The Auction: Optimizing Banks Usage in Non-Uniform
Cache Architectures

Javier Lira', Carlos Molina'? and Antonio Gonzalez'?
! Dept. of Computer Architecture, Universitat Politécnica de Catalunya, 08034 Barcelona, Spain
2 Dept. of Computer Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain
% Intel Barcelona Research Center, Intel Labs - UPC, 08034 Barcelona, Spain
javier.lira@ac.upc.edu, carlos.molina@urv.net and antonio.gonzalez@intel.com

ABSTRACT

The growing influence of wire delay in cache design has
meant that access latencies to last-level cache banks are
no longer constant. Non-Uniform Cache Architectures (NU-
CAs) have been proposed to address this problem. Further-
more, an efficient last-level cache is crucial in chip multipro-
cessors (CMP) architectures to reduce requests to the off-
chip memory, because of the significant speed gap between
processor and memory and the limited memory bandwidth.
Therefore, a bank replacement policy that efficiently man-
ages the NUCA cache is desirable. However, the decentral-
ized nature of NUCA has prevented previously proposed re-
placement policies from being effective in this kind of caches.
As banks operate independently of each other, their replace-
ment decisions are restricted to a single NUCA bank. We
propose a novel mechanism based on the bank replacement
policy for NUCA caches on CMP, called The Auction. This
mechanism enables the replacement decisions taken in a sin-
gle bank to be spread to the whole NUCA cache. Thus, global
replacement policies that rely on the current state of the
NUCA cache, such as evicting the least frequently accessed
data in the whole NUCA cache, are now feasible. Moreover,
The Auction adapts to current program behaviour in or-
der to relocate a line that is being evicted from a bank
in the NUCA cache to the most suitable position in the
whole cache. We propose, implement and evaluate three ap-
proaches of The Auction mechanism. We also show that The
Auction manages the cache efficiently and significantly re-
duces the requests to the off-chip memory by increasing the
hit ratio in the NUCA cache. This translates into an average
IPC improvement of 8%, and reduces energy consumed by
the memory system by 4%.

Categories and Subject Descriptors

C.0 [Computer Systems Organization|: System archi-
tectures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICS’10, June 24, 2010, Tsukuba, Ibaraki, Japan.

Copyright 2010 ACM 978-1-4503-0018-6/10/06 ...$10.00.

General Terms

Design, Experimentation, Management, Performance

Keywords

Chip Multiprocessors (CMP), Non-Uniform Cache Architec-
ture (NUCA), Bank Replacement Policy

1. INTRODUCTION

Constant advances in integrated circuit technology of-
fer opportunities for microarchitectural innovation and
have boosted microprocessor performance growth in recent
decades. In the 1990s, the main strategy for dealing with
each increase in integration density was to increase the clock
rate and introduce microarchitectural innovations to exploit
Instruction-Level Parallelism (ILP) in applications. How-
ever, fundamental circuit limitations, limited amounts of
Instruction-Level Parallelism and the almost unaffordable
power consumption of microprocessors led to the search for
a more efficient use of silicon resources: chip multiproces-
sors (CMPs). This architecture consists of simpler proces-
sors that can work at a much lower clock rate, alleviating
the power-consumption constraint, and assuming Thread-
level parallelism (TLP) enables CMPs to take advantage of
existing parallel applications. Server high-end applications,
therefore, benefit the most from these platforms. Similarly, it
is also expected that future desktop applications for recog-
nition, mining and analysis will require a high number of
cores [13]. At present, the main processor vendors have fo-
cused on this architecture, meaning that several CMPs [23,
24, 29], consisting of up to eight processors, are commer-
cially available. Existing roadmaps and research trends such
as the Intel Tera-scale [33] processor, however, show that the
number of cores is going to increase in the future.

For any multiprocessor, the memory system is a piv-
otal component which can boost or decrease performance
dramatically. CMP architecture typically incorporates large
and complex cache hierarchies. Recent studies have pro-
posed mechanisms for dealing with the new challenges to
the memory system posed by CMP architectures, some of
the most notable of these being cooperative caching [9, 10],
victim replication [35], adaptive selective replication [6] and
other works that exploit the private/shared cache partition-
ing scheme [14]. However, the increasing influence of wire
delay in cache design means that access latencies to the
last-level cache banks are no longer constant [3, 28]. Non-
Uniform Cache Architectures (NUCAs) have been proposed
[22] to address this problem. A NUCA divides the whole

cache memory into smaller banks and allows nearer cache
banks to have lower access latencies than farther banks, thus
mitigating the effects of the cache’s internal wires. There-
fore, each bank behaves as a regular cache and all of them
are connected by means of an interconnection network.

Recent studies have explored mechanisms for placement,
migration and access in NUCA caches on CMP architec-
tures [4, 12, 17, 18, 19, 22, 30]. However, most previ-
ous research has ignored bank replacement policy or has
adopted a replacement scheme that was originally designed
for uniprocessors/uniform-caches.

The decentralized nature of NUCA prevents the replace-
ment policies proposed in the literature from being effec-
tive for this kind of caches. As banks operate independently
from each other, their replacement decisions are restricted
to a single NUCA bank. In this paper, we propose a novel
adaptive mechanism focused on bank replacement policy in
CMP-NUCA architectures that we call The Auction. This
mechanism enables the replacement decisions taken in a sin-
gle bank to be spread to the whole NUCA cache. Thus, global
replacement policies that rely on current state of the NUCA
cache, such as evicting the least frequently accessed data in
the whole NUCA cache, are now feasible.

The Auction starts when a replacement occurs in a bank in
the NUCA cache. Then, it finds the best destination bank!
to which the evicted data should be relocated, instead of
evicting replaced data permanently from the NUCA cache
or relocating it to a statically defined bank. Thus, The Auc-
tion is a flexible, implementable and affordable mechanism
that can be adapted by defining the behaviour of the three
participants that take part in it: the owner, the controller
and the bidders. Section 4 describes this mechanism in fur-
ther detail.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the baseline architecture assumed in our
studies. Section 3 lays out the motivation for the proposed
mechanism. Section 4 describes The Auction in further de-
tail. Section 5 presents the experimental methodology, fol-
lowed by the results in Section 6. Section 7 proposes and
analyses two enhanced auction approaches. Related work is
discussed in Section 8, and concluding remarks are given in
Section 9.

2. BASELINE ARCHITECTURE

As shown in Figure 1, the baseline architecture consists
of an eight-processor CMP based on that of Beckmann and
Wood [7]. The processors are located on the edges of the
NUCA cache, which occupies the central part of the chip.
Each processor provides the first-level cache memory, com-
posed of two separate caches: one for instructions and one
for data. The NUCA cache is the second-level cache memory
and is shared by the eight processors. The NUCA cache is
divided into 256 banks structured in a 16x16 mesh that are
connected via a 2D mesh interconnection network.

In general, a NUCA model can be characterized by de-
scribing how it behaves with the following four policies: bank
placement policy, bank migration policy, bank replacement
policy and bank access policy. Bank placement policy deter-
mines the banks in which data blocks can be mapped into
the NUCA cache. Migration policy determines whether data

!Based on the decisions of the implemented approach of the
auction.

Core 5 Core 4]
= [d]5
= Y] = /=) EY O oaoff o
B T] |) [] o
\ oI O O[O0 Ojo)| ©
© OCACR N O OO OO O
g lllllllll.l
O OO R AN RO O (==
CRC U O R U R R
RO R R
AEE N
- RN OO O o o
E’ R o)|
CRC O RO RN O O 5]
O W oo o) ©
> O - -
5 O OO0 OO =
© O Jo0Dc0 o oo e
HE I
Core 0 Core 1l

D Local banks . Central banks

Figure 1: Baseline architecture layout.

movements are allowed after producing a hit in the NUCA
cache to minimize cache access latency in future accesses.
Bank replacement policy determines the final destination of
the evicted data blocks. Last but not least, bank access pol-
icy determines the data searching algorithm in the NUCA
cache memory space.

As baseline, we implemented Dynamic NUCA (D-NUCA)
[7, 22]. This architecture introduces a complex placement
policy in which data blocks can be mapped into multiple
banks within the NUCA cache. The 256 banks that com-
pose the NUCA cache are logically separated into 16 unique
banksets, where an address maps to a bankset and can reside
within any bank of the bankset. Besides, D-NUCA physi-
cally separates the cache banks into 16 different bankclus-
ters, shown as the shaded irregular pieces in Figure 1. Each
bankcluster contains one bank from every bankset. The
bankclusters are grouped into two distinct regions accord-
ing to their physical distance from the processors. The 8
bankclusters closest to each processor form the local banks
(lightly shaded in Figure 1). The other 8 bankclusters that
reside in the center of the shared cache form the central
banks (shaded dark in Figure 1). Therefore, a data block
has 16 possible placements in the NUCA cache (eight lo-
cal banks and eight central banks). As migration policy, D-
NUCA adopts gradual promotion [22]. When there is a hit
in a NUCA bank, the accessed data is promoted to the
bankcluster that is one-step closer to the processor that has
just accessed it. With regard to the bank access policy, the
baseline D-NUCA design uses a two-phase multicast search,
that is also known as partitioned multicast [22]. First, it
broadcasts a request to the local bankcluster that is clos-
est to the processor that launched the search, and to the
eight central banks. If all nine initial requests miss, the re-
quest is broadcast to the remaining seven banks from the
requested data’s bankset. If the request misses all 16 banks,
it is sent to the off-chip memory. Finally, regarding bank re-
placement policy, D-NUCA assumes LRU replacement policy
within each single bank, and sending the evicted data block
directly to the off-chip memory (zero-copy [22]).

1,05

1,04

1,03

1,02

1,01

Performance Speed-up (normalised)

Zero-Copy One-Copy

Figure 2: Speed-up assuming one-copy and zero-
copy replacement policies.

3. MOTIVATION

The NUCA cache provides mechanisms to migrate ac-
cessed lines and take them closer to the core that requested
them. Consequently, the most frequently accessed lines are
stored in the banks that are closer to the cores, which we
call hot banks. A replacement in a hot bank, however, evicts a
line whose probabilities of being accessed farther in the pro-
gram are much higher than a line from another bank in the
NUCA cache. Moreover, as banks in the NUCA cache work
independently of each other, none of the less used banks
can even know that a hot bank is constantly evicting data
that is being reused. Thus, a more sophisticated bank re-
placement policy that allows all banks in the NUCA cache
to take part in data-replacement decisions is desirable so
that lines evicted from the hot banks can be relocated to
other banks in the NUCA cache, instead of being evicted
them from the NUCA cache permanently. Unfortunately,
most previous works have ignored the replacement issue or
have adopted a replacement scheme that was originally de-
signed for use in uniprocessors/uniform-caches.

Kim et al. [22] proposed two bank replacement policies
for NUCA caches in a uniprocessor environment: zero-copy
and one-copy policies. The evicted line in the NUCA cache,
assuming the zero-copy policy, is sent back to the upper level
of the memory hierarchy (the main memory in our studies).
This is the policy implemented in the baseline architecture.
If the one-copy policy is adopted, however, the evicted line is
demoted to a more distant bank. This policy gives a second
chance to the evicted lines to stay within the NUCA cache.
In order to evaluate these schemes, we have adapted them
for CMP. This version of the one-copy policy for CMP gives
a second chance to the evicted lines by randomly relocating
them to a bank from the bankset where they can be mapped.

Figure 2 shows that, the one-copy replacement policy im-
proves performance compared to the baseline configuration?.
One-copy, however, is considered as a blind replacement pol-
icy, insofar as it does not take into account the current cache
state before relocating the evicted data to other NUCA
bank. Thus, this approach may cause unfair data replace-
ments that hurt performance.

In this paper we propose The Auction as the first bank re-
placement policy that fits the decentralized nature of CMP-
NUCA architectures. This mechanism provides a protocol to
spread replacement decisions that have been taken in a single
bank to all banks in the NUCA cache. Thus, the other banks

2The experimental methodology is described in Section 5.

2,50%

2,00%

1,50%

1,00%

0,50%

Perc. of non-started auctions

0,00% -
1 2 3 4

Number of Auction Slots per Bank

Figure 3: Percentage of non-started auctions when
using up to four auction slots per NUCA bank.

can take part in deciding which is the most appropriate data
to evict within the whole NUCA cache. The following section
describes The Auction mechanism.

4. THE AUCTION

The Auction is an adaptive mechanism designed for the
bank replacement policy of NUCA architectures in CMP. It
provides a framework for globalizing the replacement deci-
sions taken in a single bank, and thus enables the replace-
ment policy to evict the most appropriate data from the
NUCA cache. Moreover, unlike the one-copy policy (de-
scribed in the previous section), The Auction enables evicted
data from a NUCA bank to be relocated to the most suitable
destination bank at any particular moment, taking into con-
sideration the current load of each bank in the NUCA cache.
This section describes in detail how the auction mechanism
works.

4.1 Roles and components

In order to explain how the auction works, we will first
introduce the three roles that operate in the mechanism:

e Owner: It owns the item but wants to sell it, thus
starting the auction. The bank in the NUCA cache
that evicts the line then acts as the owner and the
evicted line is the item to sell.

e Bidders: They can bid for the item that is being sold
in the auction. In the NUCA architecture, the bidders
are the banks in the NUCA cache where the evicted
line can be mapped. They are the other NUCA banks
from the owner’s bankset.

e Controller: It stores the item while the auction is
running, receives the bids for the item from the bidders
and manages the auction in order to sell the item to
the highest bidder.

As auction controller, we introduce a set of auction slots
that is distributed among all banks in the NUCA cache.
Each auction slot manages a single active auction by stor-
ing the evicted line that is being sold, the current highest
bidder and the remaining time. When the auction finishes
the corresponding auction slot is deallocated and becomes
available for forthcoming auctions. Therefore, the number of
active auctions per NUCA bank is limited by the number of
auction slots that it has. Figure 3 shows the percentage of

Core 5 Core 4 ‘ [‘ Core 5 | [Core 4 ‘ [] [Core 5 ‘ ‘ Core 4 ‘]
] i e []
X X X - X L X -
g ° Xl || o X o
e \ 53 3 s 8| e O] 8
o b [@
S X % 2 § 3 X X S X X
< ORI fl£8 x [X X | x
- <
v o | | — —
NN S = = 3 ™ X I
— \ A i T — pa3 — X
I /
x I - | X X | x X 1|
L) e X o \ X g
~ —] IS} 3 N S N 8
) o [L
3 x IS b S X
X X X X X
I [[L
L ‘ Core 0 ‘ ‘ Core 1 ‘ L ‘ Core 0 ‘ | Core 1 ‘ L | Core 0 ‘ ‘ Core 1
[l Owner Bidders . Owner Bidders . Owner Bidders

(a) Owner starts the auction

(b) Bids for the item

(c) Item is sold!

Figure 4: The three steps of the auction mechanism.

auctions that cannot be started because there are no auction
slots available when using up to four auction slots per NUCA
bank. We observe that assuming one auction slot per bank,
just 2.3% of evicted lines can not be relocated. Moreover, we
find that using more auction slots per NUCA bank, the per-
centage of non-started auctions dramatically decreases. At
this point, the challenge is to determine the optimal number
of auction slots that provides high accuracy without intro-
ducing prohibitive hardware overhead. In the remainder of
the paper, we assume having two auction slots per NUCA
bank. This configuration provides a good trade-off between
auction accuracy and hardware requirements.

4.2 How The Auction works

Figure 4 shows the three steps of the auction. It starts
when there is a replacement in a bank in the NUCA cache
and it has at least one auction slot available — otherwise
the auction can not be started and the evicted line is di-
rectly sent to the main memory — The bank that is replac-
ing data (the owner) moves the evicted line (the item) to
the controller (the corresponding auction slot) and sets the
auction deadline (Figure 4(a)). At the same time, the owner
invites the other banks from the bankset (the bidders) to
join the auction and bid for the item. Recall that an address
maps to a bankset and can reside within any bank of the
bankset. Thus, in our baseline architecture the evicted line
can only be mapped to 16 banks within the whole NUCA
cache. When a bidder finds out that a data block has been
evicted from the NUCA cache, it decides whether to bid
for it (Figure 4(b)). If the bidder is interested in getting
the evicted data, it notifies the controller who manages the
auction. Otherwise, the bidder ignores the current auction.
Finally, when the auction time expires (Figure 4(c)), the con-
troller determines the final destination of the evicted data
based on the received bids and the implemented heuristic,
and sends it to the winning bidder. Moreover, in order to
avoid recursively starting auctions, even if relocating the
evicted data provokes a replacement in the winning bank,
it will not start a new auction. In contrast, if none of the
bidders bid for the evicted data when the auction time ex-
pires, the controller sends it to the main memory.

Note that The Auction describes how to proceed when a
replacement occurs in a bank in the NUCA cache. This is,
therefore, a generic algorithm that must be customized by
defining the decisions that each role can take on during the
auction.

4.3 Implementing an Auction Approach

Most commonly used cache coherence protocols in multi-
processors (such as MESI, MSI and MOESI) allow data to
be replicated when it is being accessed by several cores in
read-only mode. Thus, these copies are stored in the cache in
shared state. However, if one of the cores is going to update
data, all the copies of this data that are in the cache have to
be invalidated. This usually occurs in the highest-level cache
that is not shared among cores (the L1 cache, in our archi-
tecture). However, NUCA features mean that it can also be
in the shared-NUCA cache. As data can be mapped in sev-
eral banks within the NUCA, data replication is allowed to
provide low access latency to the cores that are accessing
the same data.

The implemented auction approach takes advantage of
the gaps in the NUCA banks provoked by data invalida-
tion. First, the owner invites all the other banks from the
bankset to join the current auction. When a bidder receives
the auction notification from the owner, it checks whether
there is an empty slot in the cache set where the evicted
data would be mapped. If there is, the current bank bids
for the evicted data. With regard to the controller, it will
send the item to the NUCA bank whose bid arrived first to
the controller, but prioritising central banks. As described in
Section 3, migration movements make most frequently ac-
cessed data to be stored in local banks, thus if the controller
receives bids from both types of banks, local and central,
it will always prefer to send the item to the central bank.
Then, the controller works as follows: If the first bid that
arrives to the controller comes from a central bank, the auc-
tion finishes and the item is directly sent to the bidder. If
the first bidder is a local bank, however, the controller sets
the auction deadline to 20 cycles and waits for other bids
from central banks. We have experimentally observed that
even with high network contention most bids arrive to the

controller in 20 cycles from the arrival of the first bid. For
the sake of clarity, in the remainder of the paper we call this
auction approach AUC-BASE.

4.4 Hardware Implementation and Overhead

As described in Section 4.1, the auction mechanism intro-
duces two auction slots per NUCA bank in order to manage
the active auctions. Each auction slot requires 66 bytes (64
bytes to store the evicted line, 1 byte to identify the current
highest bidder and 1 byte to determine the remaining time),
the hardware overhead of this configuration is 33 KBytes
(which is less than 0.4% of the total hardware used by the
NUCA cache). Apart from hardware overheads, the auction
also introduces extra messages into the on-chip network (i.e.
messages to join the auction and bids). However, the impact
of these messages on performance and energy consumption is
taken into account by the simulator, and properly discussed
in Section 6.

S. EXPERIMENTAL METHODOLOGY

We use the full-system execution-driven simulator, Simics
[25], extended with the GEMS toolset [27]. GEMS provides
a detailed memory-system timing model that enabled us to
model the NUCA cache architecture. Furthermore, it accu-
rately models the network contention introduced by the sim-
ulated mechanisms. The simulated architecture is structured
as a single CMP made up of eight UltraSPARC IIIi homoge-
neous cores. With regard to the memory hierarchy, each core
provides a split first-level cache (data and instructions). The
second level of the memory hierarchy is the NUCA cache.
We used the MOESI token-based coherence protocol [26] to
maintain correctness and robustness in the memory system.
Table 1 summarizes the configuration parameters used in
our studies. The access latencies of the memory components
are based on the models made with the CACTI 6.0 [31] mod-
eling tool, this being the first version of CACTI that enables
NUCA caches to be modeled.

Processors 8 - UltraSPARC TITi
Frequency 1.5 GHz

Integration Technology | 45 nm

Block size 64 bytes

L1 Cache (Instr./Data)
L2 Cache (NUCA)

32 KBytes, 2-way
8 MBytes, 256 Banks

NUCA Bank 32 KBytes, 8-way
LT Latency 3 cycles

NUCA Bank Latency 4 cycles

Router Latency 1 cycle

Avg Offchip Latency 250 cycles
Auction time-out 150 cycles

Table 1: Configuration parameters.

In order to evaluate this mechanism, we assume two differ-
ent scenarios: 1) Multi-programmed, and 2) Parallel applica-
tions. The former executes in parallel a set of eight different
SPEC CPU2006 [2] workloads with the reference input. Ta-
ble 2 outlines the workloads that make up this scenario. The
latter, simulates the whole set of applications from the PAR-
SEC v2.0 benchmark suite [8] with the simlarge input data
sets. This suite contains 13 programs from many different
areas such as image processing, financial analytics, video
encoding, computer vision and animation physics, among
others.

astar gce Ibm mcf
milc omnetpp perlbench soplex
Reference input

Table 2: Set of SPEC CPU 2006 workloads that
make up the multi-programmed scenario.

The method we used for the simulations involved first
skipping both the initialization and thread creation phases,
and then fast-forwarding while warming all caches for 500
million cycles. Finally, we performed a detailed simulation
for 500 million cycles. As performance metric, we use the
aggregate number of user instructions committed per cycle,
which is proportional to the overall system throughput [34].

5.1 Energy Model

In this paper we evaluate the energy consumed by the
NUCA cache and the off-chip memory. To do so, we used
a similar energy model to that adopted by Bardine et al.
[5]. This allowed us to also consider the static and dynamic
energy dissipated by the NUCA cache and the additional
energy required to access the off-chip memory. The total
energy consumed by the memory system is the sum of all
three components:

Etotal = Estatic + Edynamic + Eofffchip

The NUCA cache was modeled using the CACTI 6.0 tool
[31] to obtain the static energy (Estatic). The dynamic en-
ergy (Edynamic) consumed by the NUCA cache within the
chip was modeled with the GEMS toolset [27] which uses
the Orion simulator to determine the energy per bank ac-
cess, the energy required to transmit a flit on the network
link and the energy required to switch a flit through a net-
work switch. The extra network traffic introduced by our
proposal is also taken into account and accurately modeled
into the simulator.

The energy dissipated per each access to the off-chip mem-
ory (Eoff—chip) was determined using the Micron System
Power Calculator [1] assuming a modern DDR3 system
(4GB, 8DQs, Vdd:1.5v, 333 MHz). Our evaluation of the
off-chip memory focuses on the energy dissipated during ac-
tive cycles and isolates this from the background energy.
This study shows that the average energy of each access is
550 pJ.

As energy metric we used the energy consumed per each
memory access. It is based on the energy per instruction
(EPI) [15] metric which is commonly used for analysing
the energy consumption results of the whole processor. This
metric works independently of the amount of time required
to process an instruction and is ideal for throughput perfor-
mance.

6. RESULTS AND ANALYSIS

This section analyses the impact on performance and en-
ergy consumption of using The Auction (AUC-BASE) as
bank replacement policy in the baseline architecture. Unfor-
tunately, none of the mechanisms previously proposed for
NUCA caches on CMPs properly addresses the bank replace-
ment policy, and thus they could complement the improve-
ments achieved by The Auction. With regard to this pol-
icy, as we mention in Section 3, Kim et al. [22] proposed
two different approaches, zero-copy and one-copy. However,

14 M Baseline
1,35 [Victim Cache
=3 M One-Co
3 1,3 Py
g W AUC-BASE
91,25
& |
o 1,2
=
g 1,15
5 1,1
E 1,05
a
1
0,95 -
N
o o\é’@& & eon @é‘& @«‘é@’s& é‘(& @(g, S;\Q,« .&\o&’ & &v &
\@c‘?) & Ff K‘ &(\\ K*Q'Q (8{\' @‘} \‘\%Q Q\,«'\‘
S & & °

Figure 5: Performance improvement.

these alternatives were proposed in a single-processor en-
vironment. Therefore, in order to compare them with the
auction we have adapted them to the CMP baseline archi-
tecture. Moreover, we evaluate the baseline architecture with
an extra bank that acts as a victim cache [20]. This mecha-
nism does not show performance improvements on its own,
however, it does introduce the same additional hardware as
the auction approach.

6.1 Performance analysis

Figure 5 shows the performance improvement achieved
when using The Auction for the bank replacement policy in
the NUCA cache. On average, we find that AUC-BASE ap-
proach increases IPC by 6% compared to the baseline ar-
chitecture. In general, we observe the auction performs sig-
nificantly well with most of PARSEC applications, three of
them improving IPC by more than 15% (canneal, stream-
cluster and vips). On the other hand, assuming the multi-
programmed environment (MIX in Figure 5), the auction
approach improves IPC by, on average, 4%.

One-copy replacement policy always relocates evicted
data without taking into consideration the current state of
the NUCA cache. This enables one-copy to improve per-
formance in those PARSEC applications with large work-
ing sets, such as canneal, streamcluster and vips. However,
blindly relocating evicted data could be harmful in terms
of performance: for example, if 26/ is used, one-copy has
a 2% performance loss. The Auction, on the other hand,
checks the current state of all NUCA banks from the bankset
where the evicted data can be mapped, and thus do not relo-
cate evicted data if no a suitable destination bank has been
found (i.e. if there are no bidders). This makes the auction
a harmless mechanism in terms of performance even for ap-
plications with small working sets, such as blackscholes and
x264. Moreover, we have experimentally observed that the
performance benefits achieved using one-copy rely on the
NUCA cache size, whereas the auction approaches do not
correlate with the size of the cache.

Figure 5 shows that, on average, AUC-BASE increases
IPC by 2% compared to one-copy. However, note that as re-
placement policy, the auction takes advantage of workloads
with large working sets because they lead to more data re-
placements. For example, the auction increases IPC by 10%
compared to one-copy using streamcluster, with canneal it

W 14 M Baseline
c
S b [Victim Cache
B B One-Copy
2
_E 10 W AUC-BASE
T 8
©
5
o 6
£
=
g 4 I
o
w
a 2 k.
2
2 0
3 5 & > K & & 2 . & & & & .o N> Q
N FE & szQ & S & & FF TSP &
F S W E & £
&S @ F & & & @ ¥
&S RSN P
& & &

Figure 6: Misses per 1000 instructions.

increases IPC by 8%, and with vips by 5%. Unfortunately,
most of PARSEC applications have small-to-medium work-
ing sets, and thus the average performance benefits achieved
with a replacement policy are restricted.

Figure 6 shows the NUCA misses per 1000 instructions
(MPKI) with the implemented auction approach (AUC-
BASE). On average, we observe that there is a significant
reduction in MPKI by using the auction. In general, we find
that PARSEC applications that improve performance, also
significantly reduce MPKI. Moreover, we should emphasize
the fact that canneal, streamcluster and vips are the ap-
plications that both provide the highest IPC improvement
with the auction and have the highest MPKI. In contrast,
applications that have MPKI close to zero do usually not sig-
nificantly improve performance when using this mechanism.
On the other hand, in the multi-programmed environment,
we find that the performance improvement is also related to
a MPKI reduction.

6.2 Energy consumption analysis

In order to analyse the on-chip network contention intro-
duced by the auction approach, Figure 7 shows the traffic
on the on-chip network normalised to the baseline configura-
tion. On average, both, one-copy and the auction, increases
on-chip network traffic by 6%. Although both replacement
mechanisms relocate evicted data, they also reduce miss rate
in the NUCA cache compared to baseline configuration, so
the increasing on the on-chip network traffic is not as high
as previously expected. On the other hand, the auction also
introduces extra messages into the on-chip network (auc-
tion invitations and bids). Figure 7 shows that the auction
messages represents less than 10% of total on-chip network
traffic from the AUC-BASE approach.

With regard to the energy consumption, Figure 8 shows
that, on average, the auction reduces the energy consumed
per each memory access by 4% compared to the baseline
architecture. In particular, they significantly reduce energy
consumption in PARSEC applications with large working
sets, such as canneal, fregmine, streamcluster and vips. Re-
garding the multi-programmed environment, we also find
similar results to multi-threaded applications in terms of
energy consumption (4% reduction).

We conclude that as a replacement policy, this mechanism
takes advantage of workloads with the largest working sets

1,45

T 14

N

"—“ 1,35

€ 13

E

o 1,25

o

5 2

&£ 1,15

S 11 =

g

x 1,05 0

2 . * IIIII'IIi|H

£ oos ML MO HEAT R AEAE et

’ ABC

2

@' &"\@\\(\"’&é‘@&b&&é&x "5@\«’\&0@&@7’&\\»‘}6 & & & @Q?«\
c‘ﬁf’gob & &) \bq,(‘ & @ ,b(é' e\@ ¥

,o\’b N &e

A: Baseline, B: One-Copy and C: AUC-BASE

W Common Network Traffic 7 Auction

Figure 7: Network traffic.

because they lead to more data replacements and launch
more auctions. On the other hand, we find that blindly re-
locating data in the NUCA cache without taking into con-
sideration the current state of the banks, as is the case with
one-copy, may cause unfair data replacements that can hurt
performance.

7. ENHANCED AUCTION APPROACHES

Section 6 shows the effects of using The Auction as bank
replacement policy in a CMP-NUCA architecture. We ob-
served that a simple auction approach that only relocates
evicted data when there is space in other banks within the
NUCA cache could obtain significant performance benefits
compared to prior proposals. In case that there is no space,
however, the implemented approach could not determine
whether the evicted data should be relocated to other bank
by evicting other data block instead. For that reason, by
using AUC-BASE approach almost half of started auctions
finished without receiving any bid, so the evicted data could
not be relocated. In this section, we propose two enhanced
auction approaches — bank usage imbalance (AUC-ENH1-
IMB) and prioritising most accessed data (AUC-ENH2-
ACC) — that enable to determine the quality of data dur-
ing the auction, and thus enable bidders to compare the
evicted data that is being sold with their own data. By in-
creasing the number of bids per auction, the enhanced auc-
tion approaches provide higher accuracy than AUC-BASE
approach because: 1) They provide controller more options
to determine the most appropriate destination bank for the
evicted data within the NUCA cache, and 2) they reduce
the number of auctions that finish without receiving any
bid. Besides, we consider that the heuristic used by bidders
in the AUC-BASE approach is basic for fairly distributing
evicted data among the banks in the NUCA cache, so during
an auction in both enhanced approaches, bidders will also
bid for the evicted data if they have space.

7.1 Bank Usage Imbalance (AUC-ENHI1-
IMB)

There are two key issues when a Dynamic-NUCA (D-
NUCA) architecture [22] is considered: 1) a single data can
be mapped in multiple banks within the NUCA cache, and
2) the migration process moves the most accessed data to

L1 m Offchip

1 Dynamic

1,05 m Static

Energy per instruction (normalized)

A: Baseline, B: Victim Cache, C: One-Copy and D: AUC-BASE

Figure 8: Energy per memory access.

the banks that are closer to the requesting cores. Therefore,
bank usage in a NUCA cache is heavily imbalanced, and a
capacity miss in a heavy-used NUCA bank could cause con-
stantly accessed data to be evicted from the NUCA cache,
while other NUCA banks are storing less frequently accessed
data.

‘We propose an auction approach that measures the usage
rate of each bank. Thus, least accessed banks could bid for
evicted data from banks that are being constantly accessed.
We use the number of capacity replacements in each cache-
set of NUCA banks as our bank usage metric.

This auction approach works as follows: when a replace-
ment occurs in a NUCA bank, the owner notifies the bid-
ders that the auction has started, and sends them the cur-
rent replacement counter. Then, when a bidder receives the
message from the owner, it checks whether its current re-
placement counter is lower than the counter attached to the
message. If it is lower, the current bank bids for the evicted
data by sending to the controller the bank identifier and its
replacement counter. At the same time, the controller that
manages the auction is storing the current winner and its
replacement counter. When a bid arrives to the controller,
it checks if the replacement counter from the bid is lower
than the one from the current winner. If so, the incoming
bid becomes the current winner, otherwise the bid is dis-
carded. Finally, when the auction time expires, controller
sends the evicted data to the bidder with the lowest replace-
ment counter. Note that as with AUC-BASE, the auction
deadline is set when the auction starts and then modified to
20 cycles when the first bid arrives.

Unfortunately, this approach is not affordable without
restricting the number of bits used by each replacement
counter. Therefore, in order to implement this approach, in
addition to restricting the bits dedicated to the replacement
counter, we have to implement a reset system that initial-
izes the replacement counters of other NUCA banks when
one of them arrives at the maximum value. If this is not
done, when a replacement counter overflows, it could not be
compared with other counters. Thus, when a replacement
counter arrives at its maximum value, the owner sends the
bidders the reset signal with the message that notifies that
an auction has started.

We evaluate this approach by assuming there is an 8-bit

100
90
80
70
60
50
40
30
20
10

Percentage of Auctions

0 1 2 3 4 5 6 7 8 9 10
Number of bids

~~AUC-BASE AUC-ENH1-IMB -+=AUC-ENH2-ACC

Figure 9: Received bids per auction.

replacement counter per cache-set in all NUCA banks. We
have chosen this size on the basis of the following issues:
additional hardware introduced (bits for the replacement
counter and comparators), accuracy obtained, and reset fre-
quency.

Hardware implementation and overheads: This ap-
proach requires the introduction of 8 bits in every cache set
and auction slot. Thus, assuming the baseline architecture
described in Section 2, this means adding 16.5 KBytes to the
hardware overhead required by The Auction (33 KBytes).
Then, this approach requires introducing 49.5 Kbytes to
the 8 MByte NUCA cache, which signifies less than 0.6%
of the hardware overhead. Moreover, it increases the size
of both auction messages, auction invitations and bids, be-
cause these messages need to include the 8-bit replacement
counter. The auction invitation message sent by the owner
also requires one bit more for the reset signal. We take these
overheads into account when evaluating this approach.

7.2 Prioritising most accessed data (AUC-
ENH2-ACC)

This enhanced auction approach focuses on keeping the
most accessed data in the NUCA cache. When the bidder
receives the auction start notification, it checks whether the
evicted data has been accessed more times than the data
that is currently occupying the last position in the LRU-
stack. If this is the case, it bids for the evicted data by
sending to the controller the bank identifier and the access
counter of the LRU data block. As in AUC-ENHI1-IMB,
when a bid arrives to the controller, it compares the ac-
cess counter that comes with the incoming bid to the access
counter of the current winner. If it is lower, then the in-
coming bid becomes the current winner. Finally, when the
auction time expires, controller sends the evicted data to the
bidder whose LRU data block has the lowest access counter.
Note that as with AUC-BASE, the auction deadline is set
when the auction starts and then modified when the first
bid arrives.

This approach assumes that each line in the NUCA cache
has an access counter. It only keeps information regarding
accesses made to the NUCA cache, which is updated just af-
ter a hit in this cache. However, as in the previous approach,
having an unbounded counter per line is not affordable, thus
we assume a 3-bit saturated counter per line. We choose this

1,7

1,6 - =
3 15 I m 1
)
©
a 14 - - - =
o
€ 13
c
0 12
-
5
P 1,1
: W W W
0,9 T T T T
o & & RS IR SR C I S & > QO
%3 & 5\ & 2 X N
N ° b*'\é N b@b @"‘Q“) SIS & ° & Qoo R N
& < & & C ¥
& N &

B AUC-BASE @AUC-ENH1-IMB OAUC-ENH2-ACC

Figure 10: Auction message overhead.

size for the counter because it is sufficiently accurate, and
the additional hardware introduced is still affordable.

Hardware implementation and overheads: This ap-
proach requires the introduction of 3 bits per cache line and
auction slot. Thus, assuming the baseline architecture de-
scribed in Section 2, it adds 49.5 KBytes to the basic auction
scheme. So, the overall hardware requirements of this auc-
tion approach in the 8 MBytes NUCA cache is 82.5 KBytes,
this being just 1% overhead. As in the previous proposal,
the auction messages are larger. In this case, the size of the
messages is increased by 3 bits. These overheads are also
considered when evaluating this approach.

7.3 Analysis of results

Here, we evaluate the two enhanced auction approaches
introduced in this section. Figure 9 shows that by using
the AUC-BASE approach more than 40% of auctions fin-
ish without receiving any bid, and thus could not relocate
the evicted data. However, we also observe that with the en-
hanced approaches the number of auctions that finish with-
out bids is dramatically reduced to 0.3% and 20% by assum-
ing AUC-ENH1-IMB and AUC-ENH2-ACC, respectively.
Also note that with AUC-BASE more than 93% of auctions
received just one or less bids, while assuming the same per-
centage with the enhanced approaches, they received up to 4.
In particular, comparing both enhanced auction approaches
we observe that the heuristic assumed in AUC-ENH1-IMB
produces much more bids per auction than the one used
in AUC-ENH2-ACC. In an auction, the more bids the con-
troller receives the more confident its final decision will be.
Increasing the number of bids per auction, however, also in-
creases the number of messages introduced to the on-chip
network. Figure 10 shows the auction message (auction in-
vitation and bids) overhead introduced by both enhanced
auction approaches. In general, we find that AUC-ENH2-
ACC adds 10% more auction messages than AUC-BASE,
while the overhead introduced by AUC-ENH1-IMB is 55%.

Figure 11 shows the performance results obtained with
both enhanced auction approaches. In general, we observe
that by increasing auction accuracy both enhanced ap-
proaches obtained significant performance benefits com-
pared to the AUC-BASE approach in most of simulated
workloads. However, we also find that network contention
is a key constraint that prevents both enhanced approaches

14 Baseline

1,35 W AUC-BASE
Q | -
=.’ 13 M AUC-ENH1-IMB
b=} 1 W AUC-ENH2-ACC
31,25 il
>
b 1,2
e
g 1,15 i
= 1,1
£
o 1,05
a.

Al ﬂﬂHMﬂ] Wi

0,95 - - -

S SN) I B A
N F L NS EEFESE S I &
FESFF LSS RS
N & < & \@ & & é’b X
& © & P
S N &

Figure 11: Performance improvement.

achieving higher performance results. On average, AUC-
ENH1-IMB and AUC-ENH2-ACC improve baseline con-
figuration by 6% and 8%, respectively. AUC-ENH2-ACC
outperforms other auction approaches in most of work-
loads including those with large working sets like canneal,
streamcluster and wvips. On the other hand, AUC-ENHI-
IMB is heavily penalized by the high on-chip network con-
tention that this approach introduces. Therefore, this pre-
vents AUC-ENHI1-IMB obtaining higher performance re-
sults. Actually, we experimentally observed that both en-
hanced auction approaches reduce NUCA miss rate obtained
by AUC-BASE, but just AUC-ENH2-ACC outperformed
this auction approach. Based on this observation, we con-
clude that the challenge to implement a high-performance
auction approach is to balance auction accuracy and network
contention.

Finally, Figure 12 shows the energy consumed per each
memory access by both enhanced auction approaches. We
observe that all auction approaches reduce energy consumed
compared to the baseline configuration. With regard to the
AUC-BASE, however, both enhanced approaches slightly in-
crease energy consumed per memory access. This is because
the extra on-chip network contention that both approaches
introduce increases dynamic energy consumed.

8. RELATED WORK

Kim et al. [22] introduced the concept of Non-Uniform
Cache Architecture (NUCA). They observed that the in-
crease in wire delays would mean cache access times were no
longer a constant. Instead, latency would become a linear-
function of the line’s physical location within the cache. This
observation led to several NUCA architectures being de-
signed by partitioning the cache into multiple banks and us-
ing a switched network to connect these banks. However, the
two main architectures designed for this purpose were Static
NUCA (S-NUCA) and Dynamic NUCA (D-NUCA). Both
designs organize the multiple banks into a two-dimensional
switched network. The difference between the two archi-
tectures is the Placement Policy they manage. While in
S-NUCA architecture, data are statically placed in one of
the banks and always in the same bank, in D-NUCA ar-
chitecture data can be promoted to be placed in closer and
faster banks. Since then, there have been several studies us-

L1 m Offchip

1 Dynamic

1,05 m Static

Energy per instruction (normalized)

A: Baseline, B: AUC-BASE, C: AUC-ENH1-IMB and D: AUC-ENH2-ACC

Figure 12: Energy per memory access.

ing NUCA architectures in the literature. One of the most
relevant architectures is NuRAPID [11]. This architecture
decouples data and tag placement. NuRAPID stores tags
in a bank close to the processor, optimizing tag searches.
Whereas NUCA searches tag and data in parallel, NuRAPID
searches them sequentially. This increases overall access time
but also provides greater power efficiency. Another difference
between NUCA and NuRAPID is that NuRAPID partitions
the cache in fewer, larger and slower banks. In terms of per-
formance, NuRAPID and D-NUCA achieves similar results
but NuRAPID heavily outperforms D-NUCA in power effi-
ciency.

The introduction of the CMP architectures, however,
brought additional challenges to the NUCA architecture,
which have been analysed by Beckmann and Wood [7]. They
demonstrated that block migration is less effective for CMP
because 40-60% of hits in commercial workloads were sat-
isfied in the central banks. Block migration effectively re-
duced wire delays in uniprocessor caches. However, to im-
prove CMP performance, the capability of block migration
relied on a smart search mechanism that was difficult to
implement. Chishti et al. [11] also proposed a version of Nu-
RAPID for CMP in which each core had a private tag array
instead of a single and shared tag array.

Recent studies have explored policies for bank placement
[19, 18, 17], bank migration [21, 16] and bank access [30,
4, 32] in NUCA caches. However, The Auction is the first
mechanism proposed for NUCA caches on CMP architec-
tures that focuses on the bank replacement policy. Previ-
ously, only Kim et al. [22] had proposed two alternatives for
this policy, but these were based on single-processor archi-
tecture. These alternatives were zero-copy policy and one-
copy policy. Zero-copy policy means that an evicted data
element is sent back to the off-chip memory. In one-copy
policy, on the other hand, the victim data block is moved to
a lower-priority bank further from the processor.

9. CONCLUSIONS AND FUTURE WORK

The decentralized nature of NUCA prevents the replace-
ment policies proposed in the literature from being effec-
tive in this kind of caches. As banks operate independently
from each other, their replacement decisions are restricted
to a single NUCA bank. Unfortunately, bank replacement

policy in NUCA-based CMP machines has not been prop-
erly addressed before. Most previous works have ignored the
replacement issue or adopted a replacement scheme that
was originally designed for use with uniprocessors/uniform-
caches. To the best of our knowledge, The Auction is the
first mechanism that specifically targets CMP-NUCA sys-
tems, thus accounting for the decentralized nature of the
cache and the specific characteristics that result from the
multi-threaded, multi-banked cache system.

The Auction spreads replacement decisions that have been
taken in a single bank to the whole NUCA cache. This
enables the most appropriate data to be evicted from the
NUCA cache. In this paper we show that The Auction is a
sophisticated, adaptive and flexible mechanism that enables
evicted lines to relocate from a bank in the NUCA cache to
the most suitable bank. It defines a protocol that is based
on decisions taken at three different points: the owner, the
controller and the bidders. The owner, which is the bank
where the initial replacement occurs, starts the auction by
notifying the replacement to all bidders. The bidders, on
the other hand, are the banks where the evicted data can be
mapped into the NUCA. They decide whether are interested
in obtaining the current evicted data. Finally, the controller
decides which bank is going to be the final destination of the
evicted data.

The flexibility of the auction lies in the decisions that
its components take. In this paper, we analyse three differ-
ent approaches: AUC-BASE, AUC-ENHI1-IMB and AUC-
ENH2-ACC. By using the first one, we showed the bene-
fits in terms of performance and energy consumption that
a simple auction approach could provide to a CMP-NUCA
architecture. Then, we proposed two enhanced auction ap-
proaches to increase the number of bids per auction, and
thus make final replacement decision much more accurate.
At this point, we observe that although increasing auction
accuracy could improve performance (by 8%, on average),
network contention is a key constraint that must be consid-
ered. Furthermore, we also found that the auction reduces
the energy consumed per memory access by 4%.

Future research will include analysing other auction ap-
proaches to optimize the trade-off between auction accu-
racy and network contention. Increasing the accuracy of
the owner decisions will reduce the number of messages
introduced by the auction to the network. Therefore, en-
ergy consumption should be reduced and could even im-
prove performance obtained by the current implemented
auction approaches. On the other hand, smarter decisions
by the controller component will enable evicted data to be
sent to the most suitable bidders. Consequently, they may
significantly increase the current performance improvement
achieved. Furthermore, further research should also involve
analysing the impact of adopting adaptive bidder decisions
that can adapt to the current program behaviour.

10. ACKNOWLEDGEMENTS

This work is supported by the Spanish Ministry of Science
and Innovation (MCI) and FEDER funds of the EU under
the contracts TIN 2007-61763 and TIN 2007-68050-C03-03,
the Generalitat de Catalunya under grant 2009SGR1250,
and Intel Corporation. Javier Lira is supported by the MCI
under FPI grant BES-2008-003177.

11. REFERENCES

[1] Micron system power calculator. [Online]. Available:
http :

/ Jwww.micron.com/support/part;n fo/powercalc

[2] Spec cpu2006. [Online]. Available:
http://www.spec.org/cpu2006

[3] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and
D. Burger, “Clock rate vs. ipc: The end of the road for
conventional microprocessors,” in Proceedings of the
27th International Symposium on Computer
Architecture, 2000.

[4] S. Akioka, F. Li, K. Malkowski, P. Raghavan,

M. Kandemir, and M. J. Irwin, “Ring data location
prediction scheme for non-uniform cache
architectures,” in Proocedings of the International
Conference on Computer Design, 2008.

[5] A. Bardine, P. Foglia, G. Gabrielli, and C. A. Prete,
“Analysis of static and dynamic energy consumption
in nuca caches: Initial results,” in Proceedings of the
2007 Workshop on Memory Performance: Dealing
with Applications, Systems and Architecture, 2007.

[6] B. M. Beckmann, M. R. Marty, and D. A. Wood,
“Asr: Adaptive selective replication for cmp caches,” in
Proceedings of the 39th Annual IEEE/ACM
International Symposium of Microarchitecture, 2006.

[7] B. M. Beckmann and D. A. Wood, “Managing wire
delay in large chip-multiprocessor caches,” in
Proceedings of the 37th International Symposium on
Microarchitecture, 2004.

[8] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The
parsec benchmark suite: Characterization and
architectural implications,” in Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, 2008.

[9] J. Chang and G. S. Sohi, “Cooperative caching for
chip multiprocessors,” in Proceedings of the 33rd
International Symposium on Computer Architecture,
2006.

[10] J. Chang and G. S. Sohi, “Cooperative cache
partitioning for chip multiprocessors,” in Proceedings
of the 21st ACM International Conference on
Supercomputing, 2007.

[11] Z. Chishti, M. D. Powell, and T. N. Vijaykumar,
“Distance associativity for high-performance
energy-efficient non-uniform cache architectures,” in
Proceedings of the 36th International Symposium on
Microarchitecture, 2003.

[12] Z. Chishti, M. D. Powell, and T. N. Vijaykumar,
“Optimizing replication, communication, and capacity
allocation in cmps,” in Proceedings of the 32nd
International Symposium on Computer Architecture,
2005.

[13] P. Dubey, “A platform 2015 workload model:
Recognition, mining and synthesis moves computers to
the era of tera,” in Intel White Paper, Intel
Corporation, 2005.

[14] H. Dybdahl and P. Stenstrém, “An adaptive
shared /private nuca cache partitioning scheme for chip
multiprocessors,” in Proceedings of the 13th
International Symposium on High-Performance
Computer Architecture, 2007.

[15] E. Grochowski, R. Ronen, J. Shen, and H. Wang,

(16]

(17]

(18]

(21]

(22]

“Best of both latency and throughput,” in Proceedings
of the 22nd International Conference on Computer
Design, 2004.

M. Hammoud, S. Cho, and R. Melhem, “Acm: An
efficient approach for managing shared caches in chip
multiprocessors,” in Proceedings of the 4th
International Conference on High Performance and
Embedded Architectures and Compilers (HiPEAC),
2009.

M. Hammoud, S. Cho, and R. Melhem, “Dynamic
cache clustering for chip multiprocessors,” in
Proceedings of the ACM International Conference on
Supercomputing (ICS), 2009.

N. Hardavellas, M. Ferdman, B. Falsafi, and

A. Ailamaki, “Reactive nuca: Near-optimal block
placement and replication in distributed caches,” in
Proceedings of the 36th Annual International
Symposium on Computer Architecture (ISCA), 2009.
J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and
S. W. Keckler, “A nuca substrate for flexible cmp
cache sharing,” in Proceedings of the 19th ACM
International Conference on Supercomputing, 2005.
N. P. Jouppi, “Improving direct-mapped cache
performance by the addition of a small
fully-associative cache and prefetch buffers,” in
Proceedings of the 17th annual international
symposium on Computer Architecture, ISCA ’90.

M. Kandemir, F. Li, M. J. Irwin, and S. W. Son, “A
novel migration-based nuca design for chip
multiprocessors,” in Proceedings of the ACM/IEEE
conference on Supercomputing, 2008.

C. Kim, D. Burger, and S. W. Keckler, “An adaptive,
non-uniform cache structure for wire-delay dominated
on-chip caches,” in Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2002.
P. Kongetira, K. Aingaran, and K. Olukotun,
“Niagara: a 32-way multithreaded sparc processor,” in
IEEFE Micro, March 2005.

H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell,
D. Q. Nguyen, B. J. Ronchetti, W. M. Sauer, E. M.
Schwarz, and M. T. Vaden, “Ibm power6
microarchitecture,” IBM Journal, November 2007.

P. S. Magnusson, M. Christensson, J. Eskilson,

D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,

A. Moestedt, and B. Werner, Simics: A Full System
Simulator Platform. Computer, 2002, vol. 35-2, pp.
50-58.

M. M. K. Martin, M. D. Hill, and D. A. Wood, “Token
coherence: Decoupling performance and correctness,”
in Proceedings of the 30th International Symposium on
Computer Architecture, 2003.

M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.
Hill, and D. A. Wood, “Multifacet’s general
execution-driven multiprocessor simulator (gems)
toolset,” in Computer Architecture News, Sep. 2005.
D. Matzke, “Will physical scalability sabotage
performance gains?” IEEE Computer, September 1997.
C. McNairy and R. Bhatia, “Montecito: A dual-core,
dual-thread itanium processor,” IEEE Micro, vol. 25,
no. 2, March-April 2005.

(30]

(31]

(32]

33]

N. Muralimanohar and R. Balasubramonian,
“Interconnect design considerations for large nuca
caches,” in Proceedings of the 34th International
Symposium on Computer Architecture, 2007.

N. Muralimanohar, R. Balasubramonian, and N. P.
Jouppi, “Optimizing nuca organizations and wiring
alternatives for large caches with cacti 6.0,” in
Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, 2007.
R. Ricci, S. Barrus, and R. Balasubramonian,
“Leveraging bloom filters for smart search within nuca
caches,” in Proceedings of the 7th Workshop on
Complezity-Effective Design (WCED), 2006.

S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finnan, P. Iyer, A. Singh, T. Jacob,

S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar,
“An 80-tile 1.28tflops network-on-chip in 65nm cmos,”
in Proceedings of the IEEE International Solid-State
Circuits Conference, 2007.

T. F. Wenisch, R. E. Wunderlich, M. Ferdman,

A. Ailamaki, B. Falsafi, and J. C. Hoe, “Simflex:
Statistical sampling of computer system simulation,”
IEEFE Micro, vol. 26, no. 4, pp. 18-31, 2006.

M. Zhang and K. Asanovié¢, “Victim replication:
Maximizing capacity while hiding wire delay in tiled
chip multiprocessors,” in Proceedings of the 32nd
International Symposium on Computer Architecture,
2005.

