The attracting centre of a continuous self-map of the interval

XIONG JINCHENG
University of Science and Technology of China, Hefei, Anhui, People's Republic of China and International Centre for Theoretical Physics, Trieste, Italy

(Received 15 August 1986 and revised 19 February 1987)

Abstract

Let f denote a continuous map of a compact interval I to itself. A point $x \in I$ is called a γ-limit point of f if it is both an ω-limit point and an α-limit point of some point $y \in I$. Let Γ denote the set of γ-limit points. In the present paper, we show that (1) $\bar{P}-\Gamma$ is either empty or countably infinite, where \bar{P} denotes the closure of the set P of periodic points, (2) $x \in I$ is a γ-limit point if and only if there exist y_{1} and y_{2} in I such that x is an ω-limit point of y_{1}, and y_{1} is an ω-limit point of y_{2}, and if and only if there exists a sequence y_{1}, y_{2}, \ldots of points in I such that x is an ω-limit point of y_{1}, and y_{i} is an ω-limit point of y_{i+1} for every $i \geq 1$, and (3) the period of each periodic point of f is a power of 2 if and only if every γ-limit point is recurrent.

1. Introduction

Throughout this paper f will be a continuous map of the interval $I=[0,1]$ to itself, P the set of periodic points of f, R the set of recurrent points of f, and Ω the set of nonwandering points of f.

For a subset Y of I, define $\Lambda(Y)=\bigcup_{x \in Y} \omega(x)$, where $\omega(x)$ is the set of ω-limit points of x. Let $\Lambda^{1}=\Lambda(I)$ and for any $n>1$, inductively define $\Lambda^{n}=\Lambda\left(\Lambda^{n-1}\right)$. Obviously, $\Lambda^{1} \supset \Lambda^{2} \supset \Lambda^{3} \supset \cdots$. The set $\Lambda^{\infty}=\bigcap_{n=1}^{\infty} \Lambda^{n}$ will be called the attracting centre of f.

We will say that a point y is a γ-limit point of $x \in I$ if $y \in \omega(x) \cap \alpha(x)$, where $\alpha(x)$ is the set of α-limit points of x. Let $\gamma(x)=\omega(x) \cap \alpha(x)$ and $\Gamma=\bigcup_{x \in I} \gamma(x)$.
$\operatorname{In}[8]$ the author investigated the set $\Omega-\bar{P}$ and showed that it is always countable. In this paper we show

Theorem 1. Suppose that f is a continuous map of the interval I. Then
(1) $\Omega-\Gamma$ is countable.
(2) $\Lambda^{1}-\Gamma$ and $\bar{P}-\Gamma$ are either empty or countably infinite.
A. N. Sharkovskii [6] has shown that Λ^{1} is closed and hence that $\bar{P} \subset \Lambda^{1}$. L. Block and E. Coven [1] have shown that $\omega(x)$ is an infinite minimal set for any $x \in \Lambda^{1}-\bar{P}$. It follows that $\Lambda^{2} \subset \bar{P}$, because each minimal set is contained in R and $\bar{R}=\bar{P}$ (see [7], for example). In [1] and [2], one can find examples in which $\Lambda^{1} \neq \bar{P}$. Therefore,
$\Lambda^{1}=\Lambda^{2}$ does not hold in general. However, we will prove
Theorem 2. Suppose that f is a continuous map of the interval I. Then

$$
=\Lambda^{\infty}=\cdots=\Lambda^{3}=\Lambda^{2}=\Lambda(\bar{P})=\Lambda(\Omega)=\Gamma .
$$

In particular, Γ is the attracting centre of f.
Remark 1. Theorem 2 shows that the following conditions are equivalent.
(1) $y \in I$ is an ω-limit point of a nonwandering point of f.
(2) $y \in I$ is an ω-limit point of a point in the closure of the set of periodic points of f.
(3) There is a point $x \in I$ such that $y \in I$ is both an ω-limit point and an α-limit point of x.
(4) For each $n \geq 2$, there are n points $x_{1}, x_{2}, \ldots, x_{n} \in I$ such that y is an ω-limit point of x_{1}, x_{1} is an ω-limit point of x_{2}, \ldots, and x_{n-1} is an ω-limit point of x_{n}.
(5) There is a sequence x_{1}, x_{2}, \ldots of points in I such that y is an ω-limit point of x_{1}, and x_{i} is an ω-limit point of x_{i+1} for every $i \geq 1$.

The continuous maps of the interval I into itself can be divided into two disjoint classes, determined by whether or not the period of each periodic point is a power of 2. It has been shown that maps in different classes have quite different dynamical properties. (See [3] for a survey, and [9] and [10] for some new results.) In the following theorem it will be shown that the class to which an interval map belongs is determined by whether or not $\Gamma-R$ is empty.

Theorem 3. Suppose that f is a continuous map of the interval I to itself. Then the following conditions are equivalent.
(1) The period of each periodic point of f is a power of 2 .
(2) Every γ-limit point of f is recurrent (i.e. $\Gamma=R$).

2. Preliminaries

Recall that f is a continuous map of the interval $I=[0,1]$ to itself. Let $x \in I$.
A point $y \in I$ is called an ω-limit point of x if there exist $n_{i} \rightarrow \infty$ such that $f^{n \prime}(x) \rightarrow y$. Let $\omega(x)$ denote the set of ω-limit points of x. We will use the symbols $\omega_{+}(x)$ (resp. $\left.\omega_{-}(x)\right)$ to denote the set of all points y such that there exist $n_{i} \rightarrow \infty$ such that $f^{n_{i}}(x) \rightarrow y$ and $y<f^{n_{i}}(x)$ (resp. $\left.f^{n_{i}}(x)<y\right)$ for every $i>0$. Clearly, $y \in \omega_{+}(x)\left(r e s p . ~ y \in \omega_{-}(x)\right)$ if and only if there exist $n_{i} \rightarrow \infty$ such that $f^{n_{i}}(x) \rightarrow y$ and $y<\cdots<f^{n_{2}}(x)<f^{n_{1}}(x)$ (resp. $\left.f^{n_{1}}(x)<f^{n_{2}}(x)<\cdots<y\right)$. It is clear that if $x \notin P$, then $\omega(x)=\omega_{+}(x) \cup \omega_{-}(x)$. Define $\Lambda_{+}=\bigcup_{x \in I} \omega_{+}(x)$ and $\Lambda_{-}=\bigcup_{x \in I} \omega_{-}(x)$.

A point $y \in I$ is called an α-limit point of x if there exist $n_{i} \rightarrow \infty$ and $x_{i} \rightarrow y$ such that $f^{n_{i}}\left(x_{i}\right)=x$ for every $i>0$. We will use the symbols $\alpha_{+}(x)$ (resp. $\left.\alpha_{-}(x)\right)$ to denote the set of all points y such that there exist $n_{i} \rightarrow \infty$ and $x_{i} \rightarrow y$ such that $f^{n_{i}}\left(x_{i}\right)=x$ and $y<x_{i}\left(\right.$ resp. $\left.x_{i}<y\right)$ for every $i>0$. It is clear that if $x \notin P$, then $\alpha(x)=\alpha_{+}(x) \cup$ $\alpha_{-}(x)$.

A point is called a γ-limit point of x if it is both an ω-limit point of x and an α-limit point of x. The symbol $\gamma(x)$ denotes the set of γ-limit points of x and
$\Gamma=\bigcup_{x \in I} \gamma(x)$. Define $\gamma_{+}(x)=\omega_{+}(x) \cap \alpha_{+}(x)$ and $\gamma_{-}(x)=\omega_{-}(x) \cap \alpha_{-}(x)$. Then $\Gamma_{+}=\bigcup_{x \in I} \gamma_{+}(x)$ and $\Gamma_{-}=\bigcup_{x \in I} \gamma_{-}(x)$.

The forward orbit $O_{P}(x)$ of $x \in I$ is the set $\left\{f(x), f^{2}(x), \ldots\right\}$ and the reverse orbit $O_{N}(x)$ of $x \in I$ is the set $\bigcup_{n=1}^{\infty} f^{-n}(x)$.
Let Y be a subset of I. \bar{Y} denotes the closure of Y as usual. A point $y \in I$ is called a right-sided (resp. left-sided) accumulation point of Y if for any $\varepsilon>0$, $(y, y+\varepsilon) \cap Y \neq \varnothing($ resp. $(y-\varepsilon, y) \cap Y \neq \varnothing)$. The right-sided closure \bar{Y}_{+}(resp., the left-sided closure \bar{Y}_{-}) is the union of Y and the set of right-sided (resp. left-sided) accumulation points of Y. A point which is both a right-sided and a left-sided accumulation point of Y is called a two-sided accumulation point of Y. It is easy to see that $\bar{Y}=\bar{Y}_{+} \cup \bar{Y}_{-}$.

We need the following known results.
Proposition A [5]. $x \in \Omega$ if and only if $x \in \alpha(x)$.
An interval (i.e. a connected subset of the real line) $J \subset I$ is said to be of positive (resp. negative) type if there exist $x^{\prime} \in J$ and $n^{\prime}>0$ such that $f^{\prime \prime}(x) \in J$, and for any $x \in J$ and any $n>0, x<f^{n}(x)\left(\right.$ resp. $\left.f^{n}(x)<x\right)$ provided $f^{n}(x) \in J$. An interval $J \subset I$ is said to be of free type if $f^{n}(x) \notin J$ for any $x \in J$ and any $n>0$.

Proposition B [4], [7]. If $J \subset I$ is an interval such that $J \cap P=\varnothing$, then one and only one of the following conditions holds:
(1) J is of positive type;
(2) J is of negative type;
(3) J is of free type.

The following proposition is a slightly stronger version of a theorem of Sharkovskii [6]. (See also [4].)

Proposition C. $\bar{P}_{+}-P \subset \Lambda_{+}$and $\bar{P}_{-}-P \subset \Lambda_{-}$.
Proof. Let $x \in \bar{P}_{-}-P$. Choose a sequence z_{1}, z_{2}, \ldots of periodic points of f such that $z_{i} \rightarrow x$ and $z_{1}<z_{2}<\cdots<x$. Let p_{i} denote the period of z_{i} with respect to f.

Fix $i>0$, and let $g=f^{p_{i}}$. Then

$$
K=L_{i} \cup g\left(L_{i}\right) \cup g^{2}\left(L_{i}\right) \cup \ldots
$$

is an interval, where $L_{i}=\left[z_{i}, x\right]$. Let n_{j} denote the period of z_{j} with respect to g. For $k=1,2$, or 3 , suppose a subsequence of $g^{n_{j+1}-k}\left(z_{j+1}\right), g^{n_{j+2}-k}\left(z_{j+2}\right), \ldots$ converges to $u_{k} \in \bar{K}$. It is clear that $g^{k}\left(u_{k}\right)=x$. If $u_{k^{\prime}}=u_{k^{\prime \prime}}$ for some k^{\prime} and $k^{\prime \prime}$ with $k^{\prime}<k^{\prime \prime}$, then

$$
g^{k^{\prime \prime}-k^{\prime}}(x)=g^{k^{\prime \prime}}\left(u_{k^{\prime}}\right)=g^{k^{\prime \prime}}\left(u_{k^{\prime \prime}}\right)=x,
$$

and so x is periodic. Thus u_{1}, u_{2}, and u_{3} are distinct points, and $u_{\vec{k}} \in K$, where $u_{\vec{k}}$ is the one which lies between the other two. Choose $v_{i} \in L_{i}$ and $\tilde{m}_{i}>0$ so that $u_{\tilde{k}}=g^{\dot{m}_{i}}\left(v_{i}\right)$. Let $m_{i}=\tilde{k}+\tilde{m}_{i}$. Then $g^{m_{i}}\left(v_{i}\right)=x$.

Summarizing, for each $i>0$, we have $v_{i} \in L_{i}$ and $m_{i}>0$ such that $f^{m_{i} p_{i}}\left(v_{i}\right)=x$.
Let $q_{i}=p_{i} m_{i}$. Since $f^{q_{i}}\left(z_{i}\right)=z_{i}$ and $f^{q_{i}}\left(v_{i}\right)=x$, it follows that $f^{q_{i}}\left(L_{i}\right) \supset L_{i}$. Let $F_{0}=I$ and inductively define $F_{n}=F_{n-1} \cap f^{t_{n}}\left(L_{n}\right), n>0$, where $t_{n}=\sum_{i=1}^{n} q_{i}$. Obviously, for any $n \geq 0, F_{n}$ is closed. Note that $F_{n} \neq \varnothing$ for any $n \geq 0$. On the other hand, it is
clear that $F_{0} \supset F_{1} \supset F_{2} \supset \cdots$. Hence, $\bigcap_{n=1}^{\infty} F_{n} \neq \varnothing$. Let $y \in \bigcap_{n=1}^{\infty} F_{n}$. Then $f^{t_{n}}(y) \in L_{n}$ for any $n>0$. Therefore $f^{t_{n}}(y) \rightarrow x$, and since $x \notin P, f^{t_{n}}(y)<x$ for every $n>0$. Thus $x \in \omega_{-}(y)$, completing the proof of the proposition.

Proposition D [9]. The following conditions are equivalent.
(1) The period of each periodic point is a power of 2.
(2) The set $\bar{P}-R$ is countable.

Proposition E [10]. If the period of each periodic point is a power of 2, then for any $x \in \bar{P}-P$, any $n \geq 0$, and any odd integer $m>0$, between x and $f^{m 2^{n}}(x)$ there is a periodic point with period 2^{n}, and there is no periodic point with period $2^{n^{\prime}}$ for every $n^{\prime}<n$.

3. Proof of theorem 1

Lemma 1. If $y \in \Omega$, then
(1) $\omega_{+}(y)=\gamma_{+}(y)$ and $\omega_{-}(y)=\gamma_{-}(y)$,
(2) $\omega(y)=\gamma(y)$.

Therefore $\Gamma \supset \Lambda(\Omega)$.
Proof. (1) Without loss of generality, we prove only that $\omega_{+}(y)=\gamma_{+}(y)$. Let $x \in \omega_{+}(y)$. There exist $n_{i} \rightarrow \infty$ such that $f^{n_{i}}(y) \rightarrow x$ and $x<f^{n_{i}}(y)$ for every $i>0$. It follows from Proposition A that $y \in \alpha(y)$. It is easy to see that $f^{n}(y) \in \alpha(y)$ for any $i>0$. Hence, it follows immediately that $x \in \alpha_{+}(y)$, and so $x \in \gamma_{+}(y)$. This shows that $\omega_{+}(y) \subset$ $\gamma_{+}(y)$. On the other hand, it is trivial that $\omega_{+}(y) \supset \gamma_{+}(y)$.
(2) If $y \in P$, it is clear that $\omega(y)=\gamma(y)$. If $y \notin P$, then $\omega(y)=\omega_{+}(y) \cup \omega_{-}(y)=$ $\gamma_{+}(y) \cup \gamma_{-}(y) \subset \gamma(y)$, and hence $\omega(y)=\gamma(y)$.
Lemmia 2. For $y \in I$,
(1) $\overline{\left.O_{N}(y)\right)_{+}}=O_{N}(y) \cup \alpha_{+}(y)$, and
(2) $\overline{\left(O_{N}(y)\right)_{-}}=O_{N}(y) \cup \alpha_{-}(y)$.

Proof. Without loss of generality, we prove only (1). Obviously, $\overline{\left(O_{N}(y)\right)_{+}} \supset O_{N}(y) \cup$ $\alpha_{+}(y)$. On the other hand, if x is a right-sided accumulation point of $O_{N}(y)$, then we may choose a sequence $v_{i} \rightarrow x$ of points in $O_{N}(y)$ such that $x<v_{i}$ for every $i \geq 1$. Let $m_{i}>0$ be such that $f^{m_{i}}\left(v_{i}\right)=y$. If the sequence m_{i} has a constant subsequence $m_{i(j)}=m$, then $f^{m}\left(v_{i(j)}\right)=y$ and $f^{m}(x)=y$, i.e. $x \in O_{N}(y)$. If the sequence m_{i} has a subsequence $m_{i(j)} \rightarrow \infty$, then $x \in \alpha_{+}(y)$ may be shown by verifying that the sequence $m_{i(j)}$ and the sequence $v_{i(j)}$ satisfy the conditions of the definition of $\alpha_{+}(y)$. Therefore, $\overline{\left(O_{N}(y)\right)_{+}} \subset O_{N}(y) \cup \alpha_{+}(y)$.

Lemma 3. For $y \in I$,
(1) $\omega_{+}(y) \cap \overline{\left(O_{N}(y)\right)_{+}}=\gamma_{+}(y)$, and
(2) $\omega_{-}(y) \cap \overline{\left(O_{N}(y)\right)_{-}}=\gamma_{-}(y)$.

Proof. Without loss of generality, we prove only (1). By lemma 2,

$$
\omega_{+}(y) \cap{\overline{\left(O_{N}(y)\right)_{+}}}=\left(\omega_{+}(y) \cap O_{N}(y)\right) \cup \gamma_{+}(y)
$$

It is trivial that (1) holds if $\omega_{+}(y) \cap O_{N}(y)=\varnothing$. If $\omega_{+}(y) \cap O_{N}(y) \neq \varnothing$, choose a
point x in this set, and let $m>0$ be such that $f^{m}(x)=y$. Since $x \in \omega_{+}(y)$, we know that $y \in \omega_{+}(y)$. Hence y is recurrent, and so nonwandering. By lemma $1, \omega_{+}(y)=$ $\gamma_{+}(y)$, and hence (1) follows.

Lemma 4. (1) If $x \in \Lambda_{+}$, and if for every $\varepsilon>0$ there exist $v \in(x, x+\varepsilon)$ and $m>0$ such that $f^{m}(v) \in(x, x+\varepsilon)$ and $f^{m}(x)>x$, then $x \in \Gamma_{+}$.
(2) If $x \in \Lambda_{-}$, and if for every $\varepsilon>0$ there exist $v \in(x-\varepsilon, x)$ and $m>0$ such that $f^{m}(v) \in(x-\varepsilon, x)$ and $f^{m}(x)<x$, then $x \in \Gamma_{-}$.
Proof. Without loss of generality, we prove only (1). Let $x \in \Lambda_{+}$and let y be a point such that $x \in \omega_{+}(y)$. There exist $n_{i} \rightarrow \infty$ such that $f^{n_{i}}(y) \rightarrow x$ and $x<f^{n_{i}}(y)$ for every $i>0$. For each $i>0$, choose $v_{i} \in\left(x, f^{n_{i}}(y)\right)$ and $m_{i}>0$ such that $f^{m_{i}}\left(v_{i}\right) \in\left(x, f^{n_{i}}(y)\right)$ and $f^{m_{i}}(x)>x$. If the sequence m_{i} has a subsequence $m_{i(j)}$ such that $f^{m_{i(j)}}(x) \rightarrow x$, then $x \in R$, and so $x \in \omega_{+}(x)=\gamma_{+}(x)$ by lemma 1 . If no such subsequence exists, then there exists $i^{\prime}>0$ such that $f^{m_{i}}(x)>f^{n_{i}}(y)$ for every $i>0$. Choose $N>0$ such that $f^{m_{i}}\left(v_{i}\right) \in\left(x, f^{n_{i}}(y)\right)$ whenever $i \geq N$. Let $z=f^{n_{i}}(y)$. Since $z \in f^{m_{i}}\left(\left(x, f^{n_{i}}(y)\right)\right.$ for every $i \geq N$, we know that $x \in \overline{\left(O_{N}(z)\right)_{+}}$. Clearly, $\omega_{+}(y)=\omega_{+}(z)$. Therefore $x \in$ $\omega_{+}(z) \cap{\overline{\left(O_{N}(z)\right)}}_{+}=\gamma_{+}(z)$ by lemma 3.

Proposition 1. Suppose that f is a continuous map of the interval I. Let D denote a connected component of $I-P$, and let a denote the left end point of D, b the right end point of D. Then
(1) If D is of positive (resp. negative) type, then $b \in \Gamma_{+} \cup P\left(\right.$ resp. $\left.a \in \Gamma_{-} \cup P\right)$.
(2) If D is of free type, then either $a \in \Gamma_{-} \cup P$ or $b \in \Gamma_{+} \cup P$.

Proof. (1) Suppose D is of positive type. If $b \in P$, there is nothing to prove. Assume then that $b \notin P$. In this case, $b \in D$. Since an interval of positive type is not a singleton, we see that $b \in \bar{P}_{+}-P$. It follows from Proposition C that $b \in \omega_{+}(y)$ for some $y \in I$.

Since D is of positive type, we may choose $d \in D$ and $k>0$ such that $f^{k}(d) \in D$ and $d<f^{k}(d)$. Since D contains no periodic points, it follows that $b<f^{k}(b)$.

We verify that b satisfies the hypotheses of lemma 4(1). Let $\varepsilon>0$. Choose a periodic point $u \in\left(b, f^{k}(b)\right) \cap(x, x+\varepsilon)$, and let m denote the period of u. Since $b \in \bar{P}$, it follows that $f^{m}(b) \notin D$. If $f^{m}(b) \leq a$, then $\left.f^{m}(b, u)\right) \supset[d, b]$, and hence $f^{m+k}([d, b]) \supset[d, b]$, by the fact that $f^{k}([d, b]) \supset(b, u)$. Therefore there is a periodic point in $[d, b]$, which is contained in D, a contradiction. Thus the only possibility is that $f^{m}(b)>b$. We have verified that the hypotheses of lemma 4(1) are satisfied by b, and hence $b \in \Gamma_{+}$.
(2) Suppose D is of free type. If either a or b is periodic, there is nothing to prove. Assume then that neither a nor b is periodic. It follows that $a, b \in D$ and D is closed. We divide our discussion into three cases.
Case I. $a=0$. In this case $D=[0, b]$ and $b \in \bar{P}_{+}-P$. By proposition C, we know that $a \in \Lambda_{+}$. Let $\varepsilon>0$. Choose a periodic point $v \in(b, b+\varepsilon)$ and let the period of v be m. Then $f^{m}(v)=v \in(b, b+\varepsilon)$ and $f^{m}(b)>b$, because $f^{m}(0)>0$. Therefore it follows from lemma 4 that $b \in \Gamma_{+}$.

Case II. $b=1$. In this case, an argument similar to the one used in case I leads us to the fact that $a \in \Gamma_{\ldots}$.

Case III. $0<a \leq b<1$. In this case, $a \in \bar{P}_{-}-P$ and $b \in \bar{P}_{+}-P$. By proposition C, $a \in \Lambda_{-}$and $b \in \Lambda_{+}$. To prove that either $a \in \Gamma_{-}$or $b \in \Gamma_{+}$, we show that $b \in \Gamma_{+}$under the assumption that $a \notin \Gamma_{-}$. First, there exists $\delta^{\prime}>0$ such that $O_{P}(a) \cap\left(a-\delta^{\prime}, a\right)=\varnothing$. (If not, $a \in \omega_{-}(a), a$ is a recurrent point, and hence $a \in \gamma_{-}(a)$ by lemma 1, contradicting our assumption.) Then $O_{P}(a) \cap\left(a-\delta^{\prime}, b\right]=\varnothing$ because D is of free type. Second, it follows from lemma 4 that we may choose $\delta>0$ with $\delta^{\prime}>\delta>0$ such that whenever $m>0$ with $f^{m}(u) \in(a-\delta, a)$ for some $u \in(a-\delta, a)$, then $f^{m}(a)>a$.

We verify that b satisfies the hypotheses of lemma 4(1). We have shown that $b \in \Lambda_{+}$. Let $\varepsilon>0$. Choose a periodic point $u \in(a-\delta, a)$ and let p be its period, choose a periodic point $v \in(b, b+\varepsilon)$ and let q be its period. Clearly, $f^{p q}(v)=v \in$ $(b, b+\varepsilon)$. On the other hand, since $f^{p q}(u)=u \in(a-\delta, a)$, it follows that $f^{p q}(a)>a$, and hence that $f^{p q}(b)>b$. Therefore $b \in \Gamma_{+}$.

Corollary 1. Suppose that f is a continuous map of the interval I. Then
(1) $\min \bar{P} \in \Gamma_{+} \cup P$ and $\max \bar{P} \in \Gamma_{-} \cup P$. In particular, $\min \bar{P}$ and $\max \bar{P}$ are γ-limit points.
(2) No end point of I is in $\Omega-\Gamma$.
(3) If a two-sided accumulation point of periodic points is not periodic, then it is either in Γ_{+}or in Γ_{-}. Therefore $\bar{P}_{+} \cap \bar{P}_{-} \subset \Gamma$.

Proof. (1) If $\min \bar{P}$ is not periodic, then $[0, \min \bar{P}]$ is a connected component of $I-P$ which is not of negative type. If $[0, \min \bar{P}]$ is of positive type, then its right end point $\min P$ is in $\Gamma_{+} \cup P$ by proposition 1. In the case that $[0, \min \bar{P}]$ is of free type, it follows from proposition 1 that $\min \bar{P} \in \Gamma_{+} \cup P$, because $0 \notin \Gamma_{-}$.

By a similar argument, we also see that $\max \bar{P} \in \Gamma_{-} \cup P$.
(2) If $0 \in \Omega$, then $0 \in \bar{P}$ by lemma 2.7 in [5], and hence it follows by (1) of this corollary that $0 \in \Gamma$. Similarly, if $1 \in \Omega$, then $1 \in \Gamma$.
(3) Let x be a two-sided accumulation point of P. If x is not periodic, then the singleton $\{x\}$ is a connected component of $I-P$ which is of free type, and hence its unique end point x is either in Γ_{+}or in Γ_{-}, by proposition 1 .
Proof of theorem 1. (1) For any subset Y of I, each point of $\bar{Y}-\left(\bar{Y}_{+} \cap \bar{Y}_{-}\right)$is an end point of a connected component of $I-\bar{Y}$. Since $I-\bar{Y}$ has only countably many connected components, $\bar{Y}-\left(\bar{Y}_{+} \cap \bar{Y}_{-}\right)$is a countable set. It follows that $\bar{P}-$ ($\bar{P}_{+} \cap \bar{P}_{-}$) is countable. By corollary $1, \bar{P}-\Gamma$ is also countable. It follows from [8] that $\Omega-\bar{P}$ is countable, and so is $\Omega-\Gamma$.
(2) We claim that if Y is a strictly invariant subset of I, and Z an invariant subset of I containing P, then $Y-Z$ is either empty or infinite. To show this, note that if $Y-Z \neq \varnothing$, then we may choose by induction a sequence y_{1}, y_{2}, \ldots such that $y_{n} \in Y-Z$ and $y_{n}=f\left(y_{n+1}\right)$ for every $n \geq 1$. Since there is no periodic point in $Y-Z$, the points y_{1}, y_{2}, \ldots are pairwise distinct, and hence $Y-Z$ is infinite. The proof of the claim is complete.

It follows from the claim above that $\Lambda^{1}-\Gamma$ and $\bar{P}-\Gamma$ are either empty or infinite, because Λ^{1} and \bar{P} are strictly invariant and Γ is invariant. On the other hand, $\Lambda^{1}-\Gamma$ and $\bar{P}-\Gamma$, as subsets of the countable set $\Omega-\Gamma$, are countable.

4. Proof of theorem 2

Lemma 5. $\Omega \supset \Lambda^{1} \supset \bar{P} \supset \Gamma$.
Proof. The inclusion $\Omega \supset \Lambda^{1}$ is obvious, and the inclusion $\Lambda^{1} \supset \bar{P}$ is an immediate consequence of the theorem of Sharkovskii mentioned in § 1. (See also proposition C.)

It remains to prove that $\bar{P} \supset \Gamma$. To do this, assume that $x \in \Gamma-\bar{P}$. Let y be such that $x \in \omega(y) \cap \alpha(y)$, and D be the connected component of $I-\bar{P}$ containing x. Clearly D is not of free type. By proposition B, we may assume, without loss of generality, that D is of positive type. Since $x \in \omega(y)$, there exist $n_{i} \rightarrow \infty$ such that $f^{n}(y) \rightarrow x$. Let i be an integer such that $f^{n_{i}}(y) \in D$. Since D is of positive type, we have that $f^{n_{1}}(y)<x$. Since $x \in \alpha(y)$, there exists $u \in D \cap\left(f^{n_{1}}(y), 1\right]$ such that $f^{m}(u)=$ y for some $m>0$. Then $f^{m+n_{i}}(u)=f^{n_{i}}(y)$. Hence D fails to be of positive type, a contradiction.

Lemma 6. For $y \in I$,
(1) $\omega_{+}(y) \cap \alpha_{-}(y) \subset \Gamma_{+} \cup P$, and
(2) $\omega_{-}(y) \cap \alpha_{+}(y) \subset \Gamma_{-} \cup P$.

Proof. Without loss of generality, we prove only (1). Let $x \in \omega_{+}(y) \cap \alpha_{-}(y)$. If $x \notin \Gamma_{+}$, then it follows from lemma 3 and lemma 4 that there exists $\varepsilon>0$ such that
(a) $(x, x+\varepsilon) \cap O_{N}(y)=\varnothing$, and
(b) if $m>0$ and $f^{m}(u) \in(x, x+\varepsilon)$ for some $u \in(x, x+\varepsilon)$, then $f^{m}(x) \leq x$.

Since $x \in \omega_{+}(y)$, we may choose m and n with $m>n>0$ such that $f^{m}(y), f^{n}(y) \in$ $(x, x+\varepsilon)$. Then by condition (b), $f^{m-n}(x) \leq x$. On the other hand, it follows from the condition (a) that $f^{m-n}(x) \geq x$. For if $f^{m-n}(x)<x$, then $f^{m-n}((x, x+\varepsilon)) \supset$ ($\left.f^{m-n}(x), x\right)$, which contains points of $O_{N}(y)$ because $x \in \alpha_{-}(y)$. Therefore $x=$ $f^{m-n}(x)$ and x is a periodic point.

Proposition 2. Suppose that f is a continuous map of the interval I. Then $\Gamma=\Gamma_{+} \cup$ $\Gamma_{-} \cup P$.
Proof. Obviously, $\Gamma \supset \Gamma_{+} \cup \Gamma_{-} \cup P$. On the other hand, it is easily seen that $\omega(y)$ is a periodic orbit if y is periodic. If y is not periodic, then it follows that $\omega(y)=$ $\omega_{+}(y) \cup \omega_{-}(y)$ and $\alpha(y)=\alpha_{+}(y) \cup \alpha_{-}(y)$. Therefore

$$
\begin{aligned}
\gamma(y) & =\gamma_{+}(y) \cup \gamma_{-}(y) \cup\left(\omega_{+}(y) \cap \alpha_{-}(y)\right) \cup\left(\omega_{-}(y) \cap \alpha_{+}(y)\right) \\
& \subset \Gamma_{+} \cup \Gamma_{-} \cup P
\end{aligned}
$$

by lemma 6. Thus $\Gamma=\bigcup_{y \in I} \gamma(y) \subset \Gamma_{+} \cup \Gamma_{-} \cup P$.
Lemma 7. Let $y \in I-P$, and for each $n \geq 0$, let C_{n} denote the connected component of $I-O_{N}(y)$ containing $f^{n}(y)$. Then
(1) $f^{n}\left(\bar{C}_{0}\right) \subset \bar{C}_{n}$, and
(2) $\bar{C}_{0} \cap \Gamma \neq \varnothing$.

Proof. (1) $f^{n}\left(C_{0}\right)$ is a connected subset of $I-O_{N}(y)$ containing $f^{n}(y)$. Therefore $f^{n}\left(C_{0}\right) \subset C_{n}$, and so $f^{n}\left(\bar{C}_{0}\right) \subset \bar{C}_{n}$.
(2) If $\bar{C}_{0} \cap P \neq \varnothing$, there is nothing to prove. Assume then that $\bar{C}_{0} \cap P=\varnothing$. In this case, \bar{C}_{0} is contained in some connected component D of $I-P$. Let $\bar{C}_{0}=[a, b]$, and let a^{\prime} denote the left end point of D, b^{\prime} the right end point of D.

We claim that \bar{C}_{0} and D have at least one end point in common. If not, then $a^{\prime}<a \leq y \leq b<b^{\prime}$. Since $\left(a^{\prime}, a\right] \cap O_{N}(y) \neq \varnothing$ and $\left(b, b^{\prime}\right] \cap O_{N}(y) \neq \varnothing, D$ is not of positive type, of negative type, or of free type. This contradicts proposition B.

If the end points of \bar{C}_{0} and of D coincide, then $\bar{C}_{0} \cap \Gamma \neq \varnothing$ because at least one of the endpoints of D is in Γ by proposition 1 .

Assume then, without loss of generality, that $a^{\prime}<a$. In this case, it follows that D is of positive type, because $\left(a^{\prime}, a\right] \cap O_{N}(y) \neq \varnothing$. Then the right end point $b=b^{\prime}$ of D is in $\Gamma_{+} \cup P$.

The proof is complete.
Proof of theorem 2. Lemma 1 shows that $\Gamma \supset \Lambda(\Omega)$, and the inclusions $\Lambda(\Omega) \supset \Lambda^{2} \supset$ $\Lambda(\bar{P}) \supset \Lambda(\Gamma)$ are immediate consequences of lemma 5 .

We prove that $\Lambda(\Gamma) \supset \Gamma$ as follows. Let $x \in \Gamma$. Obviously $x \in \Lambda(\Gamma)$ if x is periodic. Assume then that $x \notin P$. Then either $x \in \Gamma_{+}$or $x \in \Gamma_{-}$by proposition 2 . Assume, without loss of generality, that $x \in \Gamma_{+}$. Let y be such that $x \in \gamma_{+}(y)$, and C_{n} the connected component of $I-O_{N}(y)$ containing $f^{n}(y)$. Since $x \in \gamma_{+}(y)$, there exist $n_{i} \rightarrow \infty$ such that $f^{n_{i}}(y) \rightarrow x, x<\cdots<f^{n_{2}}(y)<f^{n_{1}}(y)$, and for every $i>0$ the interval $\left(f^{n_{i+1}}(y), f^{n_{i}}(y)\right)$ contains at least two distinct points of $O_{N}(y)$. Then the intervals $\bar{C}_{n_{1}}, \bar{C}_{n_{2}}, \ldots$ are pairwise disjoint and $L_{i} \rightarrow 0$, where L_{i} denotes the length of $\bar{C}_{n_{i}}$. By lemma $7(2)$, there exists $u \in \bar{C}_{0} \cap \Gamma$, and it follows from lemma $7(1)$ that $\mid f^{n_{1}}(u)-$ $f^{n_{i}}(y) \mid \leq L_{i}$. Therefore $f^{n_{i}}(u) \rightarrow x$, and so $x \in \Lambda(\Gamma)$.

Up to now, we have shown that

$$
\Gamma=\Lambda(\Omega)=\Lambda^{2}=\Lambda(\bar{P})=\Lambda(\Gamma) .
$$

Then it follows by induction that for every $n \geq 2$,

$$
\Lambda^{n+1}=\Lambda\left(\Lambda^{n}\right)=\Lambda(\Gamma)=\Gamma
$$

The proof of theorem 2 is completed.

5. Proof of theorem 3

$(1) \Rightarrow(2)$. Suppose that condition (1) holds. Let $x \in \Gamma$. We show that $x \in R$ as follows. Obviously, $x \in R$ if x is periodic. Assume then that $x \notin P$.
$\Gamma=\Lambda(\bar{P})$ by theorem 2 , so there exists $y \in \bar{P}$ such that $x \in \omega(y)$. Since x is not periodic, y is not either. Therefore $x \in \omega_{+}(y) \cup \omega_{-}(y)$. We may assume, without loss of generality, that $x \in \omega_{+}(y)$. Then there exist $n_{i} \rightarrow \infty$ such that $f^{n_{i}}(y) \rightarrow x$ and $x<f^{n_{i}}(y)$ for every $i>0$.

Given $\varepsilon>0$, let $p>0$ be the least integer such that there is a periodic point in ($x, x+\varepsilon$) with period 2^{p}, and let u be the smallest periodic point in $(x, x+\varepsilon)$ with period 2^{p}. Choose $j>0$ such that $x<f^{n}(y)<u$. Let $q>0$ be the least integer such that there is a periodic point in $\left(x, f^{n}(y)\right)$ with period 2^{q}, and v a periodic point in $\left(x, f^{n_{j}}(y)\right)$ with period 2^{q}. Clearly, $q>p$. Then, let $i^{\prime}>0$ be such that $n_{i}>n_{j}$ and $f^{n}(y) \in(x, v)$ whenever $i \geq i^{\prime}$.

Fix $i \geq i^{\prime}$. Let $n_{i}-n_{j}=m_{i} 2^{t_{i}}$, where $t_{i}>0$ and $m_{i}>0$ is odd. We claim that $t_{i}=q$. For if $t_{i}<q$, then by proposition E , there would be a periodic point between $f^{n}(y)$ and $f^{n_{i}}(y)\left(=f^{m_{i} 2^{t_{1}}}\left(f^{n_{i}}(y)\right)\right)$ with period $2^{t^{i}}$, contradicting the definition of q, and if $t_{i}>q$, then by the same proposition, there would be no periodic point with period 2^{q} between the two points above.

Therefore if we write $n_{i}-n_{j}+2^{q}=\tilde{m}_{i} 2^{\tilde{i}_{i}}$, where $\tilde{t}_{i}>0$ and $\tilde{m}_{i}>0$ is odd, then $\tilde{t}_{i}>q$. By proposition E , between $f^{n_{\mathrm{i}}+2^{q}}(y)$ and $f^{n_{j}}(y)$ there is no periodic point with period either 2^{p} or 2^{q}. Thus, $f^{n_{i}+2^{q}}(y) \in(v, u)$.

Since $f^{n_{i}+2^{q}}(y) \rightarrow f^{2^{9}}(x)$, we have that $f^{2^{q}}(x) \in(x, x+\varepsilon)$. This shows that $x \in R$ and the proof of the implication (1) $\Rightarrow(2)$ is complete.
(2) $\Rightarrow(1)$. If $\Gamma=R$, then $\bar{P}-R$ is countable by theorem 1 . Therefore, it follows from proposition D that (1) holds.
Acknowledgments. The author would like to thank Professor Abdus Salam, the International Atomic Energy Agency and UNESCO for hospitality at the International Centre for Theoretical Physics, Trieste.

REFERENCES

[1] L. Block \& E. Coven. ω-limit sets for maps of the interval. Preprint, Wesleyan Univ., 1985.
[2] H. Chu \& J.-C. Xiong. A counterexample in dynamical systems of the interval. Proc. Amer. Math. Soc. 97 (1986), 361-366.
[3] W. A. Coppel. Maps of an interval. IMA Preprint Series \#26, 1983.
[4] W. A. Coppel. Continuous maps of the interval. Xeroxed notes, 1984.
[5] E. Coven \& Z. Nitecki. Non-wandering sets of the powers of maps of the interval. Ergod. Th. Dynam. Sys., 1 (1981), 9-31.
[6] A. N. Sharkovskii. On a theorem of G. D. Birkhoff. Dopovidi Akad. Nauk. Ukrain. RSR Ser. A, 1967, 429-432.
[7] J.-C. Xiong. $\Omega(f \mid \Omega(f))=\overline{P(f)}$ for every continuous self-map f of the interval. Kexue Tongbao (Chinese Ed.) 27 (1982), 513-514, and Kexue Tongbao (English Ed.) 28 (1983), 21-23.
[8] J.-C. Xiong. Non-wandering sets of continuous interval self-maps. Kexue Tongbao (English Ed.) 29 (1984), 1432-1434.
[9] J.-C. Xiong. Sets of recurrent points of continuous maps of the interval. Proc. Amer. Math. Soc. 95 (1985), 491-494.
[10] J.-C. Xiong. Set of almost periodic points of a continuous self-map of an interval. Acta Mathematica Sinica (new series) 2 (1986), 73-77.

