

8MB, 8-way, 16 cycles hit timeL2 Cache

3 pipelined cyclesBus arbitration

64-KB, 32-byte cache line, 4-way associative, 1 cycle latencyL1

1-32 single issue PowerPC coreCPU



The Atomos Transactional Programming Language 14

Transactions keep data structures simple

• TestHashtable

� 50%-50% mix of reads and 
write to Map implementations

• Comparison of Map performance 

� Java HashMap
• No built in synchronization

• Collections.synchronizedMap

� Java Hashtable
• Singe coarse lock

� Java ConcurrentHashMap
• Fine grained locking

� Atomos HashMap
• Simple HashMap with transactions 

scales better than than
ConcurrentHashMap

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16 32

CPUs

S
p
e
e
d
u
p

Atomos HashMap
Java ConcurrentHashMap

Java HashMap
Java Hashtable

`



The Atomos Transactional Programming Language 15

Transactional conditional waiting evaluation

• TestWait benchmark

� Pass tokens in circle

� Uses blocking queues

� 32 CPUs, vary token count

• Purpose

� Used by Harris and Fraser to 

measure Conditional Critical 

Region (CCR) performance

• Results

� Atomos similar scalability to 

Java with few tokens

� As token count nears CPU 

count, violation detection short 

circuits wait code, avoiding 

context switch overhead

0

20

40

60

80

100

120

140

160

1 2 4 8 16 32

Tokens

S
p
e
e
d
u
p

Atomos
Java

`



The Atomos Transactional Programming Language 16

The Atomos Programming Language

• Atomos derived from Java

� Transactional Memory for concurrency
• atomic blocks define basic nested transactions

• Removed synchonized

� Transaction based conditional waiting
• Derivative of Conditional Critical Regions and Harris retry

• Removed wait, notify, and notifyAll

• Watch sets for efficient implementation on HTM systems

� Open nested transactions
• open blocks committing nested child transaction before parent

• Useful for language implementation but also available for applications

� Violation handlers

• Handle expected violations without rolling back in all cases

• Not part of the language, only used in language implementation

• Finally, atomos is the classical Greek word for indivisible

� “a” prefix means “not” and “tomos” root means “cuttable”



The Atomos Transactional Programming Language Brian D. Carlstrom

Questions?


