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Transactional Memory

• Reasons to use Transactional Memory (TM)

� Replace mutual exclusion with concurrent transactions

� Remove challenges to programming with locks 

• Challenges

� Long running transactions without lower level violations

• Easier to use one big transaction than having to split into chunks

• Application libraries and runtimes want to update encapsulated state

� Transactional conditional waiting with hardware support

• Software transactional memory (STM) systems have an arbitrary 

number of transactional contexts in memory, allowing some to be idle

• Hardware transactional memory (HTM) systems have a fixed number 

of transactional contexts in silicon, don’t want to busy wait



The Atomos Transactional Programming Language 3

The Atomos Programming Language

• Atomos derived from Java

� atomic replaces synchronized

� retry replaces wait/notify/notifyAll

• Atomos design features

� Open nested transactions
• open blocks committing nested child transaction before parent

• Useful for language implementation but also available for applications

� Watch Sets
• Extension to retry for efficient conditional waiting on HTM systems

• Atomos implementation features

� Violation handlers

• Handle expected violations without rolling back in all cases

• Not part of the language, only used in language implementation
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synchronized versus atomic

Java
...

synchronized (hashMap){

hashMap.put(key,value);

}

...

Atomos
...

atomic {

hashMap.put(key,value);

}

...

Transactional memory advantages

• No association between a lock and shared data

• Non-conflicting operations can proceed in parallel
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The counter problem

Application
atomic {

...

this.id = getUID();

...

}

static long getUID () {

atomic {

globalCounter++;

}}

JIT Compiler
// method prolog

...

invocationCounter++;

...

// method body

...

// method epilogue

...

• Lower-level updates to global data can lead to violations

• General problem not confined to counters:

� Application level caching

� Cooperative scheduling in virtual machine
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Open nested solution to the counter problem

• Benefits

� Violation of counter just replays open 

nested transaction

� Open nested commit discards child’s 

read-set preventing later violations

• Issues

� What happens if parent rolls back 

after child commits?

� Okay for statistical counters and UID 

� Not okay for SPECjbb2000 object 

allocation counters

• Need to some way to compensate if 

parent rolls back

• Solution

� Wrap counter update in 
open nested transaction

atomic {

...

this.id = getUID();

...

}

static long getUID () {

open {

globalCounter++;

}

}
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Transaction Commit and Abort Handlers

• Programs can specify callbacks at end of transaction

� Separate interfaces for commit and abort outcomes
public interface CommitHandler { boolean onCommit();}

public interface AbortHandler { boolean onAbort ();}

� DB technique for delaying non-transactional operations

� Harris brought the technique to STM for solving I/O problem

• See Exceptions and side-effects in atomic blocks. 

• Buffer output until commit, rewind input on abort

� In Atomos, commit of open nested transaction can register 

abort handler for parent transaction

• This allows for compensating transaction for object counter example
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wait/notifyAll versus retry

Java
public int get (){

synchronized (this) {

while (!available)

wait();

available = false;

notifyAll();

return contents;}}

Atomos
public int get (){

atomic {

if (!available)

retry;

available = false;

return contents;}}

Transactional memory advantages

• Automatic reevaluation of available condition

• No need for explicit notifyAll
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Transactional Conditional Waiting

• When condition false, wait until 

read set violated

� Leverage violation detection for 

efficient wakeup

� When violation happens

• Rollback waiting transaction

• Move thread from waiting to ready

• Approach scales well in STM

� No practical limit on number of 

transactional contexts

• However HTM has limited 

number of hardware contexts

� Can we overcome this issue?

Consumer Producer

available? No

available=true

commit

available? Yes!

violation

rollback
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xfer read-set

Hardware Transactional Conditional Waiting

• Instead of using one HW 
context per waiting 
transaction

� Merge waiting read sets 
into one shared context

• Our VM already has 
dedicated VM scheduler 
thread

� Use as shared context

• Challenges

� How can we 
communicate read set 
between threads?

� How can shared context 
handle violations for 
others?

SchedulerConsumer Producer

available? No
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Violation Handlers

• Violation Handlers solve both challenges

� Thread can register handler for violation callbacks
public interface ViolationHandler {

boolean onViolation (Address violatedAddress);}

• How can we communicate read set between threads?

� Use open nested transaction to send command to scheduler

� Scheduler ViolationHandler receives commands

• How can shared context handle violations for others?

� Scheduler maintains map of addresses to interested threads

� non-command violation moves threads from waiting to ready
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Common case transactional waiting

• Issues with transferring the 

read-set on retry

� Need HW interface to 

enumerate read-set

� Want to minimize size the 

number of addresses

� Want to prevent overflow of 

HW transactional context

• Solution

� Program usually only cares 

about changes to a small 

subset of its read-set

� This watch-set will usually 

only be a single address

public int get (){

atomic {

if (!available){

watch available;

retry;}

available = false;

return contents;}}
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Hardware and Software Environment

• The simulated chip multiprocessor TCC Hardware (See PACT 2005)

For detailed semantics of open nesting, handlers, etc., see ISCA 2006

• Atomos built on top of Jikes RVM 

� Derived from Jikes RVM 2.4.2+CVS using GNU Classpath 0.19

� All necessary code precompiled before measurement

� Virtual machine startup excluded from measurement

16 bytesBus width

8 entries fully associativeVictim Cache

3 pipelined cyclesTransfer Latency

100 cycles latency, up to 8 outstanding transfersMain Memory

8MB, 8-way, 16 cycles hit timeL2 Cache

3 pipelined cyclesBus arbitration

64-KB, 32-byte cache line, 4-way associative, 1 cycle latencyL1

1-32 single issue PowerPC coreCPU
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Transactions keep data structures simple

• TestHashtable

� 50%-50% mix of reads and 
write to Map implementations

• Comparison of Map performance 

� Java HashMap
• No built in synchronization

• Collections.synchronizedMap

� Java Hashtable
• Singe coarse lock

� Java ConcurrentHashMap
• Fine grained locking

� Atomos HashMap
• Simple HashMap with transactions 

scales better than than
ConcurrentHashMap
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Transactional conditional waiting evaluation

• TestWait benchmark

� Pass tokens in circle

� Uses blocking queues

� 32 CPUs, vary token count

• Purpose

� Used by Harris and Fraser to 

measure Conditional Critical 

Region (CCR) performance

• Results

� Atomos similar scalability to 

Java with few tokens

� As token count nears CPU 

count, violation detection short 

circuits wait code, avoiding 

context switch overhead
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The Atomos Programming Language

• Atomos derived from Java

� Transactional Memory for concurrency
• atomic blocks define basic nested transactions

• Removed synchonized

� Transaction based conditional waiting
• Derivative of Conditional Critical Regions and Harris retry

• Removed wait, notify, and notifyAll

• Watch sets for efficient implementation on HTM systems

� Open nested transactions
• open blocks committing nested child transaction before parent

• Useful for language implementation but also available for applications

� Violation handlers

• Handle expected violations without rolling back in all cases

• Not part of the language, only used in language implementation

• Finally, atomos is the classical Greek word for indivisible

� “a” prefix means “not” and “tomos” root means “cuttable”
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Questions?


