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The attentional blink (J. E. Raymond, K. L. Shapiro, & K. M. Arnell, 1992) refers to an apparent gap in

perception observed when a second target follows a first within several hundred milliseconds. Theoretical

and computational work have provided explanations for early sets of blink data, but more recent data

have challenged these accounts by showing that the blink is attenuated when subjects encode strings of

stimuli (J. Kawahara, T. Kumada, & V. Di Lollo, 2006; M. R. Nieuwenstein & M. C. Potter, 2006; C. N.

Olivers, 2007) or are distracted (C. N. Olivers & S. Nieuwenhuis, 2005) while viewing the rapid serial

visual presentation stream. The authors describe the episodic simultaneous type, serial token model, a

computational account of encoding visual stimuli into working memory that suggests that the attentional

blink is a cognitive strategy rather than a resource limitation. This model is composed of neurobiologi-

cally plausible elements and simulates the attentional blink with a competitive attentional mechanism that

facilitates the formation of episodically distinct representations within working memory. In addition to

addressing the blink, the model addresses the phenomena of repetition blindness and whole report

superiority, producing predictions that are supported by experimental work.
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Encoding information into working memory is a fundamental

part of our ability to interact effectively with the world. By

temporarily buffering information in a working memory store,

cognitive processes can continue to utilize stimuli that are no

longer available in the environment. However, there are limitations

to the rate at which we can sample visual stimuli for representation

in working memory. One key limitation of this encoding process

may be the rate at which discrete stimuli can be encoded into

discrete representations. When two visual displays are presented

within less than 100 ms of each other, behavioral evidence sug-

gests a failure to encode the two stimuli as separate events (All-

port, 1968; Shallice, 1964; cf. VanRullen & Koch, 2003). How-

ever, at temporal separations of 100–400 ms, a different limitation

is revealed; observers will often fail to report the second stimulus,

an effect known as the attentional blink (Raymond, Shapiro, &

Arnell, 1992).

According to a recently proposed computational model called

the simultaneous type, serial token (STST) account (Bowman &

Wyble, 2007), the attentional blink is a reflection of a mechanism

intended to divide working memory representations into discrete

tokens (i.e., episodic memory representations). In this view, form-

ing a token for a first target suppresses the selection of new target

stimuli to prevent the latter targets from being integrated with the

first target’s working memory representation. However, several

recent studies have provided evidence that challenges this view by

showing that observers can accurately report the identities of

several target items presented in direct succession without suffer-

ing an attentional blink (Kawahara, Kumada, & Di Lollo, 2006;

Nieuwenstein & Potter, 2006; Olivers, van der Stigchel, & Hulle-

man, 2007).

These results suggest that attention must use a more flexible

mechanism for mediating attentional deployment than that de-

scribed by STST. To accommodate these new findings, we pro-

pose the episodic simultaneous type, serial token (eSTST) model.

In the present study, we show that this revised model of temporal

attention and working memory is capable of explaining the recent

findings that challenged STST, addressing both the attentional

blink and prolonged sparing within the same model. In addition,

the model provides new predictions that suggest that the ability to

report the identities of several consecutive target items should

come at a cost to episodic distinctiveness. The results from three

experiments reported here show that this cost can be measured in

increased repetition blindness, order errors, and temporal conjunc-
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tions. Finally, we take advantage of the neurally inspired imple-

mentation of eSTST to predict neural activity that can be verified

at the single-neuron level in primate working memory experi-

ments.

Empirical Background

Rapid serial visual presentation (RSVP) has been used exten-

sively to study the temporal properties of visual perception (Chun

& Potter, 1995; Kanwisher, 1987; Potter, 1976; Raymond et al.,

1992; Reeves & Sperling, 1986; Weichselgartner & Sperling,

1987). In this paradigm, subjects view a sequence of rapidly

presented (e.g., 10-s) stimuli, generally at the center of a display,

with each item masking the one that came before it. Because each

item is rapidly masked, incoming information has to be encoded

rapidly or it will be lost. The attentional blink arises in such a

presentation when observers have to detect or identify two target

items embedded in an RSVP sequence of distractor items (e.g.,

Broadbent & Broadbent, 1987; Raymond et al., 1992). A common

version of such a dual-target paradigm is shown in Figure 1A. In

this task, the observer has to report the identities of two letters

embedded in an RSVP sequence of digits. The results from this

type of task typically show that Target 2 (T2) performance is

largely unimpaired if presented at Lag 1 (i.e., when T2 immedi-

ately follows Target 1 [T1]) but is sharply impaired at Lag 2 (i.e.,

with one intervening distractor) and recovers over the next several

hundred milliseconds.

The STST Model

The STST model is a neural network that describes the process

of extracting and then encoding specific targets from a temporal

stream of stimuli in a way that preserves their temporal order.

Types and tokens. STST is based on the premise that visual

working memory uses both types and tokens (e.g., Kanwisher,

1987; Mozer, 1989) operating in two stages (Chun, 1997b; Chun &

Potter, 1995). Token-based memory systems provide an episodic

context that allows encoding of temporal order and repetitions,

neither of which is easily realized in simpler buffer maintenance

accounts (Deco, Rolls, & Horwitz, 2004; see Bowman & Wyble,

2007, for a more extensive discussion).

Types constitute a semantically organized representational work

space within which visual input is analyzed to extract features,

objects, and concepts. However, types cannot represent instance-

specific (episodic) memories. In fact, types are not directly stored

in working memory at all; these nodes are active only during

encoding and retrieval. This facet of the model is critical in

permitting repetitions of an already stored item to be processed.

Tokens store episodic working memory representations. A sin-

gle stored token contains a pointer to a type, which can later be

used to retrieve the content of the memory by reactivating the type

node. This system inherently represents temporal order; any type

bound to Token 1 is considered to be encoded before a type bound

to Token 2.

Temporal attention. According to the STST model (Bowman

& Wyble, 2007), Lag 1 sparing and enhanced processing of the

T1 � 1 item (Chua, Goh, & Han, 2001) indexes a temporal

window of attentional enhancement that is triggered upon detec-

tion of T1. This window of attentional enhancement is considered

to reflect a similar mechanism as that involved in transient atten-

tion (Muller & Rabbitt, 1989; Nakayama & Mackeben, 1989;

Yeshurun & Carrasco, 1999; see also Nieuwenhuis, Gilzenrat,

Holmes, & Cohen, 2005; Shih, 2008). The brief episode of atten-

tional enhancement is reflected in the finding that detection and

identification of a masked visual target is substantially improved

when the target appears within about 50–150 ms of the onset of a

highly salient stimulus. Consistent with this interpretation of spar-

ing, Wyble, Bowman, and Potter (in press) showed that identifi-

cation of a categorically defined target that appears in a dynamic

display of distractor items is improved if the target appears within

a window of 200 ms or less from a preceding target. Further

support for this theory is suggested by the finding that sparing

occurs even when a distractor item is presented between two

RSVP targets, provided that the targets appear at a stimulus onset

asynchrony (SOA) of about 100 ms or less (Bowman & Wyble,

2007; Nieuwenhuis, Gilzenrat et al., 2005; Potter, Staub, &

O’Connor, 2002). Thus, sparing appears to reflect a spatiotempo-

rally constrained window of attentional enhancement that is de-

ployed in response to detection of a potentially relevant stimulus.

The transition from sparing to the attentional blink results from

the end of the initial transient attentional episode and the suppres-

sion of further attention until the T1 has been encoded. In partic-

ular, STST assumes that working memory encoding suppresses

transient attention to new information to protect the ongoing

processing of T1. Thus, transient attention elicited by T1 allows

both T1 and any shortly following T2 (e.g., Lag 1) to be selected

and encoded into short-term memory. However, once working

memory encoding of T1 is under way, the allocation of attention to

new inputs is suppressed, giving rise to the attentional blink.

A Shift in the Empirical Landscape

Although STST explained many of the hallmark effects ob-

served in studies of the attentional blink, recent work has provided

several new findings that seem problematic for the model. In

particular, these studies identified a number of manipulations that

attenuate the blink in ways not foreseen by STST or most of the

competing attentional blink accounts. The common denominator

of these manipulations is that encoding a target presented during

the attentional blink window is in fact easy as long as that target is

Figure 1. (A) The letters-in-digits paradigm. Time is represented from

top to bottom in this diagram. The lag between Target 1 (T1) and Target

2 (T2) is varied from 1 (no intervening distractors) to 8 (seven distractors).

Lag 2 is depicted here. (B) Detection of T2 in trials in which T1 was

perceived exhibits an attentional blink in data from Chun and Potter (1995).
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directly preceded by an item that can assist it in triggering attention

or allows the attentional response triggered by T1 to be sustained.

Thus, a T2 presented during the attentional blink can be reported

without much difficulty if it is preceded by an item that captures

attention because it matches the target template (Nieuwenstein,

2006; Nieuwenstein, Chun, van der Lubbe, & Hooge, 2005;

Olivers et al., 2007). Similarly, there are findings indicating that

sustained attention can alleviate the attentional blink. In particular,

Nieuwenstein and Potter (2006) reported that a string of six con-

secutive items can be encoded without an obvious blink. When the

same stimulus string was viewed in partial report condition (i.e.,

reporting targets of only a particular color), the standard blink

effect was observed even though subjects were then asked to

encode only two of the six targets. Subsequent work demonstrated

that this effect generalizes to any uninterrupted series of targets,

even if presented among distractors (see Figure 2). This phenom-

enon has been called spreading the sparing, for the way in which

Lag 1 sparing seems to be extended across an arbitrarily long

sequence of targets (Kawahara, Kamada, & Di Lollo, 2006; Oliv-

ers, van der Stigchel, & Hulleman, 2007).

Thus, it cannot be the case that the attentional blink is the result

of limited ability to encode multiple targets if observers can

encode three targets in the same time as they would otherwise fail

to encode two. Accounts that describe the blink as a competition

between T1 and T2 (Dehaene, Sergent, & Changeux, 2003) or

describe more general notions of limited cognitive resources

(Kranczioch, Debener, Maye, & Engel, 2007) are difficult to

reconcile with findings of spreading of sparing and whole report

superiority. Furthermore, in the experiments described above, the

subject does not know which type of trial (i.e., TTT or TDT) was

about to occur. Consequently, explanations involving a pretrial

allocation of attention (e.g., the overinvestment hypothesis de-

scribed by Olivers & Nieuwenhuis, 2006) cannot be used to

explain spreading of sparing because trials were presented in a

mixed block.

The critical question posed by these data is this: If subjects can

encode sequences of successive targets without suffering an atten-

tional blink, why does the blink occur when they attempt to encode

two temporally discrete targets separated by distractors? The eS-

TST model proposes that our visual system is designed to flexibly

mediate the allocation of attention; an uninterrupted sequence of

targets can be encoded, but if there is a gap in the targets, attention

is briefly switched off to divide the encoding process into two

sequential episodes. This behavior emerges dynamically through a

regulatory circuit that we describe in this work.

What’s New in eSTST?

The model we describe is structurally similar to STST, consist-

ing of types, tokens, and a temporal attention mechanism. How-

ever, these three elements now interact to produce a competitive

regulation of attention. The deployment of attention at any point is

controlled by competing inhibitory and excitatory connections

from working memory encoding and target input, respectively (see

Figure 3). This implementation allows each target in a string of

consecutive targets to sustain a recurrent excitation of attention.

However, if no new target arrives at the input layer during a period

of 200 or more ms after the onset of the preceding target, the

ongoing consolidation of preceding target information succeeds in

suppressing attention. When this occurs, a subsequent target re-

ceives no amplification and is less able to reactivate attention. As

a result, targets following a gap in a target string are frequently

missed (see Figure 4).

A second important modification concerns the allocation of

tokens. In STST, it was assumed that token binding is initiated in

sequence, such that a second token can only begin after the first

had completed. This mechanism attempted to allocate one type per

token. However, two targets could bind to a single token in the

particular case of Lag 1 presentation, with the consequent sacrifice

of temporal order information about which came first. Extending

this implementation to sparing of four consecutive targets predicts

that no order information is preserved among them, and this is not

the case, as we see below.

In eSTST, tokens are more strictly defined; each token can bind

to one target only, as described by the original definitions of a

visual token (Kanwisher, 1991; Mozer, 1989). If multiple targets

arrive at the input nodes more rapidly than they can be encoded,

the system allows multiple tokens to be bound in a staged fashion,

with Token 1 completing first, Token 2 second, and so on. Thus,

in eSTST, the tokens are serial in the order that their encoding is

completed.

Figure 2. In the data of Olivers et al. (2007), the attentional blink is observed for a second target that is

separated from the first target by a distractor (i.e., the dark-gray condition). However, if that intervening

distractor is replaced by a target, subjects exhibit sparing of the last target (i.e., the light-gray condition). T �

target; D � distractor.
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Modeling Methods

The model has five major components, as shown in Figure 5:

input nodes, in which input is presented; type nodes, which rep-

resent the identities of targets as they are being encoded into

working memory; binding pool and tokens, which store episodic

representations of targets in working memory; and finally the

blaster, a node that mediates the deployment of attention. The

description given here is simplified; all of these elements are

formally described in Appendix A, and simulation code is avail-

able online at http://www.bradwyble.com/research/models/eSTST.

All nodes in the model are simple linear accumulators, with

activity that decays to zero over time according to the following

equation:

a(t) � a(t � 1) � decay � input(t)

In the equation, a(t) represents the activation of a node at a

particular time, which is the sum of its previous activation, a(t�1),

multiplied by a decay rate and a combination of excitatory and

inhibitory input. Some nodes excite themselves and can sustain

their own activation, which allows information to be stored in

working memory.

Connections between nodes are excitatory or inhibitory, with the

exception of the blaster’s attentional amplification. All connec-

tions in the model are nonmodifiable; only the activation level of

nodes can change. A trial is simulated in time steps. Each step

corresponds to 10 ms. There are no random factors or noise; given

the same parameters, every simulation produces the same output.

Input: A Sequence of Targets and Distractors

Targets or distractors are presented at each time step by acti-

vating one of the input nodes (for simplicity, all distractors are

represented by a single node). Target inputs vary systematically in

strength over a range of values, reflecting variation in the relative

effectiveness of different combinations of targets and masks. It is

this variance in strength that explains why some T2s are able to

survive the blink and why some T1s are missed.

When a given item is presented to the model, the corresponding

input node is clamped to a designated value. At the end of the

stimulus, this input node rapidly decays back to zero because of

masking from the following item in the RSVP stream. Items

followed by a blank in the stream decay more slowly during the

blank interval, representing persistence in iconic memory in the

absence of a backward mask. Figure 6 illustrates the activation

traces of target input nodes for different conditions.

In eSTST, a task demand mechanism specifies the set of targets

by inhibiting distractor nodes, preventing them from activating

type nodes. In this way, distractors provide masking of targets but

do not enter the encoding stage. This aspect of the model has

important implications that will be brought out in the discussion.

Output: Identity and Temporal Order of Targets

The output of the eSTST model is measured at the end of a

simulation to retrieve both the identity and the order of items that

are stored in working memory. For each token that has been

encoded into working memory, the type node that is bound to that

token is retrieved. If two tokens are bound to the same type, the

model is considered to have encoded a repetition of that type. The

order of reported items is determined by the order of the tokens

that represent them. Token 1 is reported first, Token 2 reported

second, and so on.

Figure 3. Competitive regulation of attention. Bottom-up target input

attempts to trigger attention while encoding processes attempt to shut off

attention. A color version of this figure is available on the Web in the

supplemental materials.

Figure 4. Schematic demonstration of the competitive regulation of at-

tention for a single letter target among a series of distractors (top), three

targets in a row (middle), and two targets separated by a distractor (bot-

tom). Attention begins at a baseline level and can be shifted upward or

downward depending on whether excitation from targets or suppression

from ongoing encoding is dominating the competition. For three targets in

a row, the suppression elicited from the first target onward is counteracted

by the amplified excitation from T2 and T3. However, an intervening

distractor provides sufficient time for attention to be suppressed, producing

an attentional blink for the following target. A color version of this figure

is available on the Web in the supplemental materials.
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Temporal Attention: The Blaster

The model is predicated on the idea of a rapid and transient

deployment of attention in response to a target. This attentional

resource is nonspecific, meaning that when active, it amplifies all

input in a manner similar to neuromodulation (e.g., by norepineph-

rine as modeled by Nieuwenhuis, Gilzenrat et al., 2005). This is

implemented by the so-called blaster, a single node that receives

excitatory input from all of the target input nodes and, in turn,

provides attention to all input nodes. In addition, the blaster

receives inhibitory input from the token layer, and it is the com-

petition between excitatory and inhibitory inputs that determines

whether a target triggers the blaster.

Working Memory Encoding

The goal of encoding, on each trial, is to encode all targets into

working memory in the order in which they occur, including

repetitions. Encoding occurs by binding types to tokens. These

bindings are stored by holding an attractor state in self-excitatory

nodes. Such attractors have the advantage that they can store

information without Hebbian synaptic modification, which has not

been found to occur rapidly enough to support encoding and

subsequent retrieval in tasks such as this. Storing information in

attractors is a common approach in working memory models (e.g.,

Deco et al., 2004; Hasselmo & Stern, 2006) and is consistent with

findings of sustained neural activity in monkeys performing work-

ing memory tasks (Miller, Erickson, & Desimone, 1996).

Binding a Type to a Token

To encode the occurrence of an item into working memory, such

as the letter J in an RSVP stream of digits, the activated type node

corresponding to J is bound to Token 1. This binding represents

the fact that J was seen and that it was the first target encountered

in the stream.

This encoding requires storing a link from a type to a token. In

the model, a population of nodes, referred to as the binding pool

(Bowman & Wyble, 2007), stores these links by selectively acti-

vating nodes that correspond to specific combinations of type and

token. For example, in Figure 7, the binding unit labeled J/1 stores

a binding between Type J and Token 1. (We address the scalability

of this solution in Appendix A.) At the beginning of a trial, both

tokens are available, but the system selectively binds the first

target to Token 1.

Binding occurs when a type node is sufficiently active to excite

corresponding nodes in the binding pool (J/1 and J/2 in this

example), which race to threshold. The encoding system is con-

figured such that input to J/1 has a slight advantage over input to

J/2, and this ensures that binding units corresponding to Token 1

will reach threshold before those corresponding to Token 2. When

any of these binding units reaches threshold, three things happen:

(a) the binding unit enters a self-excitatory attractor, sustaining its

Figure 5. Schematics of the full episodic simultaneous type, serial token model. Input from early visual areas

excites input nodes, and feedforward inhibition simulates backward masking. Task demand represents the

influence of task instructions in specifying the category of targets and acts by inhibiting distractor nodes,

preventing them from entering working memory and triggering attention. Inhibition between type nodes

simulates weak interference between coactive type representations. T � target; D � distractor. A color version

of this figure is available on the Web in the supplemental materials.

Figure 6. The profile of input nodes for different configurations used in

simulations, including a target presented at 100-ms stimulus onset asyn-

chrony (SOA), a target with the same SOA followed by a blank, and a

target presented at 50-ms SOA. T � target; D � distractor.
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own activation until retrieval; (b) the binding unit excites its

corresponding token, serving as a pointer that an item is stored in

working memory; and (c) the binding unit inhibits other binding

pool nodes corresponding to the same token, thereby preventing

other items from binding to the same token for the duration of the

entire trial. As a result, the system will have bound the first target

to the first token.

Binding multiple types. Multiple types can be in the binding

process simultaneously, but one of the binding units will reach

threshold first, encoding the winning type into Token 1. The

remaining types will continue binding to remaining tokens, with

Token 2 completing next. However, this race model of encoding is

prone to order errors; a strongly activated T2 can beat a weaker T1

if they are presented closely in time. This confounding of activa-

tion strength with perceived target order in RSVP is similar to that

proposed by Reeves and Sperling (1986). If the system is to

infallibly encode the order of two stimuli, it is necessary that the

second target begin encoding only after the first target is finished

processing. We argue that the inhibition of the blaster (and there-

fore the attentional blink itself) exists precisely to impose this

temporal segregation of target encoding.

There is weak lateral inhibition between type nodes, which

reflects the interference of processing multiple items at the same

time. This inhibition is not involved in the attentional dynamics

that result in the blink; however, this interference is important for

simulating costs of encoding multiple items within the same at-

tentional episode, such as the T1 impairment at Lag 1, which we

discuss below.

Sustaining types during encoding. During encoding, the model

sets up a temporary recurrent circuit between the binding pool and

type nodes until encoding is completed. To implement this recur-

rence, we add gate nodes to the binding pool units. Thus, each

binding unit is actually a gate–trace pair of nodes, as shown in

Figure 8A (denoted G and T, respectively). During encoding, the

gate node is active, passing activation from the type node to the

trace node, but also provides recurrent activation back to the type

node, producing a temporary attractor state.

The temporal dynamics of encoding a single target are shown in

Figure 8B. The type node is initially excited by target input with

the help of the blaster. The gate node is excited by the type node,

and recurrent excitation between gate and type establishes a tem-

porary attractor state. The goal of encoding, however, is to store

the item without committing the type node. Therefore, the trace

node slowly accrues activation until it crosses threshold, at which

point it inhibits the gate, shutting off the attractor. When this

occurs, the type is no longer required, and without feedback from

the gate node, the type node’s activation rapidly decays back to

baseline. This is a point of departure from the STST account of

Bowman and Wyble (2007), which used a different mechanism to

sustain type nodes for encoding.

Figure 7. The binding pool contains nodes selective for conjunctions of

types and tokens. In this example, Type J is being bound to Token 1. When

encoding is complete, self-excitatory connections will sustain the activa-

tion in the binding pool and Token 1.

Figure 8. (A) Encoding involves a temporary recurrent circuit between a type node and a gate node in the

binding pool. (B) The temporal dynamics of binding for a single target. The elevated portion of activation for

the type and gate nodes reflects the recurrent attractor state between them that is cut off abruptly when the token

is bound (see Appendix A for more detail). T � trace; G � gate.
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Types and Repetitions

A type node can be used only to process one instance of a target

at a time. If a repetition of a target occurs while a prior instance of

the same target is still being encoded, the new input simply

enhances the activation of the already active type node. This

facilitates encoding of the previous instance of the target but does

not initiate encoding of a new token. Only if the previous encoding

had been completed when the repetition arrives can the system

encode a new instance of the target. This property of the binding

process gives rise to repetition blindness during RSVP.

Delay of Attentional Deployment

All but one parameter were fixed for all of the simulations

described below. The onset of the blaster is subject to a delay

parameter corresponding to the difficulty of target detection. For

targets defined by category, such as letters in a digit stream, this

delay is set to 40 ms. For whole report, which requires no target

discrimination, the delay is set to 10 ms.

Data Addressed

The eSTST model is validated against a spectrum of data from

different experiments. All of the following phenomena are repli-

cated with the same model and parameter settings, except in the

case of whole report, which has unique task instructions.

The attentional blink. T2 accuracy is impaired for 200–400

ms following accurate report of a T1 with strong sparing of T2 at

Lag 1 (Chun & Potter, 1995; Raymond et al., 1992).

The role of posttarget blanks. The blink is attenuated by

blanks after either T1 (Chun & Potter, 1995; Seiffert & Di Lollo,

1997) or T2 (Giesbrecht & Di Lollo, 1998).

The cost of Lag 1 sparing. T1 accuracy is impaired at Lag 1,

and swaps of temporal order are frequent at Lag 1 (Chun & Potter,

1995).

Lag 2 sparing at 20 items per second. Sparing is a function of

the temporal separation between one item and the next. For RSVP

at an SOA of about 50 ms, sparing of T2 is evident at Lag 2

(Bowman & Wyble, 2007).

Spreading of sparing. When a string of three or four consec-

utive targets are presented, the entire sequence is spared, eliminat-

ing the blink and producing best performance for the second target

presented (Kawahara et al., 2007; Olivers et al., 2007).

Cuing. During the blink, if two targets are presented in rapid

succession, the second one has improved accuracy (Nieuwenstein,

2006; Olivers et al., 2007).

Whole report. When there are no distractors in the RSVP

stream, there is a first-target advantage, as opposed to a second-

target advantage found in spreading of sparing (Nieuwenstein &

Potter, 2006).

Simulation Results and Discussion

Encoding a Target Into Working Memory

When a type node is activated by bottom-up input, it is encoded

into working memory through the allocation of a token. The

dynamics of this process can be seen in Figure 9, in which a single

target is presented for 100 ms, amid a stream of distractors,

producing the following sequence of events: (a) The input node

excites the type node and the blaster. The blaster is rapidly trig-

gered, which strongly amplifies further input to the type node. (b)

The type node initiates token allocation, entering a temporary

attractor state with the token. This attractor state sustains its

activation while token activation increases over the following

200–400 ms. During encoding, suppression of the blaster can be

observed as a negative shift in its activation. (c) When one of the

trace nodes crosses a self-sustaining threshold, the attractor state is

terminated, and the type node decays back to baseline. For the

remainder of the trial, the token stays allocated, and the target is

successfully encoded into working memory as Token 1.

Encoding Multiple Targets

For tasks requiring report of two targets in an RSVP sequence,

the dynamics of the model’s function fall into one of three regimes

depending on the elapsed time between T1 and T2, measured in

100-ms “lags”: sparing (Lag 1), blinking (Lags 2–4), and postblink

(Lags 5–8). Figure 10 illustrates the dynamics of the network at

Lags 5, 3, and 1 for trials at particular target strengths.

Postblink. Presentation of the T2 at Lags 5–8 is sufficiently

late that T1 encoding is complete. Therefore, the blaster is no

Figure 9. Schematic of encoding a single target from a rapid serial

visual presentation stream. From bottom to top: The input layer is first

activated, triggering the blaster, which amplifies the input (visible as a

stepwise increase in input strength). The type node is initially excited

by bottom-up input and is sustained during encoding, represented

abstractly with a gray bar at the top of the figure. Note that the blaster

is strongly suppressed by ongoing encoding and then recovers to

baseline. T � target; D � distractor.
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longer suppressed and can respond rapidly when T2 is presented.

In this case, the two targets are bound sequentially and are thus

free of mutual interference as well as the possibility of order

confusion.

Blink. At Lags 2–4, the T2 arrives while T1 encoding is

ongoing. Top-down suppression of the blaster makes it difficult for

T2 to trigger attention, and thus the T2 type node is only weakly

activated. On a minority of trials (not shown in Figure 10), the T2

is strong enough that it breaks through the blink.

Sparing. T2s that arrive 100 ms after T1 (i.e., Lag 1) are able

to benefit from the attention deployed to the T1. An attended T2

sustains the activation of the blaster, despite the top-down sup-

pression, and strongly activates its type node. T1 and T2 are bound

in parallel, with order determined by their relative strength. In this

trial, the targets are bound in the correct order.

By iterating simulations over many different values of T1 and

T2 strength, the model simulates the attentional blink. Figure 11

displays the output of the model alongside matching human data

for the basic blink condition, as well as the different aspects of

performance described below. The data are from Chun and Potter

(1995, Experiments 1 and 3) and Giesbrecht and Di Lollo (1998,

Experiment 1).

Posttarget Blanks

The attentional blink is sensitive to blanks placed after either T1

or T2; either manipulation will attenuate it. Modeling the blink-

attenuating effect of T1 � 1 blanks is a particularly challenging

aspect of these data, because as the T1 becomes more salient, the

T2 is easier to report (Bowman, Wyble, Chennu, & Craston, 2008).

The eSTST model, like the STST account (Bowman & Wyble,

2007), demonstrates a reduced blink when blanks are inserted into

the stream after T1 or T2. Such blanks reduce backward masking

of the target. For a T2, unmasking increases the length of the T2

trace in iconic memory (e.g., at the input layer), giving the T2

Figure 10. Schematic depiction of the episodic simultaneous type, serial

token model processing two targets at lags of 1, 3, and 5. Both targets are

encoded at Lags 1 and 5, but T2 is missed at Lag 3. T � target.

Figure 11. Simulation results alongside empirical counterparts from subjects. Shown are accuracy of Target 2

(T2) conditional on Target 1 (T1) and accuracy of T1 and the probability of reversing temporal order, or P(swap).

(A) The model demonstrates a basic blink that is attenuated by blanks at T1 � 1 or by placing T2 at the end of

the stream. (B) The model also demonstrates a reduction in T1 performance that is exclusive to Lag 1 as well

as a large increase in swap errors. All human data are taken from Chun and Potter (1995) except for the T2

end-of-stream data, which are from Giesbrecht and Di Lollo (1998).
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more opportunity to outlive the blink and be encoded. A T1 � 1

blank increases the duration of the T1 trace in the input layer,

thereby increasing the excitation of the T1 type node. With more

strength, the encoding process is more rapid. Thus, on a T1 � 1

blank trial, the blink is so brief that a T2 has a better chance of

outliving the blink and being encoded. However, our model argues

that a muted blink should still be present in these cases, an issue we

return to in the General Discussion.

The Costs of Lag 1 Sparing

In eSTST, T2 can be spared by binding T1 and T2 in parallel,

but this form of encoding has detrimental effects, two of which are

revealed when T2 is presented one lag after T1. In this case, T1

accuracy is impaired because of competition with T2. Also, the

order of the targets is often encoded incorrectly, because items

being processed in parallel are in a race to complete the available

token. When T2 occurs at Lag 1, T2 begins the race 100 ms after

the T1, but if T2 is exceptionally strong (i.e., because of the

inherent variation in target input strength), it may beat T1 in the

race and be bound to Token 1, leaving the T1 to be bound to Token

2. Note that this is a significant departure from the STST model

(Bowman & Wyble, 2007), in which sparing was the result of

binding T1 and T2 to the same token. In eSTST, only one stimulus

can ever be bound to one token. Figure 12 demonstrates how a

strong T2 can beat a weak T1 in the race to complete binding to

Token 1, forcing the T1 into Token 2. The result from this trial

would be that both T1 and T2 would be reported but in the wrong

order (i.e., a swap).

Sparing and Blinking Are Temporally Delineated

In Bowman and Wyble (2007), experimental work demonstrates

that if the presentation rate is doubled to 20 items per second

(50-ms SOA), sparing is obtained at Lag 2. A similar point is

observed in the data of Potter, Staub, and O’Conner (2002, Ex-

periment 1). This finding suggests that there is a temporal window

of sparing following the first target.

These data also suggest that the blink is a function of temporal

lag. When a T2 is presented 200 ms after the T1, it is most

vulnerable to being blinked, whether it is the fourth item at 50-ms

SOA or the second item at 100-ms SOA. The eSTST model

demonstrates the same pattern, as shown in Figure 13.

Spreading the Sparing

During RSVP, with input of the form DTDTD (T1 and T2

targets separated by a distractor at an SOA of 100 ms and embed-

ded in a sequence of distractors), report of the second target will be

impaired. This is the attentional blink. However, when the se-

quence presented is DTTTD (T1, T2, and T3 presented in succes-

sion at 100-ms SOA), the final target is more often reported—a

finding referred to as spreading the sparing (Olivers et al., 2007).

The eSTST model suggests that spreading the sparing is the

result of a sustained deployment of attention in response to a series

of targets. Each target boosts the activation of the blaster, which

allows the following target to be seen. This allows a sequence of

two, three, or four consecutive targets to sustain the activation of

the blaster, effectively holding the attentional gate open (see

Figure 14). The model simulates the results of Olivers et al. (2007,

Experiment 1), as shown in Figure 15.

Figure 12. For Target 1 (T1) and Target 2 (T2) presented at Lag 1, the

encoding system can make a temporal order error, which occurs in this

example. T2 input is sufficiently stronger than T1 that the T2 type node

wins the race for Token 1 and forces T1 to be encoded to Token 2. D �

distractor.

Figure 13. Model simulation and human data for 94-ms and 54-ms

stimulus onset asynchronous presentation rates, simulating the data pub-

lished in Bowman and Wyble (2007). For the 54-ms presentation rate, lags

were 2, 4, 6, 8, 10, 12, 14, 16, producing target onset asynchronies similar

to Lags 1–8 for 94-ms stimulus onset asynchrony (SOA). Critically,

sparing is obtained for the Lag 2 position (108 ms) in the 54-ms SOA data,

and the blink has the same time course. The simulation used SOAs of 50

and 100 ms in the two conditions.
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Cuing

The interaction between top-down suppression and bottom-up

input reproduces another critical feature of the dynamics of rapid

visual encoding: cuing. Nieuwenstein et al. (2005; see also Nieu-

wenstein, 2006) demonstrated that a target presented during the

blink can be seen more readily if it is preceded by another item

containing a target specifying feature (e.g., color). What these

results suggest is that suppression of the blaster during the blink is

not absolute. A target (or a stimulus resembling a target) can excite

attention enough that a following target can benefit from the cuing

effect. A similar finding arises in Olivers et al. (2007) and Kawa-

hara et al. (2006), who showed that the string TDTT results in

impaired accuracy for the second target but improved accuracy for

the third target (i.e., compared with a target presented at the same

relative time in the configuration TDDT).

Figure 15 illustrates how the model reproduces the data from

conditions TDTT and TTDT of Olivers et al. (2007). In the case of

TDTT, the second target boosts the activation of the blaster, aiding the

following target in triggering attention more rapidly and improving its

accuracy, compared with a target preceded by a distractor.

Whole Report Versus Sparing

Nieuwenstein and Potter (2006) demonstrated that subjects fail

to exhibit an attentional blink during whole report, a paradigm

requiring subjects to report a string of consecutive items. Whole

report is similar to the case of spreading the sparing in that a string

of consecutive targets is to be encoded. Neither paradigm produces

an attentional blink, suggesting that a similar encoding process

occurs whether the targets have to be selected from distractors or

are presented in isolation.

Figure 14. Simulated spreading the sparing for four targets presented in sequence. The blaster stays active

despite top-down inhibition, being sustained by continued target input. T � target; D � distractor.

Figure 15. Simulated results and human data from Experiment 1 of

Olivers, van der Stigchel, and Hulleman (2007) for the main experimental

conditions with three or four targets. These results simulate spreading the

sparing (TTTT), the onset of the blink after a distractor (TTDT), and cuing

produced by two targets during the blink (TDTT). Data from “Spreading

the Sparing: Against a Limited-Capacity Account of the Attentional

Blink,” by C. N. Olivers, S. van der Stigchel, and J. Hulleman, 2007,

Psychological Research, 71, p. 130. Copyright 2007 by Springer.
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There is a subtle but important difference between the relative

strength of the first two targets between whole report and target

strings, as illustrated in Figure 16. When targets need to be

identified among distractors, there is a delay in the deployment of

attention that gives the second target an advantage over the first.

When no target identification has to be made, attention is deployed

more rapidly, giving the first target an advantage over the second.

Figure 17 shows a replication of the accuracy data for the first four

targets in the whole report condition of Experiment 1 in Nieuwenstein

and Potter (2006; SOA of 107 ms) and the four target conditions of

Experiment 1 in Olivers et al. (2007; SOA of 100 ms). For items

presented in a whole report paradigm, the first target is better per-

ceived than the second. For a string of targets presented in a stream of

distractors, the second target is better perceived than the first. Potter,

Staub, and O’Connor (2002) also described the second target advantage

for targets in a distractor stream at short SOAs. The model reproduces this

same difference. Thus, eSTST suggests that the second target advantage

in selective report RSVP paradigms can be explained as a processing

delay in the deployment of attention.

Behavioral Predictions: Identifying the Cost of Sparing

Having demonstrated the versatility of the eSTST model in

reproducing a spectrum of data from different experiments with a

single set of parameters, we now turn to the critical question: Why

is the visual system designed to exhibit an attentional blink if it is

capable of sparing a sequence of targets? Some of the aforemen-

tioned data suggest that sparing comes with a cost. For example, in

the classic letter–digit attentional blink paradigm, Lag 1 sparing of

T2 produces a reduction in T1 report, as well as temporal order

errors when both targets are reported. The eSTST model suggests

that we can find more evidence of the cost of sparing by looking

at repetition blindness, order errors within strings of three or four

targets, and an increase in conjunction errors between parts of

complex items.

Prediction 1: Repetition Blindness Gets Worse

During Sparing

Repetition blindness is a well-known phenomenon in visual

working memory paradigms. When observers are asked to encode

two instances of the same item within a very short period (often

less than 500 ms), often only one of the two instances will be

perceived. Generally it is thought that repetition blindness involves

a loss of the second item, although it is possible to demonstrate a

loss of the first instance (Neill, Neely, Hutchison, Kahan, &

VerWys, 2002). Previous work has suggested that repetition blind-

ness is attenuated if the second instance is made episodically

distinct from the first (Chun, 1997b) by changing its color. The

eSTST model suggests that we can also affect the episodic rela-

Figure 16. The difference between selective report and whole report is

simulated in the model by changing the delay between the triggering of the

blaster and the onset of the attentional effect from 40 ms to 10 ms. The

result is a relative shift from a second-target advantage to a first-target

advantage. T � target; D � distractor.

Figure 17. Simulated results and human data (from Nieuwenstein &

Potter, 2006, and Olivers et al., 2007) for selective report and whole report.

The critical difference between the two is the relative advantage of the first

and second targets. Data from “Temporal Limits of Selection and Memory

Encoding: A Comparison of Whole Versus Partial Report in Rapid Serial

Visual Presentation,” by M. R. Nieuwenstein and M. C. Potter, 2006,

Psychological Science, 17, p. 473. Copyright 2006 by Blackwell. “Spread-

ing the Sparing: Against a Limited-Capacity Account of the Attentional

Blink,” by C. N. Olivers, S. van der Stigchel, and J. Hulleman, 2007,

Psychological Research, 71, p. 130. Copyright 2007 by Springer.
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tionship of the two instances with the presence or absence of

targets between the repeated items.

The full spectrum of theoretical and empirical work related to

repetition blindness is beyond the scope of this article, but the

eSTST model simulates the phenomenon. Within our model, if a

second instance of a type is presented while the system is still

encoding the first instance, the second instance is incapable of

forming a separate tokenized representation. Tokenization failure

as a cause of repetition blindness has been described previously

(Anderson & Neill, 2002; Kanwisher, 1987).

In our model, if the encoding stage is loaded with multiple

targets in parallel (i.e., spreading the sparing or whole report),

interference between three or four simultaneously active types

prolongs the encoding of those targets (see Figure 14 for an

example of encoding four targets) and thus extends the temporal

window of repetition blindness. Specifically, if the sequence

TiTjTkTi is shown to a subject, the second instance of item Ti

will be strongly impaired, compared with the fourth item in the

sequence TiTjTkTm. In contrast, the sequence TiDjDkTi allows

more rapid encoding of the first instance of Ti because of the

lack of competition from simultaneous targets, thus freeing up

the i type node to process the repetition arriving 300 ms later.

As we show below, the model is almost completely blind to

repetitions in the TTTT case but not in the TDDT case.

It is notable that whole report (similar to the TTTT condition

simulated here) is generally used in repetition blindness experi-

ments. Park and Kanwisher (1994) explored the role of nontargets

between repeated items and found an attenuation of repetition

blindness just as predicted here. However, in their experiment, the

two instances of the repeated letter were in different cases. To

properly evaluate the model’s prediction that repetition blindness

can be nearly complete for same-case repetitions, we tested the

ability of subjects to encode a repetition during RSVP of all

uppercase stimuli.

Method

Participants. The 15 participants were volunteers from the

Massachusetts Institute of Technology community of age 18–35

who were paid to participate in the experiment, which took ap-

proximately 30 min. All reported corrected or normal vision.

Apparatus and stimuli. The experiment was programmed

through MATLAB 5.2.1 and the Psychological Toolbox extension

(Brainard, 1997) and was run on a Power Macintosh G3. The

Apple 17-in. (43.18-cm) monitor was set to a 1024 � 768 reso-

lution with a 75-Hz refresh rate. An RSVP stream was presented

centrally at the location of a fixation cross. SOA between items

was 93 ms with no interstimulus interval.

Black digits in 70-point Arial were used as distractors. The

letters I, M, O, Q, S, T, W, X, Y, and Z, as well as digits 1 and 0,

were excluded. Stimuli were approximately 1.3° � 2.1° in angle at

a viewing distance of 50 cm.

Procedure

Trial types occurred in a 2 � 3 design that defined what

sequence of target items (letters) appeared amid the long sequence

of distractors (digits). The first factor defined whether the middle

two positions of the four critical items were targets or distractors.

The second factor defined whether the stimulus in the final posi-

tion was a new target, a repetition of the first target, or a distractor

to create a catch trial. Catch trials were included to avoid giving

subjects the expectation of either two or four targets per trial.

Thus, the six conditions specified the following sequences of

four items in equal proportion: TDDT, TDDD, TDDR, TTTT,

TTTD, TTTR, in which T represents a random target chosen

without repetition, D represents a random distractor chosen

without repetition, and R represents a repetition of the first

target. These target sequences were positioned randomly within

a stream of randomly chosen distractors, with the first target’s

position randomly chosen from the range of 18 to 33, and the

last item was followed by at least five distractors with a total

RSVP stream length of at least 30 items.

Instructions presented at the beginning of a trial told subjects to

report all of the letters they could. Participants were warned that there

might be repetitions and to report a letter twice if it was seen twice.

After each trial, participants were asked to “enter all of the

letters you saw, including repetitions.” Subjects were allowed to

correct their input string with backspace while entering it, and

were not given feedback. Trials were considered correct if subjects

reported the correct identity, without regard to correct order.

Results and Discussion

Results of both simulation and experimental data are presented

in Figure 18, showing conditional accuracy for the final target

presented in the four critical experimental conditions: blinking

Figure 18. Simulated results and human data for a repetition blindness

experiment. Shown are the conditional probabilities of reporting the final

target of the sequence given correct report of the first target. Both the

model and human subjects were almost completely blind to repetitions

occurring in the TTTT case. Error bars depict measures of standard error.
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unrepeated (TDDT), blinking repeated (TDDR), sparing unre-

peated (TTTT), and sparing repeated (TTTR). Accuracy values in

the unrepeated conditions indicate the probability of reporting the

final target given the report of the first target. In the repeated

conditions, accuracy indicates the probability of reporting two

instances of the repeated item, as a percentage of the number of

trials in which at least one instance of the repeated item was

reported. Neither measure considers report order. In both sparing

(TTTT vs. TTTR), paired t � 9.9(14), p � .001, d � 3.5, and

blinking (TDDT vs. TDDR), paired t � 4.48(14), p � .001, d �

1.38, cases, significant repetition blindness was observed.

Critically, the model predicts that encoding a repetition in the

sparing condition is nearly impossible, whereas repetitions are

successfully encoded for some of the blinking trials. The data show

a very similar pattern, with lower ability to report the repeated item

in the sparing than in the blinking trials, paired t � 3.43(14), p �

.004, d � 1.13.

Prediction 2: Order Report for Sparing Multiple Targets

Attentional blink data from Chun and Potter (1995) demon-

strated that sparing of a single target is accompanied by a marked

reduction in reporting the correct order of the two targets. Our

model predicts that sparing of more targets is accompanied by

even greater loss of temporal order accuracy.

Report order was examined for the set of trials in which the

model successfully encoded four targets in simulated whole report

as described previously (i.e., the blaster delay is set at 10 ms and

SOA at 110 ms to simulate the 107-ms SOA). These data were

plotted as the frequency of reporting a given item in each of four

possible report positions in Figure 19. The encoded order is the

result of variation in target strength from trial to trial. If a T2 is

particularly weak, the T3 may outpace it in the race to bind to

Token 2, forcing T2 into Token 3 or possibly even Token 4. All

four items are most often reported at their correct positions, but

order accuracy is especially low for targets in the middle two

positions, producing a pronounced U shape to the accuracy curve.

To test this prediction, we analyzed data from Nieuwenstein and

Potter (2006) for report order, for all trials in which subjects

reported at least the first four of the six items. With this criterion

we selected 321 trials from the 16 subjects. Reports sometimes

contained more than four items. For clarity, reports of any of the

first four items in Positions 5 and 6 were collapsed together with

Position 4.

The whole report data above are consistent with the model (see

Figure 19), particularly with respect to the U shape, favoring

correct order report of the first and last target items. However, in

this experiment, subjects were reporting items from a six-item

sequence, which may have affected the order accuracy of the last

item, particularly after report Positions 4, 5, and 6 were collapsed

into Position 4.

To address this issue, we analyzed and compared the data from

the repetition blindness experiment, which had three and four

target trials (i.e., the TTTD and TTTT conditions), with the mod-

el’s prediction for the same conditions. In these simulations of four

targets in a target selection paradigm, the blaster delay was set to

40 ms and the SOA to 90 ms, and order accuracy was examined for

conditions of four successfully retrieved targets.

The resultant simulated order data from this selective report

condition are shown in the right half of Figure 19. Note that the

predicted pattern is similar in character to the whole report data;

the same U-shaped trend is found with T1 and T4 most often in

their correct positions and T2 and T3 poorly ordered. The change

in the blaster delay to 40 ms produces a second-target advantage,

which also increases the probability that T2 is reported as the first

item. Thus, order report is worse for the first target than with the

whole report data.

The human data provide a good qualitative match to the pattern

observed in simulated order report, showing the same character-

istic U shape. Order accuracy is worse than in whole report,

Figure 19. Simulated and actual temporal order information for four reported targets. Whole report data are

from a reanalysis of the data of Nieuwenstein and Potter (2006), whereas selective report data are from the

repetition blindness experiment reported in the current study. In each graph are shown four lines, illustrating the

frequency of reporting each target in each of the four possible positions.
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particularly for the first target. The four target data are derived

from 50 trials of a possible 600 trials in which the 15 subjects

reported all four of the targets.

We also examined order accuracy for the trials in which three

targets were presented and reported by subjects. In this condition,

again both the model and the human data show a U shape. T1, T2,

and T3 are reported in the correct position 61%, 44%, and 65% of

the time in simulation and 58%, 43%, and 56% of the time in the

human data. The order data are derived from 196 trials in which

subjects reported all three targets correctly.

Prediction 3: Temporal Mispairings During Sparing

A final qualitative prediction proposes that during sparing, en-

coding is prone to making temporal errors between components of

multifeature objects, similar to the notion of illusory conjunctions

(Treisman & Schmidt, 1982). There is already evidence that tem-

poral binding errors interact with the blink (Chun, 1997a; Popple

& Levi, 2007) and that the blink produces a delay in temporal

binding (Nieuwenstein et al., 2005; Vul, Nieuwenstein, & Kan-

wisher, 2008). Here we suggest that during sparing, a different

pattern of temporal binding error emerges. We propose that the

blink helps to reduce the occurrence of these temporal misbindings

but that during sparing, migration of individual elements between

T1 and T2 occur frequently.

We reanalyzed a set of data originally presented in Bowman and

Wyble (2007) with the aim of testing the hypothesis that temporal

migrations between individual elements of complex targets co-

occurred with Lag 1 sparing. This experiment used an RSVP

stream of digit distractors containing two letter pairs occurring at

110-ms intervals (see Figure 20A). In this experiment, subjects

were prompted to report the two letter pairs they saw. They were

not forced to guess and were given two prompts, one for the T1

pair and the other for the T2 pair. This paradigm allowed us to

examine the frequency of mispairings of letters as the temporal

interval between them was varied from Lag 1 to Lag 8.

In the new analysis, T2 accuracy was scored as the average

probability of reporting either letter (i.e., left or right) of the target

pair, revealing a classic attentional blink, including prominent Lag

1 sparing (see Figure 20B). To assess the chance of mispairing

parts of T1 and T2, we considered the set of trials for which

subjects encoded at least two of the four presented letters. Each

such trial was scored as a mispairing if two letters from one letter

pair were reported as coming from separate pairs, if two letters

from different pairs were reported together as a single pair, or if

both pairs were reported but with their halves miscombined. As

can be seen in Figure 20B, accurate pairing of two or more letters

at Lag 1 was not appreciably different from chance (i.e., 50%) but

fell abruptly at Lag 2 and remained at a nearly constant baseline

level for the remaining lags. An analysis of variance over the

percentage of mispairings with lag as the single factor was signif-

icant, F(7, 70) � 33.85, p � .0001, �p
2 � .77. When Lag 1 was

excluded from the analysis, an analysis of variance showed no

main effect of lag, F(6, 60) � 2.11, p � .06, �p
2 � .173, suggesting

that there was no difference between the number of mispairings at

lags greater than 1.

Neurophysiological Correlates of Tokenized

Target Encoding

A particular strength of a temporally explicit model such as

eSTST is that the timing of simulated processes can be directly

compared with their putative analogs in human subjects through

magnetoencephalograph and electroencephalograph recordings.

Furthermore, the simulated neuronal dynamics provide insight for

the interpretation of single-cell recordings in monkeys performing

working memory tasks.

Electrophysiological Correlates of the Time Course

of Encoding

In human electroencephalograph recordings, the P3 component

is thought to reflect the deployment of processing resources re-

sponsible for encoding the item into working memory (Kranczi-

och, Debener, & Engel, 2003; Martens, Elmallah, London, &

Johnson, 2006; Vogel, Luck, & Shapiro, 1998) and can last for

several hundred milliseconds after a target is presented in RSVP.

We suggest that this prolonged period of posttarget processing

reflects the activation of binding pool gate nodes and type nodes

within both STST (Bowman & Wyble, 2007) and eSTST models

(but see Nieuwenhuis, Aston-Jones, & Cohen, 2005, for an alter-

native account). Accordingly, it is possible to generate “virtual”

event-related potential components from the activation dynamics

of these models to test them against recorded event-related poten-

tial components, as shown in Craston, Wyble, Chennu, and Bow-

Figure 20. (A) The paradigm used in the experiment reported in Bowman

and Wyble (2007). (B) Accuracy at Lags 1–8. Bars indicate the percentage

of temporal mispairings at different lags. Error bars depict measures of

standard error. The line indicates probability of T2 report at different lags.

T � target.
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man (in press). Virtual P3s generated from eSTST, particularly

their timing and duration, are similar to those produced by STST,

as both models simulate the attentional blink as a reflection of

working memory encoding. The similarity between these electro-

physiological data and the activation dynamics of the model pro-

vide corroborative support for our theoretical positions that (a)

registering a target as a reportable percept in working memory

takes several hundred milliseconds beyond the stimulus presence

and (b) the attentional blink reflects this process (see also

McArthur, Budd, & Michie, 1999).

Predicted Binding Mechanisms in Prefrontal Cortex

The STST and eSTST models predict putative activation pro-

files of single neurons in brain areas involved with encoding the

temporal order of multiple stimuli. Such predictions are specula-

tive but nonetheless provide theoretical inroads into large data sets

produced by neurophysiological experiments that record from hun-

dreds of neurons.

The substrate of working memory storage within the model,

corresponding to tokens and the binding pool, may reside in frontal

areas of the brain. These areas are thought to play a role in the

memory of temporal order and frequency of multiple stimuli in

humans (Milner, Petrides, & Smith, 1985). The importance of

frontal areas in temporal ordering tasks has also been demonstrated

in monkeys, in which lesions of the middorsal part of lateral

prefrontal cortex produce severe and permanent deficits in work-

ing memory for the order of three objects, despite preserved ability

to remember or recognize single items (Petrides, 1995). A neural

substrate for this capacity is suggested in recordings from monkey

lateral prefrontal areas, where neurons with sustained delay activ-

ity were highly sensitive to the specific orderings of three stimuli

(Ninokura, Mushiake, & Tanji, 2003) and the integration of stim-

ulus and order information (Ninokura, Mushiake, & Tanji, 2004).

Assuming that these areas of the dorsolateral prefrontal cortex

represent the equivalent of token and binding pool activation, we

can delineate classes of neural firing patterns that may be found in

tasks involving multiple objects that are to be remembered in

sequence. These predictions are particularly important for experi-

mental paradigms that allow stimuli to be repeated within a trial,

because repetitions make it possible to contrast stimulus selectivity

with temporal order representations. The following discussion

refers to the simulated activation dynamics of tokens and binding

pool nodes as described above and as depicted in Figures 7 and 8.

Binding pool. We predict that neurons allocated to represent-

ing an item in the binding pool will be most selective for one

instance of an object in a sequence but not for further instances.

Some such neurons will be primarily active during encoding (gate

nodes), and some will be primarily active during maintenance

(trace nodes). In this framework, a further class of neurons func-

tion as gate shutoff nodes (see Appendix A) to prevent spurious

encoding of repetitions. Such neurons would be activated at the

end of encoding, firing strongly until the end of a stimulus se-

quence, but would not persist during the delay. We can also predict

that neurons associated with encoding will outnumber those asso-

ciated with maintenance, as several gate nodes in the binding pool

are activated by a target, but only a single trace node sustains

activation.

Tokens. Neurons corresponding to token representations will

be devoid of stimulus specific firing but should respond primarily

to the position of a stimulus in the encoding sequence (e.g., first,

second, etc.). Some such neurons will be active selectively during

encoding (token gate nodes) and others during maintenance (token

trace nodes). See Bowman and Wyble (2007) for further discus-

sion of the dynamics of tokenized representations.

Two-item memory. Warden and Miller (2007) recorded neu-

rons in frontal areas of monkeys that exhibit changing patterns of

selectivity as first one, then a second object is added to working

memory. This experiment is ideal for testing our predictions in that

the stored sequence contains repetitions and the task requires

encoding the temporal order of the two stimuli. The investigators

described an example neuron that responds strongly for several

hundred milliseconds after the first presentation of its preferred

stimulus but is less active during presentation of the second stim-

ulus. This profile is similar to the activation of a binding pool gate

neuron; it participates in encoding a first instance of a preferred

item but is then suppressed by a trace node, which renders it

unavailable during further encoding. The authors also described a

regression analysis of firing patterns during the delay period after

the second stimulus is encoded and found that although the pop-

ulation of neurons as a whole loses its selectivity for the first

stimulus, some neurons remain positively correlated with the first

stimulus and others become anticorrelated. Our model suggests

that selectivity is not lost; rather, some of the recorded neurons

may be trace nodes (the positively correlated neurons) and others

gate nodes (the negatively correlated neurons), and the majority of

stimulus selective neurons are not activated strongly enough to

participate in the sustained working memory representation.

General Discussion

In the present study, we described the eSTST model of the

attentional blink. This model concerns a modification of the STST

proposed by Bowman and Wyble (2007). The new model was born

out of a need to accommodate recent findings that posed a funda-

mental challenge to STST, most notably the fact that observers can

encode sequences of successive target items without suffering an

attentional blink. The key modification of STST that allows eSTST

to accommodate this result is the notion that attention allocation is

governed by competing inhibitory and excitatory inputs from

working memory processing and newly encountered targets, re-

spectively. This makes the model more flexible, as it allows for

attention to be sustained or retriggered while a first target is being

encoded into working memory.

The model also suggests that this state of affairs comes at a cost:

Although sustained attention may allow for accurate report of the

identities of several successive target items, the resulting memory

representations lack episodic distinctiveness. Observers can thus

report the identities of successive target items, but they have

difficulty recalling them in the correct order, different features of

successive multipart objects tend to be mispaired, and the ability to

encode repetitions is impaired.

The Episodic Distinctiveness Hypothesis

One implication of the model is that visual encoding is designed

to enhance the episodic structure of information encoded into
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working memory: Stimuli that are presented in an uninterrupted

sequence are encoded in parallel; stimuli that are interrupted by

gaps are segregated into temporally isolated representations. Thus,

we argue that the attentional blink is not a malfunction or limita-

tion of attentional control (as is assumed by the interference

account of Shapiro, Raymond, & Arnell, 1994; the refractory

account of Nieuwenhuis, Gilzenrat et al., 2005; and the temporary-

loss-of-control theory described by Di Lollo, Kawahara, Ghorashi,

& Enns, 2005). Rather, the blink reflects a cognitive strategy of

enforcing the episodic distinction between separately presented

targets.

Functionally, this is the result of a temporary inhibition of

attention, which attempts to delay new targets from entering the

encoding stage if there has been a gap in the target sequence.

However, presenting targets without interruption reveals the flex-

ibility of this mechanism in the form of sparing. We propose that

when sparing occurs, multiple targets enter the encoding stage at

the same time. The system can encode all of them but without

ensuring that they are episodically distinct.

Sparing represents a tradeoff between the benefit of encoding

multiple items in parallel and the detriment in maintaining their

episodic distinctiveness. This cost is manifest in a variety of

deficits, including interference between items (i.e., loss of T1 at

Lag 1), loss of temporal order, conjunctions between parts of

complex items, and increased repetition blindness.

The Limited Role of Distractors in Producing the Blink

A point of serious theoretical contention between competing

accounts of the blink is the role of distractors in an RSVP stream.

Many theoretical accounts describe a direct role for distractors in

causing the blink. In the case of the Di Lollo et al. (2005) TLC

account, the T1 � 1 distractor forces a reset of input filters to the

distractor category, such that a following T2 fails to be encoded as

a target. In interference theory, the T1 � 1 distractor enters

working memory with T1 and produces interference. Another

theory is described by Raymond et al. (1992), which proposes that

an attentional gate is shut and locked in response to the T1 � 1

distractor. A variant of this idea proposes that an inhibitory process

is initiated reactively by a distractor that immediately follows a

target (Olivers, 2007; Olivers & Meeter, in press; Raymond et al.,

1992).

The eSTST model proposes something quite different: The blink

is caused entirely by target processing. Mechanistically, the inhib-

itory connection from the binding pool to the blaster causes the

blink during encoding of a target. Distractors are inhibited at the

type layer and are incapable of directly affecting the binding

process. Their effect on the attentional blink is indirect in that they

mask the targets and thus lengthen the duration of encoding T1 and

reduce the reportability of T2.

One line of evidence supporting this idea stems from the fol-

lowing studies, which point to the fact that it is primarily the

masking properties of distractors that defines their role in the

attentional blink. Maki, Bussard, Lopez, and Digby (2003) dem-

onstrated that the pixel density of distractors is more important

than their conceptual familiarity to subjects. Their work, as well as

the experiments of Olivers et al. (2007), showed that false fonts are

similarly effective distractors as familiar characters, such as digits.

For word targets, Maki, Couture, Frigen, and Lien (1997) found

that word and nonword distractors produce similar blink effects.

Along similar lines, McAuliffe and Knowlton (2000) demonstrated

that manipulating the conceptual difference between T1 (a letter)

and its mask (V vs. inverted V) had no effect on the blink magni-

tude. Grandison, Ghiradelli, and Egeth (1997) also published a

series of studies that replaced the T1 � 1 item with simple stimuli,

including a white square, a white screen flash, and a metacontrast

box, and found blinks in each case.

A more direct prediction of the idea that target processing

causes the blink is that the effect should be observable in the

absence of post-T1 distractors. Experiments by Visser (2007) and

Ouimet and Jolicoeur (2007) have found exactly this result. In

some of the reported experiments, the interval between T1 and T2

is a blank display, and yet prominent blinks are reported for

difficult T1 tasks. Nieuwenstein, Potter, and Theeuwes (in press)

demonstrated that even for relatively easy T1 tasks (e.g., an un-

masked letter at 100-ms SOA), a prominent blink can be observed

if the T2 task is sufficiently difficult. These findings are difficult

to reconcile with the idea that the blink is induced by distractors,

as described by Olivers (2007), but they fit well with the theory of

competitive regulation of attention as described here.

Conclusion

In the present study, we proposed a computational model of the

attentional blink that explains this effect in terms of the interac-

tions between working memory encoding and mechanisms of

attention allocation. Central to this account is the notion that

working memory encoding of a first-target event suppresses the

allocation of attention to new perceptual inputs to prevent these

inputs from being integrated with the episodic memory of the first

target. To accommodate the fact that observers can encode se-

quences of successive targets without suffering an attentional

blink, the model assumes that this suppressive effect is counter-

acted by the excitation of attention by newly presented targets.

Consequently, the deployment of attention may be prolonged

across several successive target items, resulting in accurate report

of the target identities. Crucially, however, this ability to attend

and encode successive targets occurs at the expense of episodic

information; items are often recalled in an incorrect order, the

ability to detect repetitions is markedly reduced, and there is an

increase in binding errors for multipart objects.

This model suggests that the attentional blink reflects a self-

imposed limitation on the encoding of visual information. In

particular, it proposes an antagonistic relationship between en-

gagement of working memory encoding and the deployment of

attention. We suggest further that there could be a link between the

attentional blink and paradigms that measure an impairment in the

report of stimuli that are present for considerable periods. For

example, inattentional blindness is observed when subjects are

cognitively engaged; they fail to notice the onset or arrival of novel

or otherwise arresting stimuli (Fougnie & Marois, 2007; Simons &

Chabris, 1999). In such tasks, engagement of central mechanisms

may maintain a sustained suppression of the reflexive deployment

of attention by the visual system.

One implication of this idea is that there should be a connection

between the attentional blink and cognitive load, although more

data are necessary before a computationally explicit account of

cognitive load can be described. Specifically, it is necessary to
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investigate how the strength of the suppression that causes the

blink is affected by cognitive load. Preliminary efforts in this

direction (Olivers & Nieuwenhuis, 2005) suggest that this suppres-

sion is relaxed by distracting subjects with an additional task,

resulting in an attenuated blink effect. Likewise, the attentional

blink may be attenuated by engaging motion-processing mecha-

nisms, as suggested by the results of Arend, Johnston, and Shapiro

(2006). Further experimental work along these lines is needed to

understand the link between the attentional blink and cognitive

load effects that produce phenomena such as inattentional blind-

ness. Such results will allow models of the blink to be refined and

thereby applied to cognitively demanding tasks that people face in

more natural settings.
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Appendix A

Modeling Methods

Input

Each accuracy curve is created by running the model repeatedly as

target input strengths are iterated over specified ranges. The range of

values used for T1 and T2 were [.31, 1.39] in steps of .09. Encoding of

T1 and T2 identity and the probability of reporting the wrong order—that

is, P(swap)—are evaluated at each of the eight lags for each pairwise

combination of the 13 T1 and T2 values (i.e., 169 trials). In three or four

target sequences, targets are iterated over the same range in nine steps of

.135, resulting in 3ˆ9 or 4ˆ9 simulated trials in three or four target

conditions.

Time steps correspond to 10 ms. Target presentation times are

scheduled to occur at appropriate times for each condition to

simulate the chosen pattern of targets and distractors depending on

the stimulus onset asynchrony (SOA). Input node activation con-

tinues for a very brief period after the end of presentation of a

target, reflecting rapidly decaying information in early sensory

areas. Thus, during input of a target, inputj(t) is held at the corre-

sponding value chosen from the range above for 12 time steps for

100 ms SOA stimuli, 7 steps for 50 ms, and 13 steps for 110 ms,

followed by a linear decline to 0.0 in increments of .12 per time

step if that item is followed by another item (i.e., it is masked), or

.01 during a blank interval. This enhanced decay of targets fol-

lowed by other items reflects the effect of backward masking.

Type Activation

Activation of type nodes has the following dynamics.

typei(t) � (typei(t�1) � decay) � �inputi(t)

� (1� typeamp � {blaster(t�bdelay)}bthresh)�
� inhib(t) � gatefeedbacki(t)

{x}a� 1.0 if x � a

0.0 if x�a (A1)

In this activation equation, typei(t) is the activation of type i at time t,

inputi(t) is the input to that type, decay is the decay rate (.7). At each time

step, the input to a type is amplified if the blaster was above threshold

(bthresh � 1.7) bdelay time steps prior to time t. The amplification has

value typeamp, set at 2.5. The parameter bdelay is 4 for partial report (a

40-ms delay) and 1 for whole report simulation. The term inhib(t) is the

weak interference between coactive targets and is computed as the

bounded sum of type activation in Equation A2.

inhib(t) � �
j�1:4

[typej(t)]0
� � irate

	x]a
b

� b, if x � b

x, if x � a & x � b

a, if x � a (A2)

The term irate is a constant, set at .045. The term gatefeed-

backi(t) is the recurrent excitation from gates j � 1:4 in the binding

pool to type i, which can sustain that type during binding.

gatefeedbacki(t) � �MAX
j�1:4

(gateij(t))�
0

�

� feedbackrate (A3)

The parameter feedbackrate is set at .42. MAX represents a

function that takes the maximum value over the gate nodes (see

Yu, Giese, & Poggio, 2002, for discussion of the utility and

biological plausibility of MAX functions in neural networks).

The Binding Pool

The binding pool is an arrangement of nodes that allows the

model to store a link between a type and a token by holding an

attractor state in a self-excitatory node. The pool is populated by

binding units, one per combination of type i � [1, 4] and token j �

[1, 4]. Each binding unit consists of one gate and one trace node.

Gate nodes are excited by type nodes and receive an ordered

pattern of bias so that binding units for Token 1 are bound more

rapidly than units for Token 2 and so on.

gateij(t) � (gateij(t�1) � gdecay) � �[typei(t) � typethresh]0
�

� typeweight � binderbiasj�

� �[gateshutoffi(t) � gsthresh]0
1

� �
i�1:4

[traceij(t) � tracethresh]0
1� � gateinhib (A4)

Parameter typeweight is set to 0.25, typethresh to 2.0, gdecay to

0.93, and binderbiasj to [�.005, �.01, �.015, �.02] for token j �

[1, 2, 3, 4]. Variable gateshutoffi(t) represents the activation of a

node, defined below in Equation A6. When above threshold

gsthresh (value � 1.2), this node temporarily inactivates the gates

for type i after it has been bound and keeps them inactive until type

i is inactive. This mechanism prevents the system from encoding

spurious repetitions of a single, uninterrupted presentation of a

stimulus. The final term inhibits all gate nodes for token j once

it has been bound (i.e., a trace node crosses threshold traceth-

resh of value 10.0) to prevent that token from binding a second time.

(Appendixes continue)
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Parameter gateinhib is set at any arbitrarily large number to ensure

that gateij(t) is rendered inactive by any suprathreshold activity from

gateshutoff or trace nodes that inhibit it.

Trace nodes accumulate input from gate nodes without decay.

traceij(t) � [traceij(t�1)]0
100 � �[gateij(t)]0

� � gateweight�

� �[traceij(t�1) � tracethresh]0
001 � traceself� (A5)

When a trace node traceij crosses threshold tracethresh, it

becomes strongly self-excitatory (e.g., traceself is set at 10,000)

and thus is self-sustained at a ceiling value of 100. Restricting the

value of the difference traceij(t) � tracethresh to the range [0 –

.001] and then multiplying by a large value implements an all-or-

none attractor dynamic, which is necessary because of the coarse

time step. Parameter gateweight is 0.014.

When any trace node j has entered its attractor state, the corre-

sponding token j is then considered bound to type i (it is not

necessary to simulate tokens explicitly in this abstract representa-

tion). Because the time steps of our simulation are coarse, we

implement hard winner-take-all behavior between the trace nodes

for a single token, rather than simulate it through lateral inhibition.

Thus, as soon as traceij(t) crosses threshold, all other trace nodes

for the token j are immediately suppressed on that time step.

To ensure that a single type presentation is bound to only a single

token, all gates for type i are suppressed until that type node becomes

nearly inactive. This is implemented through a set of self-excitatory

nodes controlled by the following activation equation:

gateshutoffi(t) � (gateshutoffi(t�1) � gsleak)

� �[gateshutoffi(t�1) � gsthresh]0
001 � gsweight� � tboundi(t)

� �[typei(t) � gstypethresh]0
0.01 � gssustain� (A6)

When a token j is bound to type i (i.e., traceij exceeds tracethreshold),

the gateshutoff node for type i receives a brief pulse of input to push it into

an attractor state (tboundi(t) � 1.0 for one step). This gateshutoff node

suppresses gates for type i. As long as the type node i remains above

gstypethresh, gateshutoffi(t) receives sufficient input (from both itself and

the type node) to stay in an attractor. Parameter gssustain is set at 30. As

soon as the type node dips below gstypethresh � 4, the attractor state

collapses and the system becomes ready to encode a second instance of

type i. This circuit ensures that the system generally behaves sensibly

during rapid serial visual presentation with respect to repetitions; an

unbroken presentation of a target produces only a single tokenized rep-

resentation of that item. The visual input driving the type node has to

switch off at the input layer if the system is to encode a second tokenized

representation of the same item. Parameter gsleak is .7, gsthresh is 1.2,

and gsweight is 100.

The complete connectivity of nodes within the binding pool is

shown in Figure 21, separated into two parts for clarity. Figure 21A

depicts the interconnectivity for binding units for two types and one

token. Figure 21B depicts binding units for one type and two tokens.

Tokens

In this implementation, trace nodes in the binding pool effec-

tively represent tokens, because only a single feature (i.e., letter

identity) is bound to a token. For more complex implementations

(e.g., requiring a conjunction of features bound to a single token),

an explicit implementation of tokens would be required.

Blaster

The blaster is a single threshold node that amplifies input when

above threshold.

blaster(t) � (blaster(t�1) � bleak) � ��
i

inputi(t)

� (1�blasteramp � {blaster(t�bdelay)}bthresh)� � binhib(t) (A7)

The term bleak is .85. Crucial to the competitive regulation of

attention, the blaster amplifies its own input when above threshold

(see Equation A1). The term blasteramp is 0.75.

The term binhib(t) represents the top-down inhibition from ac-

tive gate nodes. To compute this term, the activation of all gates is

Figure 21. The complete connectivity of the binding pool, illustrating (A)

how two types compete for a single token and (B) how a type that has been

encoded is prevented from being encoded a second time until it has ceased

to be active. Also shown (B) is the pattern of bias inputs to the token gates

that force Token 1 to complete binding prior to Token 2, provided that

Token 1 has not already been bound. The gateshutoff node implements this

behavior. When triggered by successful completion of Token 1, it becomes

active and stays so until the type node F is no longer active. While active,

it prevents gate nodes from becoming active so that F cannot be spuriously

encoded twice from a single presentation. This mechanism comes with a

cost of repetition blindness. It is not shown here, but this same inhibitory

node acts across the entire set of four tokens.
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summed, multiplied by slope � .04, and divided by the same value

�1, to scale the values to the range [0, 1].

binhib(t) �

�
ij

[gateij(t)]0
� � slope

�
ij

[gateij(t)]0
� � slope �1

� binhibweight (A8)

Parameter binhibweight is 1.5.

Retrieval

Performance is evaluated at the end of each trial by taking inven-

tory of the tokens that are bound (i.e., active trace nodes in the binding

pool). Each instance of a token corresponds to one report of the type

to which it is bound. Order is determined by the order of the tokens.

Critical Parameters

There are several critical parameters that were used to tune

the model to fit the data set. (a) The strength of target input

is specified by two parameters defining upper and lower

bounds on a uniform distribution that determines baseline ac-

curacy of single target report. (b) The rate of encoding is

determined by the magnitude of the gate to trace weight:

gateweight. This parameter determines the length (and to some

degree depth; length and depth are not independent) of

the blink. (c) The strength of the inhibitory projection to the

blaster from gates: binhibweight determines, primarily, the

depth of the blink. (d) The weak inhibition between type nodes:

irate determines the degree to which T1 performance suffers

during Lag 1 sparing. (e) The delay of attentional deployment:

bdelay is varied to fit the magnitude of Lag 1 sparing, with a

longer delay leading to higher sparing. These parameters were

varied to fit the T1 and T2|T1 accuracy data in the attentional

blink (see Figure 11). Once these parameters are set, other

simulation outputs, such as the propensity to produce swap

errors, to be blind to repetition, or to successfully encode a

string of targets, are emergent properties of the SOA and

sequence of targets.

Appendix B

The Binding Pool and the Binding Problem

The type–token binding pool that we have implemented here

requires M � N nodes, where M is the number of types and N is

the number of tokens. The size of this pool is an important issue

that requires discussion of two points.

M � N Is Not the Combinatorial Explosion

The M � N factor is not the same as the combinatorial explosion

commonly referred to in discussion of the binding problem. In that

context, binding any M type to any other type using conjunctive

representations requires M 2 nodes (e.g., binding red to square

requires having a red-square node). Binding three types into one

object (e.g., a red- and green-colored square requires three types)

requires M 3 nodes to represent each possible instance of an item.

In comparison, the binding pool uses M � N nodes to encode N

representations in working memory (i.e., usually five or fewer) of

items of arbitrary complexity (i.e., any combination of the M types

can be combined into each representation).

Distributed Representation

This M � N solution described here is exhaustive and inefficient

in the sense that each combination of type and token is uniquely

represented by a conjunctive node. This implementation is in-

tended as a simplification of what can be implemented as a

distributed representation (O’Reilly, Busby, & Soto, 2003). Pre-

liminary modeling work has demonstrated that a binding pool with

distributed representations can be quite compact. Initial explora-

tion of this issue, described in Wyble and Bowman (2006), pre-

scribes a distributed implementation of the binding pool containing

just 500 nodes that can store distinct bindings between three tokens

and three arbitrary types from a population of 5,000 type nodes

without significant interference. Thus, the binding pool of 500

nodes stores arbitrary bindings between three tokens and three of

5,000 types. Therefore, the distributed solution to this problem

scales well to large-scale representational implementations, and

the binding pool can be much smaller than the population of type

nodes it indexes. With such an asymmetry between the size of

binding pool and type nodes, a compact population of binding

neurons in frontal areas could store information from a much

larger area of the cortex (e.g., posterior sensory areas of the brain).
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