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Abstract

We propose a massively parallelizable algorithm for the classical assignment problem.

The algorithm operates like an auction whereby unassigned persons bid simultaneously for

objects thereby raising their prices. Once all bids are in, objects are awarded to the highest

bidder. The algorithm can also be interpreted as a Jacobi - like relaxation method for solving a

dual problem. Its (sequential) worst - case complexity, for a particular implementation that uses

scaling, is O(NAlog(NC)) where N is the number of persons, A is the number of pairs of

persons and objects that can be assigned to each other, and C is the maximum absolute object

value. Computational results show that, for large problems, the algorithm is competitive with

existing methods even without the benefit of parallelism. When executed on a parallel machine,

the algorithm exhibits substantial speedup.

* Work supported by Grant NSF-ECS-8217668. Thanks are due to J. Kennington and L.

Hatay of Southern Methodist Univ. for contributing some of their computational experience.
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1. Introduction

Relaxation methods for optimal network flow problems resemble classical coordinate

descent, Jacobi, and Gauss-Seidel methods for solving unconstrained nonlinear optimization

problems or systems of nonlinear equations. They operate on a dual problem which is

unconstrained and involves a dual variable for every node (also called a node price). In their pure

form they modify the node prices one at a time using only local node information while aiming to

improve the dual cost. They are well suited for distributed implementation on massively parallel

machines.

For problems with strictly convex arc costs relaxation methods can be shown to

converge to the correct solution under mild additional assumptions. An important property of

strictly convex cost problems is that the dual cost function is differentiable. This facilitates the

use of the relaxation idea because at any nonoptimal dual vector one can find a single node price

coordinate along which the dual cost can be improved. However, the convergence properties of

the method do not follow from classical results of unconstrained optimization because the dual

cost function is not strictly convex and does not have bounded level sets. Nonetheless there is

sufficient structure to guarantee convergence, which can also be shown for a totally

asynchronous implementation where price updates at each node are carried out asynchronously

with out-of-date price information from neighboring nodes [1], [2]. Computational experiments

with parallel relaxation methods applied to strictly convex arc cost problems have been very

encouraging [3], [4].

By contrast, for problems where the arc costs are linear the dual cost function is

nondifferentiable (piecewise linear). As a result the relaxation idea may encounter difficulty at

points where the dual cost cannot be improved in any coordinate direction as seen in Fig. 1.
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Figure 1: Illustration of the difficulty of the relaxation approach
for linear arc costs. At the indicated point it is impossible to
improve the dual cost by changing any single price.

One approach to overcome the difficulty has been pursued by the author and his

coworkers for the past several years [5]-[8]. In this approach, in addition to the single coordinate

relaxation steps, one occassionally changes the prices of several nodes as a group as illustrated in

Figure 2. Unfortunately, however, these multiple node price changes need global node price

information, thereby substantially complicating the distributed implementation of the algorithm.

Nonetheless, public domain sequential codes based on this approach have proved highly

successful, and have outperformed the classical primal simplex and primal-dual methods by a

substantial margin on standard benchmark problems [6]-[8], and by an overwhelming margin on

large problems [7], [8].
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Figure 2: Illustration of the first approach for overcoming the difficulty of Fig.
1. The idea is to reduce the dual cost by changing simultaneously the
prices of several nodes.

A second approach for overcoming the difficulty shown in Fig. 1, that is more amenable

to parallelization, is based on performing single node price changes exclusively. Some of these

price changes may worsen the dual cost by small amounts, but Fig. 3 illustrates that if the price

changes are properly regulated, the algorithm can evenually approach the optimal solution.
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Figure 3: Relaxation approach whereby single node price
changes are performed exclusively even if this leads to
deterioration of the dual cost. If the size of the price changes is
properly regulated, the method can approach the optimal solution.

This second approach was first proposed for the classical assignment problem in 1979 by

the author in an unpublished report [9], and was also briefly described in an extended abstract

[10]. The corresponding method, called the auction algorithm, is the subject of the present paper.

Among the many methods for the assignment problem [11] - [25], the auction algorithm seems to

be the only one that has a naturally parallel character and is well suited for implementation on a

massively parallel machine. It also admits an intuitively appealing economic interpretation,

although we make no claim about its utility as a model for market price adjustment. (See [26]-

[28] for work on the assignment problem with an economic modeling orientation. In particular,

[27] describes an algorithm which involves ideas of competitive bidding, but differs substantially

from ours; for example it does not use the idea of e-complementary slackness described later in

this paper.)

In addition to the idea of independent single node price changes which is responsible for

the parallel character of the method, the auction algorithm embodies several ideas that were new

at the time of its original proposal and have recently found considerable extension and use in

network algorithms and computational complexity analysis. These include the notion of e-
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complementary slackness (e-CS) and the idea of e-scaling.

In Section 2, we define e-CS as a condition whereby the usual complementary slackness

relation for assignment of a person to an object can be violated by a small (£) amount. A key fact

is that a feasible assignment satisfying e-CS is optimal if e is sufficiently small. This idea was

generalized and was used algorithmically for linear network flow problems in [7], and for

nonlinear network flow problems in [2]. A related idea was also used in a different context in the

analysis of [29]. e-CS is central in the extension of the auction algorithm to general linear

network flow problem, first given in [30], [31], and further analyzed later in [32]-[34]. e-CS is

also likely to prove useful in other contexts. For example it plays an important role in the recent

assignment algorithm of [35] which also uses e-scaling. This algorithm has complexity

O(N 1/ 2 Alog(NC)) where N is the number of persons to be assigned, A is the number of person -

object pairs than can be assigned to each other, and C is the maximum absolute object value. For

reasonably small values of C, this is the best complexity bound for assignment problems.

However, the algorithm of [35] is not naturally parallelizable.

The idea of e-scaling is similar to the idea of gradually reducing the penalty parameter in

penalty function methods in order to alleviate ill-conditioning, and is essential for obtaining

computational efficiency and polynomial complexity. In the pure form of the auction algorithm, e

is kept constant, and the complexity can be shown to be O(NAC/£). It is necessary to take £

sufficiently small (less than 1/N assuming object values are integer), in order that the assignment

obtained by the algorithm be optimal (see Proposition 1 in Section 3). As a result, the pure form

of the algorithm has pseudopolynomial complexity, and its computational performance can be

poor as shown by an example given in Section 3. e-scaling corrects this by applying the auction

algorithm with successively smaller values of £ starting with a large value and ending with a

value less than 1/N. The final prices and assignment corresponding to each value of £ are used to

obtain "good" starting prices and assignment for the next smaller value. e-scaling was first

implemented by the author and tested computationally in 1979 and again in 1985 for the auction

algorithm with encouraging results (unpublished work). It was first analyzed in the context of the
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more general min-cost flow problem in [36] where polynomial complexity results were given that

were more fully established in [33], [34]. Another scaling procedure that is closer in spirit to

traditional scaling methods in network flow problems [37]-[40], and can serve as an alternative

to e-scaling was later proposed and analyzed in [32], using some of the ideas of [36] and also of

[40]. The method of analysis of [32], [33], [34] can be used to show that the auction algorithm

with e-scaling as well as the more traditional cost scaling method has complexity O(NAlog(NC)).

This is relatively straightforward, but requires replication of large portions of the analysis in

these references, and so will not be given. The computational results of the present paper suggest

that the auction algorithm with e-scaling is competitive with the best known implementations of

assignment methods even without the benefit of parallelism. When implemented in a parallel

machine, the auction algorithm should converge much faster.

The purpose of the present paper is to describe the auction algorithm, to interpret it as a

dual Jacobi-like relaxation method, and to provide computational results. While a version of the

auction algorithm can be derived from its min-cost flow generalization of [30], [31], this

derivation is neither obvious nor straightforward; indeed one must introduce modifications to the

basic form of the e-relaxation method of [30], [31] in order to be able to derive the auction

algorithm as a special case. (The reverse is also true. The min-cost flow problem can be

convertied into a transportation problem ([19], p. 149), which can be converted to an

assignment problem by replacing single sources and single sinks of the transportation problem

with multiple persons and objects respectively in the assignment problem. By applying the

auction algorithm to this assignment problem, one can derive a generic form of the e-relaxation

method of [30], [31].) The conceptually useful interpretation as a Jacobi-like relaxation method is

also nontrivial to obtain starting from the general network flow framework. It is therefore

worthwhile to derive the auction algorithm from basic principles, and Section 2 is devoted to this

purpose. The validity of the algorithm is established in Section 3, and the computational results

are given in Section 5. The auction algorithm can also be implemented in a totally asynchronous

(chaotic) distributed environment; this appears to be a generic characteristic of relaxation methods



9

for both linear and nonlinear network flow problems. We describe briefly and somewhat

informally in Section 4 how this can be done, and we refer to [30], [31] for discussion and

analysis of totally asynchronous implementations in the context of the general min-cost flow

problem.

2. Assignment by Means of an Auction

Consider N persons wishing to divide among themselves N objects. We number persons

and objects as 1, 2, ..., N. For each person i there is a nonempty subset A(i) of objects that can

be assigned to i. An assignment S is a (possibly empty) set of person-object pairs (ij) such that

je A(i) for all (i,j)e S, for each person i there is at most one pair (ij)e S, and for each object j

there is at most one pair (i,j)e S. In the context of a given assignment S, we say that person i is

assigned if there exists an object j such that (ij)e S; otherwise we say that i is unassigned. We

use similar terminology for objects. A complete assignment is an assignment containing N pairs

(i.e. every person is assigned to a distinct object). There is a given integer value aij that a person

i associates with an object j A(i). We want to find a complete assignment that maximizes

I aij

(i,j) S

over all complete assignments S. We call this the primal assignmentproblem and note its well-

known equivalence to a linear programming (linear network flow) problem as shown in Fig. 4.
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Figure 4: Formulation of the primal assignment problem as a linear
programming/network flow problem. The nodes are the persons and
the objects, and an arc (i,j) connects every person i and object j such
that j belongs to A(i). Denoting the flow of arc (i,j) by f ij the
corresponding linear programming problem is:

N

minimize I Y aifij
i=lje A(i)

subject to

Y, fij =1, i=1,...,N
jE A(i)

X, fij= 1 , j=1,...,N
{i l jE A(i)}

0 < fij

For each objectj, it is useful to introduce a dual variable pj called the price of j. We call

the vector with coordinates pj, j=l, ... , N a price vector. For a given price vector p the scalar

ni = maxje A(i) {aij - Pj (1)

is called the profit margin of person i corresponding to p. It is helpful to think of pj as the amount

of money that a person must pay when assigned to j. Therefore, for a given price vector p, aij -

pj may be thought of as the benefit person i associates with being assigned to object j. In this
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context the name "profit margin" for 7i as given by (1) becomes meaningful.

A dual problem to the assignment problem is

N N

minimnze + p
i=l j=1

subject to ti + Pj > aij, V i, and j E A(i)

For a given price vector p, the cost of this problem is minimized when 7i equals the maximum

value of aij - pj over je A(i). Therefore an equivalent form of the dual problem is the

unconstrained minimization problem

minimize q(p) (2)

subject to no constraints on p

where p is the vector of object prices pj, and

q(p) = Ii maxjE A(i) {aij - pj + ;j pj (3)

From linear programming theory it is known that a complete assignment S={(i,ji) I i=l,

..., N) and a price vector p are simultaneously primal and dual optimal respectively if and only if

aij - pJ =max aj.) { a- p.} for all i = 1, ... ,N.
iji A j E A(i) iJ J

This is known as the complementary slackness condition and states that at an optimum each

person is assigned to a "best" object, i.e. to one attaining the maximum in the definition of profit

margin (1).

A relaxation of the complementary slackness condition is to allow persons to be assigned

to objects that come within e of attaining the maximum in (1). Formally we say that an

assignment S (not necessarily complete) and a price vector p satisfy e-complementary slackness

(e-CS) if

i - £ -< aij - pj < i, for each (ij) E S, (4)

where ici is given by (1), and e is a nonnegative constant.

We now describe formally the auction algorithm. We fix e>O, and we start with some
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assignement (possibly empty) and price vector satisfying e-CS. The algorithm proceeds

iteratively and terminates when a complete assignement is obtained. At the start of the generic

iteration we have an assignment S and a price vector p satisfying e-CS. At the end of the

iteration, S and p are updated while maintaining the e-CS condition. There are two phases in each

iteration, the bidding phase, and the assignment phase described below:

Bidding Phase: For each person i that is unassigned under the assignment S:

Compute the "current value" of each object je A(i) given by

Vii = aij- pj (5)

Find a "best" object j* having maximum value

Vij* = maxj E A(i) Vij ,

and find the best value offered by objects other than j*

Wij* = maxj E A(i), j *j* {aij - Pj-. (6)

(If j* is the only object in A(i) we define wij* to be -oo, or, for computational purposes, a number

that is much smaller than vij*.)

Compute the "bid" of person i for object j* given by

bij* = pj* + vij* - wij* + 6 = aij* - wij* + E (7)

[We characterize this situation by saying that person i bid for object j*, and that object j* received

a bid from person i. The algorithm works if the bid has any value between pj* + e and pj, + vii* -

wij* + E, but it tends to work fastest for the maximal choice (7).]

Assignment Phase: For each object j:

Let P(j) be the set of persons from which j received a bid in the bidding phase of the iteration.

If P(j) is nonempty increase pj to the highest bid

pj := maxiEp(j) bij (8)

remove from the assignment S any pair (i,j) (if one exists), and add to S the pair (i*j) where i* is

some person in P(j) attaining the maximum above.
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It is seen that at the end of the iteration we have a new price vector that differs from the

preceding vector in the prices of the objects that received a bid during the iteration. We also have

a new assignment that differs from the preceding one in that each object that received a bid is

now assigned to some person that was unassigned at the start of the iteration. However, the

assignment at the end of the iteration need not have more pairs than the one at the start of the

iteration because it is possible that all objects that received a bid were assigned at the start of the

iteration.

A first important fact is that the algorithm preserves c-CS throughout its execution, i.e. if

the assignment and price vector available at the start of an iteration satisfy e-CS, the same is true

for the assignment and price vector obtained at the end of the iteration. To see this suppose that

object j* received a bid from person i and was assigned to i during the iteration. Then if pj and

p'. are the object prices before and after the assignment phases we have [cf. (7), (8)]

p'j* = bij* = aij* - ij* + (9)

Using this equation and the fact p'j 2 pj for all j, it follows that, if H'i is the profit margin of i

after the assignment phase [cf. (1)], we have

P'1i = maxjE A(i) aij - p'j} = max aij* - p'j*, maxjEA(i), j e j* {aij - P'} }

< max{aij* - p'j*, maxjEA(i), j j* aij - pj}} = max {wij* - e, wij*} = wij*

Combining this equation with (9) we obtain

aij* - P j, = Wij* - £ > t' i - E, (10)

which shows that (4) continues to hold after the assignment phase.

Note that both the bidding and the assignment phases are highly parallelizable. In the

extreme case of a fine grain parallel computing environment where there is a processor associated

with each person and a processor associated with each object, all unassigned persons/processors

can compute their bids simultaneously and communicate them to the relevant objects/processors.

Those object/processors that received at least one bid can determine the highest bidder

simultaneously and communicate the changes in the current assignment and price vector to the
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relevant persons/processors.

Dual Cost Along pj

slope =-3

slope =-2

/ slope slope =1

\ ~ / Range of possible values of pj
slope = after an iteration at which

it is increased
Highest Possible Bid

.Level of pj after the Assignment
Phase

a. .- wi.. '"1 i4j
11. ihj %i4 j - p

Price levels at which j becomes the best object for persons i 1, i2, i3, i4

Figure 1: Form of the dual cost along the price coordinate p j . From (3) the right
directional derivative of q along pj is

dj = 1 - (number of persons i with jEA(i) and p j < a ij - w ij )

where wij is given by (6). The break points are a j - wri for all i such that
jE A(i). If pj < arj - wij , then an unassigned person i bids for object j the amount
a.. - w. +E . The price p. after the assignment phase is increased to e plus the
highes{ level aij - w ij oier all unassigned persons i with j EA(i). .

Figure 5 indicates how each bidding and subsequent assignment phase can be interpreted

as a Jacobi - like relaxation step for minimizing the dual function q(p) of (3). In particular, the

price pj of each objectj that received a bid during the assignment phase is increased to either a
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value that minimizes q(p) when all otherprices are kept constant, or else exceeds the largest such

value by no more than e. To see this suppose that at some iteration object j received a bid and its

price was raised from pj to p'j. Then

pj = max{aij - wij I i was unassigned and j received a bid from i} + e (11)

pj > max{aij - wij I i was unassigned and j did not receive a bid from i} (12)

Since whenever an object receives a bid, its price increases by at least £, we have

P'j 2 pj + £,

so from (11) and (12) we obtain

p' 2 max{aij - wij I i was unassigned} + £ (13)

Since the algorithm maintains property (4) throughout, we have that if at the start of the iteration

person i was assigned to some k • j and j E A(i) then

aij - pj < i aik- k + E <w wij + £

Using this relation and the fact p'j > pj + £ we obtain

p' 2 pj + e 2 aj - wij

and

p'j 2 max{aij - wij I i was assigned to some k # j } (14)

Combining (13) and (14) we obtain

p' 2 max{aij - wij I i was not assigned to j}

Since there can be at most one person assigned to j, it follows from the form of the dual cost

shown in Figure 5, that p'j is no less than the smallest value of pj that minimizes q(p).

Combining this fact with (11), we see that p'j has the property stated in the beginning of this

paragraph.

Note that our method is not quite equivalent to a coordinate descent method which

reduces the dual cost along each price coordinate, since the dual cost (3) may deteriorate strictly

after a price increase. However, the cost deterioration is at most £. It will be seen shortly that, for

£ small enough, an optimal solution can still be obtained thanks to the integer nature of the

problem data, and the fact that e-CS holds at termination [cf. (4)].
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Figure 5 also suggests a variation of the algorithm whereby, in addition to all unassigned

persons, each assigned person i bids for its own assigned object j the amount aij - wij + c. This

variation has not been tested, but may accelerate convergence in some parallel computing

environments.

The above algorithm may be viewed as a Jacobi version of the relaxation idea since the

bids of all unassigned persons are calculated simultaneously, and the prices of objects that

receive a bid are raised simultaneously. An alternative is a Gauss-Seidel version whereby a single

unassigned person bids for an object, and the price rise of the object is taken into account when

the next bid by an unassigned person takes place. This version is just as valid as the Jacobi

version and in fact tends to converge a little faster, but is generally much less parallelizable.

3. Properties of the Algorithm

Suppose that the algorithm terminates with the final (complete) assignment {ji I i=1,...,

N}, the object prices pj, and the profit margins ;i given by (1). Then, by adding (4) over i,

Zi a.. > .i (i + p) - N

If A* is the optimal primal value and the (equal) optimal dual value we have using the relation

above

A >. a.. >i a (i
+ pi- Ne = q(p) - N A* - N

Therefore the assignment {ji I i=1, .. ., N) is within N£ of being optimal. Since aij are integer,

an optimal assignment is obtained when e < 1/N. Thus we have shown:

Proposition 1: A complete assignment obtained upon termination of the algorithm is within

Ne of being optimal, and is optimal if e < 1/N.

The next result asserts that the algorithm terminates assuming existence of at least one

complete assignment. The proof relies on the following facts:
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a) Once an object is assigned, it remains assigned throughout the remainder of the

algorithm's duration. Furthermore, except at termination, there will always exist at least one

object that has never been assigned, and has a price equal to its initial price. This is due to the

fact that a bidding and assignment phase can result in a reassignment of an already assigned

object to a different person, but cannot result in the object becoming unassigned.

b) Each time an object receives a bid its price increases by at least e [cf. (7), (8)].

Therefore if the object receives a bid an infinite number of times, its price increases to oo.

c) Each time a person i bids for an object a number of times at most equal to the

cardinality of A(i), his profit margin ni as defined by (1) must decrease by at least e. This is due

to the fact that a bid by person i either decreases ni by at least e, or else leaves ni unchanged

because there is more than one object j attaining the maximum in (1). However, in the latter case

the price of the object j* receiving the bid will increase by at least e, and object j* will not receive

a bid again from person i until ni decreases by at least e. The conclusion is that if a person bids

an infinite number of times his profit margin must decrease to -oo.

Proposition 2: If at least one complete assignment exists, the algorithm terminates in a finite

number of iterations.

Proof: If the algorithm continues indefinitely, the prices of a proper [cf. a) above] subset Joo of

objects increases to oo, while the profit margins ni of a subset In of persons decrease to -o, [cf.

c) above]. Furthermore, eventually, in view of (4), at any given time each object in Jo can only

be assigned to a person from PI, and a person from IP will either be assigned to an object in Jo or

be unassigned. Also, in view of c) above, eventually only persons from In will be unassigned.

Therefore the cardinality of I°° is greater than the cardinality of J** while, in view of (1), we have

Jo DA(i) for all i in I0. This contradicts the existence of a complete assignment. Q.E.D.
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In. price = O
ALL OBJECT VALUES
EQUAL C > 0
EXCEPT FOR THE VALUE

In. price = 0 33WHICH IS 0

( )----i 3 )In. price = O

Figure 6: Example where the number of bidding phases is proportional to
C/£. Here at each bidding phase one of the persons 1, 2, or 3 bids the price of
object 1 or 2 up by an increment e until the time that these prices reach the
level C.

It can be shown (see Fig. 6) that the computational complexity of the algorithm is

sensitive to the maximal absolute object value

C = max (laijl I i=l, ..., N, j E A(i)}

It was found experimentally that this sensitivity manifests itself often in the practical performance

of the algorithm. To improve this performance, scaling the value of e suggests itself. Here we

multiply all costs aij with (N+1) and apply the algorithm with progressively lower value of e up

to the point where e becomes 1 or smaller. The sequence of e values used is

e(k) = max{ 1, A/Ok}, k = 0, ....

where 0 and A are parameters with A > 0 and 0 > 1. Scaling procedures are discussed in more

detail in [32] -[40]. The scaling procedure given above, called e-scaling, was implemented and

tested by the author in 1979 and 1985. The computational results of Section 5 show that, with

proper choice of the parameters A and 0, the algorithm has excellent performance even without
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the benefit of parallelism.

4. Asynchronous Implementation

The auction algorithm given in Section 2 may be described as synchronous since the

bidding and assignment are carried out simultaneously for all persons and objects respectively.

A totally asynchronous (chaotic) algorithm (see [41]-[45] for computation models and

convergence analysis) results if each unassigned person makes a bid at arbitrary times on the

basis of object price information that may be outdated (because of additional bidding of which the

person is not informed). Furthermore assignment of objects may be decided even if some

potential bidders have not been heard from. We can similarly show the same termination

properties as for the synchronous version of the algorithm subject to two conditions.

a) An unassigned person will bid for some object within finite time, and cannot bid twice (i.e.

cannot bid for a second object while waiting for a reply regarding the disposition of an earlier bid

for another object).

b) Whenever one or more bids are received that raise the price of an object then, within finite

time, that price must be updated, and its value must be communicated (not necessarily

simultaneously) to all persons. Furthermore the new bidder assigned to the object must be

informed of this fact simultaneously with receiving the new price.

A more careful formulation of the asynchronous model, and a proof of validity for the

more general case of the minimum cost flow problem is given in [30]-[32].

5. Computational Results

In this section we provide the results of computational experimentation on both a serial

machine (VAX 11-750), and a parallel machine (Sequent Balance 21000). A more extensive

computational study is currently under way.
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A code called AUCTION was used to test the performance of the algorithm on a serial

machine. The code implements E-scaling as described at the end of Section 3 for various values

of the parameters 0 and A. A standard initialization procedure was used that sets the initial object

prices to pj = mini aij for all j. At the end of the kth subproblem (i.e. the problem corresponding

to e(k- 1)) the assignment obtained is checked to see if condition (4) is satisfied for e = e(k). If

(4) is not satisfied for a person i and the corresponding object ji, the pair (i,ji) is removed from

the assignment, so that condition (4) is enforced at the beginning of each subproblem.

The test problems were generated using the widely used public domain generator

NETGEN [46] with the random seed number set at the value used in the original paper [46]. The

AUCTION code was compared with a version of the relaxation code RELAX-II [7]-[8] specially

adapted to solve assignment problems. This code, called RELAX-HIA, outperformed a variety of

specialized relaxation and primal dual codes for the assignment problem based on existing

methods. On the basis of this fact and in view of the excellent performance of the RELAX-II

code for assignment problems, as documented in [7]-[8], we believe that AUCTION has been

given state-of-the-art competition.

The codes compared were written in standard FORTRAN on a VAX 11-750, and were

compiled under VMS version 4.1. A rough indication of the potential speedup of AUCTION in a

parallel machine is provided by the degree of parallelism defined as the number of unassigned

persons in a bidding phase averaged over all bidding phases.

Our results are summarized in Figures 7-10. Figure 7 gives the solution times for five

problems with equal density (1.5%). The parameters used were 0 = 8 and A = NC/2. Figure 8

gives the times for five problems where the set A(i) has average cardinality equal to 5. The

parameters used were 0 = 6 and A = NC/2. Figure 9 gives the times for the five standard

assignment problems (problems 11-15 in [46]). The parameters used were 0 = 4 and A = NC/2.

The parallelism factor for these problems is roughly constant near 10 as Figure 10 shows. This

indicates that the efficiency of the algorithm may be quite low when implemented on a parallel

machine with a large number of processors.
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The auction algorithm was also independently implemented and tested on dense

assignment problems by Prof. J. Kennington and Mr. L. Hatay at Southern Methodist

University using a Sequent Balance 21000 computer - a shared memory parallel machine. Their

results, briefly described here with their kind permission, show that the auction algorithm

implemented using a single processor outperformed substantially and consistently the NETFLO

code of [17] and a Hungarian code described in [47]. Figure 11 shows their results with a

multiple processor implementation of the auction algorithm and, in particular, the speedup as a

function of the number of CPUs employed. It is seen that the efficiency of the algorithm for a

small number of processors is quite satisfactory. Note that the speedup with one processor is less

than one because we are comparing a serial with a parallel code, and, even on a single processor,

the parallel code is not as efficient as the parallel code.

Time (secs) on VAX 11-750
60

RELAX-IIA

50 Number of Arcs = 0.015*N2

40 Arc Cost Range = 1 - 1000

30

~~20 - a t / ~AUCTION

1010

500 750 1000 1250 1500

Number of Persons N

Figure 7: Solution times for AUCTION and RELAX-IIA on VAX 11-750.
All problems generated by NETGEN.
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Time (secs) on VAX 11-750
14

12
RELAX-IIA

10

8 _ AUCTION

Number of Arcs = 5*N
Arc Cost Range = 1-100

21

500 1000 1500 2000 2500

Number of Persons N

Figure 8: Solution Times for AUCTION and RELAX-IIA on VAX 11-750.
All problems generated by NETGEN.

Time (secs) on VAX 11-750

2.5

RELAX-IIA
1.5

Number of Persons = 200

Arc Cost Range = 1-100
0.5 -

11/1500 12/2250 13/3000 14/3750 15/4500
NETGEN Problem # / Number of Arcs

Figure 9: Solution times in secs for AUCTION and RELAX-IIA on VAX
11-750 for standard NETGEN assignment problems.
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Parallelism Factor
14

Problems of Fig. 7

12

1 2 3 4 5
Problem #

Figure 10: Parallelism factor for the problems of Figs. 7, 8, and 9.

Speedup6 _ 94 

Time w/ serial code using 1 processor
2 Speedup = Time w/ parallel code using n processors

1 2 3 4 5 6 7 8 9 10

Number of processors n

Figure 11: Speedup of a parallel implementation of the
auction algorithm as a function of the number of processors
used in a Sequent Balance 21000 computer. The problem
solved is a randomly generated 800x800 fully dense problem
with arc cost range 1 - 10000. The time required by the
serial auction code using a single processor is 336.13 sess.
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