
The Audition Framework for Testing Web Services Interoperability∗

Antonia Bertolino and Andrea Polini
Istituto di Scienza e Tecnologie della Informazione “Alessandro Faedo” – CNR

Via Moruzzi, 1 – 56124 Pisa (Italy)
{antonia.bertolino, andrea.polini}@isti.cnr.it

Abstract

Service Oriented Architectures and Web Services are
emerging technologies, which have overall inherited prob-
lems and advantages from the component-based approach,
but exacerbated the aspects of loose coupling, distribution
and dynamism of “components”, here elements furnishing
published services on external client requests. In this pa-
per we highlight the urgent need for methodologies sup-
porting Web Services reliable interaction, and in particular
deal with testing concerns. We then propose a framework
that extends UDDI registry role from the current one of a
“passive” service directory, to also sort of an accredited
testing organism, which validates service behaviour before
actually registering it. This testing stage (called audition)
mainly focuses on interoperability issues, so to facilitate the
coordination among services registered at the same UDDI.
The audition needs to rely on a Web Service specification
augmented with information on how the service has to be
invoked. We propose that this information is given in the
form of a Protocol State Machine, which is a newly intro-
duced behaviour diagram of the UML 2.0.

1. Introduction

Enterprise Application Integration (EAI) is today one of
the hottest topics within both the academic and industrial
communities. In general terms the objective is to develop
methodologies for integrating applications running on dif-
ferent platforms in a distributed setting and possibly hosted
by different organisations. Research in EAI continuously
evolves as a consequence of the restless introduction of new
communication technologies (such as the mobile paradigm)
and consequently of the increasing opportunities of linking
together more and more information systems.

In the 90’s a strong effort has been sustained to pro-
vide powerful and easy ways to develop and integrate dis-

∗This work has been supported by the European project TELCERT
(FP6 STREP 507128).

tributed software applications. The most remarkable exam-
ple is probably the CORBA initiative [2], which produced
an open standard and widely accepted middleware specifi-
cation on top of which building a distributed objects appli-
cation almost “easy” as a local one. This technology in fact
provides the software developer with quite powerful means
to address problems originated by distribution and hetero-
geneity.

In the last years the evolution and pervasive presence of
the Web made it plausible to imagine a further level of in-
tegration, in which not only could the applications involved
be distributed on different hosts and written in different lan-
guages, but also be owned and run by different organisa-
tions. The above scenario has been the main motivation
behind the emergence of the Service Oriented Architecture
(SOA) paradigm, of which Web Services technologies con-
stitute at the same time the most relevant instantiation, and
the best sponsors. To characterise SOAs, we summarise be-
low the main aspects from the W3C list of properties [6]:
Logical view: The service typically carries out a business-
level operation, described in terms of what it does, and at an
abstract, logical level.
Message orientation: The service only defines the mes-
sages exchanged between provider agents and requester
agents. Any detail about how an agent implementing a ser-
vice is constructed is deliberately abstracted away. A key
benefit of this concerns legacy systems, as an existing soft-
ware component or application could be “wrapped” in mes-
sage handling code so to adhere to the formal service defi-
nition.
Description orientation: To support the public nature of
the SOA, a service must describe by means of machine-
processable metadata all and only those details that are im-
portant for the public use of the service. The semantics of a
service should also be documented, either directly or indi-
rectly, by its description.
Granularity: Services generally provide a small number of
operations with relatively large and complex messages.
Network orientation: Services tend to be oriented towards
use over a network.

Platform neutral: Messages are sent through the inter-
faces in a platform-neutral, standardised format, most often
XML.

Different related technologies and standards are used
to achieve the properties listed above in the case of Web
Services (WS)s. In particular the WS architecture is
currently based on three main elements:
Web Service Description Language (WSDL) [7]: this is
a XML based language used to describe a Web Service.
Information in a WSDL file specify offered services,
access points, format of in/out parameters and accepted
mechanisms used to exchange messages;
Universal Description and Discovery Integration
(UDDI) [8]: this open technology, which specification is
developed by the OASIS consortium1, defines a common
mechanism to publish and retrieve information about
available Web Services. It acts as a registry and can
catalogue information following the yellow, green or white
pages paradigms;
Simple Object Access Protocol (SOAP) [12]: this is
a simple protocol that can be used to exchange XML
based messages, and it is the natural choice to establish
communications among Web Services. The protocol is
generally implemented overhttpbut other implementations
are possible (e.g.smtp).

Given the technologies listed above, a WS has been char-
acterised by the W3C consortium using the following defi-
nition [6]:

A Web Service is a software system designed
to supportinteroperable machine-to-machine in-
teraction over a network. It has an interface de-
scribed in a machine-processable format (specifi-
cally WSDL). Other systems interact with the Web
Service in a manner prescribed by its description
using SOAP messages, typically conveyed using
HTTP with an XML serialisation in conjunction
with other Web-related standards.

This definition stresses the importance of WSs to support
interoperable communications between software applica-
tions. The relevance of interoperability is also highlighted
by the emergence of the WS-I initiative2, a consortium
grouping the leading organisations in the WS community.
WS-I aims at introducing specific rules and profiles that
should reduce interoperability problems, at least at the mes-
sage format level. In particular WS-I has defined a basic
profile that specifies several different rules, also on format-
ting aspects, and relations that must hold between the pieces
of information contained in related WSDL files, SOAP mes-
sages and UDDI entries, so to facilitate the communication
between different services.

1details at: http://www.oasis-open.org/home/index.php
2details at: http://www.ws-i.org

However it is generally recognised that current technolo-
gies are not adequate to permit the reliable integration of
services developed by different stakeholders. In particular,
the technology relies on the restrictive assumption that a de-
veloper of the service’s clients knows in advance the seman-
tic of the operations provided by a service or other proper-
ties of it [3]. Such information, in fact, does not appear in
any standardised form in the current WS architecture. Try-
ing to address this evident weakness in the current technol-
ogy, different approaches are being proposed to improve the
format of WSs specifications, so to also include the integra-
tion level between interacting WSs. We are currently at the
stage in which these proposals need to aggregate consensus
within the community. Beyond the different technical solu-
tions, we can recognise some common basic ideas, that of
increasing the information that should be provided with a
WS, such as input/output relations and the ordering of op-
eration invocations, and of providing a language to specify
the choreography depicting coordination scenarios between
different WSs. Major examples of such technologies are
the Business Process and Execution Language for Web Ser-
vices (BPEL4WS) [4] and the Web Service – Choreography
Description Languages (WS-CDL) [14].

In our research we also ask the WS developer to augment
the WSDL definition with additional information. Our ob-
jective is to increase the testability of such artifacts andin
particular make it possible the application of rigorous model
based testing methodologies to the dynamic assessment of
WS interoperability.

We believe in fact that while the community is moving
towards identifying a common standard model for WSs ar-
chitecture, allowing for WSs smooth combination and inter-
operation, it is important to raise awareness within the same
community that also common standard methods for verifi-
cation and validation of functional and non-functional prop-
erties of WS must be contextually sought and agreed upon.
In fact, as we also develop later in the paper, the proper-
ties of WS-based application make their testing and analysis
very difficult, therefore we can afford such tasks only if we
plan ahead for them, and in particular only if we proactively
impose some discipline in WS specification so to later fa-
cilitate testing from the interested stakeholders (see Section
4). As this augmented specifications of course require extra-
effort on the developer’s site, it is important that WS testa-
bility aspects are sustained and agreed upon by the commu-
nity.

Hence the goal of this paper is twofold: on one side, we
would like to push awareness in the WS community at large
of testing and QoS relevance for WSs and sustain the claim
that these activities need to rely on a rigorous augmented
WS specification; on the other side, we overview a general
framework we are developing to this purpose, which em-
braces and extends currently existing proposals into a com-

2

prehensive organisation, inclusive of both technical aspects
and procedural ones.

In our idea the WS information can be used to create
a sort of “improved UDDI registry” that tests the WSs as
they require to be registered. This assessment is aimed at
verifying that the WS under registration can correctly in-
teract with the WSs already registered that will be possibly
invoked. This process requires some overhead on the side
of the UDDI registry, but should reasonably guarantee that
all the services registered within the same registry can cor-
rectly inter-operate.

After overviewing related work in Section 2, in Section
3 we discuss in more detail the information that needs to
be included with the WS definition. In Section 4 we specu-
late on different objectives and scenarios for WS testing. In
Section 5 we then present our Audition testing framework.
Finally we draw up conclusions in Section 6.

2. Related Work in Testing of Web Services

WSs testing is an immature discipline in intense need of
further research by academy and industry. Indeed, while
on the practitioner’s side WSs are evidently considered a
key technology, research in the area seems not to draw
an adequate attention from the testing community, prob-
ably due to the contiguity/overlap with other emerging
paradigms, especially with component based software en-
gineering (CBSE), or perhaps to the quite technical details
that this discipline entails. In this section we give a brief
overview of those papers that share some similar views with
our work.

The possibility of enhancing the functionality of a UDDI
service broker with logic that permits to perform a testing
step before registering a service has been firstly proposed in
[18] and [19], and subsequently in [13]. This idea is also at
the basis of the framework introduced in this paper. How-
ever the information we use and the tests we derive are very
different from those proposed in the cited papers. In partic-
ular while in the cited works testing is used as a means to
evaluate the input/output behaviour of the WS that is under
registration, in our work we mainly monitor the interactions
between the WS under registration with providers of ser-
vices already registered. In this sense, we are not interested
in assessing if a WS provided is bug-free in its logic, but we
focus on verifying that a WS can correctly cooperate with
other services, by checking that a correct sequence of invo-
cations to the service leads in turn to a correct interactionof
the latter with other services providers, (and that vice versa
an incorrect invocation sequence receives an adequate treat-
ment).

With reference to the information that must be provided
with the WS description, the authors of [18] foresee that the
WS developer provides precise test suites that can be run

by the enhanced UDDI. In [13] instead the authors propose
to include Graph Transformation Rules that will enable the
automatic derivation of meaningful test cases that can be
used to assess the behaviour of the WS when running in
the “real world”. To apply the approach they require that
a WS specifically implements interfaces that increase the
testability of the WS and that permit to bring the WS in a
specific state from which it is possible to apply a specified
sequence of tests.

The idea of providing information concerning the right
order of the invocations can be found in different way also
in specifications such as BPEL4WS and WSCI. The use of
such information as main input for analysis activities has
been also proposed in [11]. However the objective of the
authors in this case is to formally verify that some unde-
sired situations are not allowable given the collaboration
rules. To do this the authors, after having translated the
BPEL specifications into Promela (a language that can be
accepted by the SPIN model checker), apply model check-
ing techniques to verify if specific properties are satisfied.
Another approach to model based analysis of WS compo-
sition is proposed in [10]. From the integration and co-
operation of WSs the authors synthesise Finite State Ma-
chines and then they compare if the obtained result and al-
lowable traces in the model are compatible with that defined
by BPEL4WS-based choreography specification.

3. An Enriched Information Model for WS In-
teroperability Testing

Speaking in general, the capability of testing a software
artifact is strongly influenced by the information available.
In fact different kinds of testing techniques can be applied
depending on the extent and formalisation degree of the in-
formation available. The technique applied will also be dif-
ferent depending on which is the aspect that testing aims at
evaluating, such as functionality, QoS, interoperability.

The notion of the SOA, as we have seen, establishes
rigid limitations on the kind of documentation that can be
provided and used for integrating services. In particular,
a service must not include information on how it has been
implemented. This obviously is desirable to enable the de-
coupling between requesters and providers of services, but
obviously makes integration testing more difficult.

Although similar problems have been encountered and
tackled in the area of software components, testing of WSs
is probably even more difficult since the different elements
participating to the interaction could be dispersed among
different organisations, so even a simple monitoring strat-
egy or the insertion of probes into the middleware is not
generally feasible. In CBSE different proposals have been
made to increase the information available with software
components generally using a metadata approach [17]. For-

3

tunately, the insertion of additional information document-
ing a WS is perhaps easier thanks to established mecha-
nisms in the UDDI registry such as tModels [8].

On the other hand, these mechanisms are used by tech-
nologies cited above such as BPEL4WS and WS-CDL.
These specifications suggest to add, among the other data,
information concerning the protocol that a client needs to
follow to correctly interact with the service itself. We claim
however that it is useful to attach this description in the form
of an XML Metadata Interchange (XMI [1]) file, since in
this form it can be easily reused by UML based technolo-
gies. XMI, in fact, is becoming the de facto standard for
enabling interaction between UML tools, and it can be au-
tomatically generated from widespread UML editing tools
such as IBM Rational Rose XDE or Poseidon. Hence our
proposal is that the WS description (including the WSDL
file) will report some additional information documented
by the WS developer in UML, and in particular, as we ex-
plain below, as a Protocol State Machine, that is a UML
behaviour diagram newly introduced into the latest version
of this language [9]. In particular an XMI file representing
the associated PSM could be inserted in the UDDI registry.

3.1. Protocol State Machine Diagrams

A Protocol State Machine (PSM) is a particular kind of
state machine that focuses only on the transitions of states
and on the rules governing the execution order of opera-
tions. This kind of diagram has been introduced in the UML
2.0, in order to support component-based development by
providing clear rules to describe the communications inter-
actions between different objects. Therefore in the general
case a PSM, when associated to a class, provides rules for
implementations of its interfaces or ports; these rules pro-
vide the guidelines that other systems must comply with in
order to correctly work with the associated class [9].

Hence a PSM does not specify a detailed behaviour for
the associated object, although a standard behaviour state
machine relative to the object can conform to a PSM ac-
cepting, as correct, transitions between states specified by
the rules in the PSM. Special features distinguishing a PSM
are that PSM states can have a name but cannot show
entry actions, exit actions, internal actions, or do activi-
ties; PSM transitions show operations but not actions or
send events; they can also have pre-conditions and post-
conditions, shown in square brackets.

Pre- and post-conditions provide a strong testing capa-
bility to the model we are figuring, by introducing verifi-
cation concepts typical of the Design by Contract (DbC)
methodology firstly introduced by Meyer [15]. Following
the DbC paradigm a predicate can be associated to each in-
vocation and the former must be satisfied before the invo-
cation can be performed. In such a case after the invocation

of the method the post-conditions are guaranteed to be sat-
isfied. Such verification mechanisms have already showed
their potential in the area of component based software in
which they have been used for many different verification
tasks.

As an example, in Figure 1.a we report the definition of
a simple interface for the management of a file. The inter-
face only defines the methods to open the file, read a line,
write a line and finally close the file. On the base of such
interface, in Figure 1.b we report a simple PSM that de-
fines the protocol that a user of the service defined by that
interface must follow to correctly interact with an imple-
mentation of that same service (note the annotation [pre-
condition]operation/[post-condition] on the transitionarcs).

File System Interface

+ open(mode:String, name:String):void
+ read():String[]
+ write(chsToWrite:String[]):void
+ close():void

a.

Closed

kill /

Created

create /

Opened

close /open / [successful]

[mode==r or mode==rw] read / [mode==w or mode==rw] write /

open / [successful]

b.

Figure 1. Definition of an interface for file
management (a.) and the corresponding PSM
(b.)

4. WS Testing Scenarios

As said, WS is a recent technology and as a consequence
a discipline for WS testing still needs to be developed. In
particular a well defined testing process should clearly state
the verification steps and the way through which a WS, or a
collection of cooperating services, must undergo so to pro-
vide sufficient guarantees on their behaviour.

We leave out of the scope of the present paper the pro-
posal of a comprehensive testing process. As a first step to-
wards the definition of such a process, however, we believe
a classification is useful of both the different objectives in

4

the testing of WSs, and the different stakeholders that can
be involved in this process.

We start from identifying the stakeholders who could be
interested in testing WSs and their coordination. We think
there are mainly three of them:

• WS developer: as for any other software element, the
developer is clearly interested in assessing if the pro-
duced results match with the expected one, in terms of
functionality, interaction with other components and
probably QoS. In the WS architecture, we can distin-
guish mainly between two different artifacts: WSs that
will be registered in a UDDI server to successively
provide the service to other services, and stand-alone
clients that access to registered services.

• Service Broker Provider: these are agencies that act
as service brokers and could be interested in testing
a WS before granting registration in order to be self
guaranteed on the offered services.

• Standards Body: these are agencies/consortia that in
particular domains define standards or generally ac-
cepted specifications. The potential of WS technolo-
gies convinced some of these organisations (consider
for instance IMS in the e-learning domain3) to adopt
and promote such technologies and so they are cur-
rently defining precise interfaces for specific services
in order to increase the chance that independently de-
veloped service will be able to correctly inter-operate.

Considering these three stakeholders, several possible dif-
ferent scenarios become available for testing.
Testing on the WS developer’s side. The developer will
be more interested in testing its clients in terms of function-
ality trying to find bugs in its implementation. This process
will involve different steps and techniques, reasonably ina
similar way to the traditional testing of software artifacts.
In particular the tester being the same developer, they can
take advantage from the knowledge of specifications and of
the internal structure, and test to obtain for instance a par-
ticular coverage on the branches of the client code. The
execution of the tests will also require the development of
precise stubs for the accessed services. The difficulty in
deriving effective stubs is directly proportional to the quan-
tity of information that is made available. As a subsequent
step the developer may want to assess its software product
while interacting with the required services. This steps is
particularly difficult if we consider that in the SOA context
required services generally run and reside on a remote ma-
chine on which the WS developer generally has no control.
This is probably one of the biggest differences with respect
to integration testing in CBSE in which some control on the
component can be supposed on the tester’s side. Similar to

3details at: www.imsglobal.org

the scenario depicted above is the testing by its developer of
a WS that will be made available to other clients.
Testing on the Service Broker Provider’s side. The reg-
istration of a service is obviously a critical point for a bro-
ker that wants to guarantee the quality of the registered ser-
vices. Some authors suggest to use test cases provided by
the same developer of the WS [19]. But this approach could
not provide completely objective test suites (for instance, if
a sort of accountancy is performed against WS usage, the
test cases could be produced in a “lazy” way to increase the
profit gainable from their usage). In our opinion, it would
be more practical and effective to enable the derivation of
test cases from models provided by the WS developer. Or,
it could be equally useful to derive test cases from a spec-
ification defining coordination scenarios in which the WS
under registration plays a role. Another interesting scenario
for the Service Broker Provider emerge when a service al-
ready registered change its implementation. Obviously it is
equally important for the Service Broker Provider to re-test
the service in order to guarantee the possible already regis-
tered client of that service.
Testing on the Standards Body’s side. Finally the third
stakeholder that we consider is an authority (either norma-
tive or because recognised by the community) that releases
some WS specifications to which service providers should
be compliant (in order to be accepted in the market). In this
case the test suite must be developed directly by the author-
ity and (successfully) executed on the service that wants to
claim conformance. Depending on the model defined for
conformance we can have a more or less strict level of con-
formance with consequently different levels of obtainable
interoperability.

Obviously the different scenarios discussed above can
be present and variously intermixed in any different testing
process. For instance, considering the third case, the WS
conformance test suite should be published by the Standard
Body together with the WS prescribed specification, and is
executed first in-house by the WS developer (in combina-
tion with the developer’s own test cases) and after by a test-
ing laboratory acting for the certification authority.

The difference in each case stays on the testing focus
that will strongly influence the choice of the test cases to
run (using a metaphor from fishing or hunting we can say
that the kind of fish or quarry that we want to catch strongly
influence the choice of the decoy).

5. A Framework for WS Testing

We now finally introduce our framework for testing
WSs. The framework relies on an increased information
model concerning the WS, as illustrated in the previous sec-
tions, and is meant for introducing a test phase when they
ask for being published on a UDDI registry. In this sense we

5

call it the “Audition” framework, as if the WS undergoes
a monitored trial before being put “on stage”. It is worth
noting that from a technical point of view the implemen-
tation of the framework does not present major problems
and even from the scientific perspective it does not intro-
duce novel methodologies; on the contrary one of its target
is just to reuse complex software tools (such as test genera-
tors) in a new context. The major difficulties we foresee is
that a real implementation based on accepted standards re-
quires that slight modifications/extensions are made to such
standard specifications as UDDI. This in turn requires wide
acceptance from the WS community and the recognition of
conformance testing importance.

Figure 2 shows the main elements of the framework. The
figure provides a logical view, i.e., the arrows do not repre-
sent invocations on methods provided by one element, but a
logical step in the process and point to the element that will
take the responsibility of carrying on the associated opera-
tion.

The process is activated by the request made by a WS of
being enclosed in the entries of a registry and is structured
in eight main steps, which are also annotated in Figure 2
(numbers in the list below correspond to the numbers in the
figure):

1. a web service WS1 asks a UDDI registry to be pub-
lished among the services available to accept invoca-
tions. Contextually, WS1 provides references to: the
WSDL file defining the syntax of the offered service,
and to the XMI file codification of a Protocol State
Machine (expressing the protocol that a possible client
should follow to correctly interact with the service). If
the description for the specified service to be provided
is already registered only a reference to the WS access
point is provided;

2. the UDDI service puts WS1 in the associated database,
but marking the registration as a pending one. Succes-
sively it starts the creation of a WS tester (see Section
5.1). To do this we foresee in the framework a partic-
ular WS that encapsulates a test generator engine. The
idea is to reuse test generators already developed or
that will be made available in the future. In particular
for our purpose we look for generators that take as in-
put UML 2.0 diagrams. To the best of our knowledge
at the moment no PSM based tool has appeared yet,
nevertheless we think that tool developed in the area
of protocol conformance could be profitably adapted,
and this will constitute our future research work.

3. theWS Testing Clientwill start to make invocations
on WS1, acting as the driver of the test session. Our
main objective developing the framework has been to
have a means to check the order of invocations made

between two different services so to discover interop-
erability problems. Nevertheless it is natural to imag-
ine a generator engine based on the concepts of Design
by Contract (DbC) [15], which on the base of pre- and
post-conditions will generate test cases to check that,
given an input satisfying to the pre-conditions, the test
execution ends up with outputs satisfying to the post-
conditions.

4. during the audition, unless it is a basic service, i.e. a
service that does not require to cooperate with other
services to provide its functionality, WS1 will ask to
the UDDI service for references to other services nec-
essaries to complete the provision of the service;

5. UDDI checks if the service asking for references is in
the pending state. If not the reference for the WSDL
file and relative binding and access point to the service
are provided. In the case that the service is in the pend-
ing state the UDDI will generate, using a WS factory, a
WS Proxy for the required service. This WS proxy will
implement the same interface of the required service,
and its creation take as input the PSM for the simu-
lated WS (or other information depending on the kind
of checks that we want to monitor);

6. For each inquiry request made by WS1 the UDDI ser-
vice returns a binding reference to a Proxy version of
the requested service.

7. WS1 on the base of the reference provided by the
UDDI service will start to make invocations on the
Proxy versions of the required services. As a conse-
quence the Proxy version can check the content and
the order of any invocation made by WS1; In particu-
lar in our case the checks that will be executed concern
the ordering of the invocations made by the client ser-
vice. If an error occurs which violates the checks cur-
rently monitored by the Proxy the UDDI service will
be informed. As a consequence the directory service
removes from the pending entries the service currently
under test, and denies registration;

8. If the current invocation it is conform the Proxy service
invokes the real implementation of the service and re-
turn the result obtained to the invoking (WS1) service.
Then the process continues driven by the invocations
made by the testing client.

5.1. Framework Testing Objective

We discussed above the architecture of the framework
mainly in terms of the steps that constitutes the approach,
the different parts and corresponding necessaries interac-
tions. We discuss here briefly on the kind of tests that we

6

WS1 − PSM

WSProxyn WSn

UDDI
Service BrokerWS1

Description
WS1− WSDL

Registrations
Pending

Registered
services

2

WSn − PSM

WS2 − PSM

Generator Engine
UML Based Test

WS Testing Client3

WSProxy2

WSProxy Factory

WS2
8

Specification
WS1 − PSM

6
4

7

1

5
Description

WS1− WSDL

possible models

??
Other

Description
WS2− WSDL

Figure 2. The Audition Framework

think to use, in particular with reference to the scenarios
discussed in Section 4.

The development of the framework has been initially
pushed by the necessity from a “standards body” of hav-
ing a technique for testing conformance to interaction spec-
ification among different services. In this context we sug-
gested that a first step could be the introduction of PSM
specification that being a UML diagram resulted in a more
acceptable tool for such kind of community. For this rea-
son the framework is mainly focused on the use of Proto-
col State Machine and has as main objective the testing of
interoperability issues. As a consequence the test genera-
tor engine that acts as the main audition driver needs to be
able to derive meaningful test case sequences from the PSM
specification. In particular two different strategies, with two
different objectives can be followed:

• disciplined client strategy: in this case the service un-
der test will be invoked following sequences admitted
by the specification of its PSM. The framework will
check in this case that all the interactions with other
services follow correct scenarios.

• malicious client strategy: being WS dynamically in-
voked by unknown clients, their ability to react in
“graceful” way to incorrect invocations is of basic im-
portance as well as the ability to serve correct ones.
Robustness becomes of major importance and the ma-
licious strategy intends to evaluate such property by
intentionally generating invocation sequences that do
not correspond to those admitted by the PSM for the
WS under test.

Therefore the Audition framework fits in test scenarios
in which the test cases are defined by an external authority
that intends to check the conformance of a WS to a partic-
ular context in which the available specifications define in-
teractions rules. However the framework can also be easily
modified to consider the derivation of different scenarios.
The element that must be changed in each case is the test
generator engine that must be obviously chosen on the base
of the available models defining the specification.

On the other hand, the same framework can be used by
a Service Request Broker agency (UDDI) to evaluate how
a service interacts with the other provided services. In this
case the PSM can be either directly provided by the devel-
oper of the service itself with the associated WSDL descrip-
tion or specified as the reference standard for the service
that the WS under test claims to provide.

5.2. Considerations on the Framework

After introducing the main steps that the proposed
framework for WS testing should take, we provide here
some specific reflections, following the step ordering:

1. in the first steps we propose to add to the service spec-
ification the definition of the PSM for the provided
service. As discussed in Section 3 this is certainly
in line with what proposed by specifications such as
BPEL4WS or WSCI [5], and moreover we discussed
the benefits of adopting an approach based on XMI for-
mat. It is interesting to note that more than one PSM
could be associated to the same service. However this

7

is not a difficulty for the framework, since an incor-
rect behaviour results from an execution that is not fol-
lowing any of the paths specified by the different state
machines for the same service;

2. the second steps requires that the UDDI maintains a
record of the services for which the registration is still
pending. This is not a major problem since a flag in the
table of the registered services is enough to introduce
this feature. However to enable the testing process it is
necessary that the UDDI service requires authenticated
inquiry in order to recognise if the service is still in a
pending state or not. If so it will activate the genera-
tion of Proxy service, if not it will return to the service
the requested reference. Another important point that
needs to be carefully evaluated is the performance bur-
den that will mainly affect the inquiry operation. In
fact as a first step of an inquiry the UDDI needs to
check the status of the invoking service. For this rea-
son it is probably better to have a different database of
the pending requests that likely will be quite small;

3. the proxy services that we included in our version only
check, at this stage, for constraints that can be ex-
pressed within a PSM. However we think that with
other information model for the WS description, the
framework can still be applied. At the same time the
WS Testing client is limited at this stage to the gen-
eration of meaningful inputs and does not make any
kind of verification on the output produced by the ser-
vice under test. On the other hand the automatic gen-
eration of an oracle is not easy and certainly requires
more accurate information on the service, as discussed
in Section 4;

4. as shown in Figure 2, the proxy service makes an invo-
cation on a real and running WS during a test session.
In this manner the testing process does not need to gen-
erate stub versions of the required services. As the
reader can imagine this behaviour does not raise ma-
jor issues if the service do not modify persistent data,
as for instance it is the case for web services provided
by the Google search engine. However if the service
manages data in a persistent storage the invocations
resulting from a test session certainly will lead to ma-
jor business problems (simply think to airline services
for booking seats). In this case two possible solutions
can be figured out: 1) the WS can be invoked within a
test session and in this case it returns pre-ordered con-
sistent information without accessing to the associated
data storage; 2) the WS proxy must encapsulate also a
stubbed version of the service.

6. Conclusions

This paper presented our ongoing research on testing
and analysis of WSs. In overviewing current topical is-
sues in development of SOAs and in WS interoperability,
we have discussed the generally agreed requirement that
the open specification of a WS be augmented with addi-
tional information than the currently provided public inter-
faces, e.g. WSDL. This is for instance pursued by the re-
cent BPEL4WS and WS-CDL technologies. In particular,
to permit reliable coordination among interacting WSs, the
specification should include the correct protocol to access
the WS, which could then be used for model based test-
ing. To maximise interchangeability of specifications, we
proposed to adopt the de facto standard of UML 2.0, and
in particular the newly introduced Protocol State Machine,
which provides the right level of abstraction for describ-
ing the prescribed ordering of operation invocations. We
have discussed how quite different testing concerns may re-
gard WS-based applications, and we have attempted a pre-
liminary classification based on the involved stakeholders.
Then, we have proposed a general framework in which the
UDDI registering role is extended to also play the role of
an external testing organism which validates the WS con-
formity to the published (augmented) interface, and its abil-
ity to interact with other available services. The underlying
idea is that before being registered at a UDDI, a WS must
pass an “audition”, in which its dynamic behaviour is tested,
especially regarding coordination aspects in the interaction
with other services.

This is of course ongoing work at a preliminary stage.
Future work will include a more comprehensive classifica-
tion of testing issues regarding WSs and possibly the inclu-
sion, with each identified testing stage, of techniques for
test generation. In particular we are thinking of a tech-
nique combining Category-Partition with state-based over
the PSM. We also plan to investigate the evident analogy of
testing from the PSM with the ALTS-based test generation,
which has been earlier proposed in the domain of Software
Architecture [16]. In fact, we believe that the two diagrams
(PSM and ALTS) rely on the same philosophy of identi-
fying the relevant operations for testing purposes, and “ab-
stract away” irrelevant ones for the purpose of test case gen-
eration. Then, of course, we plan to implement a prototype
environment to support and validate the proposed Audition
framework.

As a conclusive remark, we are aware of the fact that in
this quickly evolving field of WSs, it can be easy to come
with a new perhaps appealing idea (such as our audition
framework) and just launch it. The difficulty is in making
these ideas realisable and effective, also compatible with
what is already established practice. Above all, to win the
challenge of a pervasive service-oriented information soci-
ety, it is highly important that open standards and rigorous

8

disciplines are agreed upon and enforced in the develop-
ment of publicly available services. There is neither room
nor need in this landscape for improvised solutions or per-
sonalised interests. Our proposed Audition framework is
intended as a small, humble contribution to raise awareness
of WS interoperability issues and to gather efforts towardsa
rigorous accreditation of behaviour adequacy before a ser-
vice is made publicly available, and it is only in this spirit
that we proposed it.

References

[1] XML Metadata Interchange (XMI) Specification ver. 2.0.
http://www.omg.org/docs/formal/03-05-02.pdf, May 2003.

[2] AA.VV. Common Object Request Broker Archi-
tecture (CORBA), ver. 3.0.3. downloadable from:
http://www.omg.org/cgi-bin/doc?formal/04-03-12, March
2004.

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.Web Ser-
vices – Concepts, Architectures and Applications. Springer
Verlag, 2004.

[4] T. Andrews et al. Business Process Execution Language
for Web Services (BPEL4WS) – ver. 1.1. dowloadable from:
ftp://www6.software.ibm.com/software/developer/library/ws-
bpel.pdf, May 2003.

[5] A. Arkin et al. Web Service Choreography Interface (WSCI)
ver. 1.0. http://www.w3.org/TR/wsci/, August 2002.

[6] D. Booth et al. Web Services Architecture.
http://www.w3.org/TR/ws-arch/, February 2004.

[7] E. Christensen et al. Web Service Definition Language
(WSDL) ver. 1.1. http://www.w3.org/TR/wsdl/, March
2001.

[8] L. Clement et al. Universal Description Discovery & Inte-
gration (UDDI) ver. 3.0. http://uddi.org/pubs/uddiv3.htm,
October 2004.

[9] H.-E. Eriksson et al.UML 2 Toolkit. John Wiley and Sons,
2004.

[10] H. Foster et al. Model-based verification of web services
compositions. InProc. ASE2003, pages 152–161, Oct., 6-
10 2003. Montreal, Canada.

[11] X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL
web services. InProc. of WWW2004, May, 17-22 2004. New
York, New York, USA.

[12] M. Gudgin et al. Simple Object Access Protocol (SOAP)
ver. 1.2. http://www.w3.org/TR/soap12/, June 2003.

[13] R. Heckel and L. Mariani. Automatic conformance testing
of web services. InProc. FASE, Edinburgh, Scotland, Apr.,
2-10 2005. to appear.

[14] N. Kavantzas et al. Web Service Choreogra-
phy Description Language (WS–CDL) ver. 1.0.
http://www.w3.org/TR/wsci/, August 2002.

[15] B. Meyer. Applying design by contract.IEEE Computer,
25(10):40–51, October 1992.

[16] H. Muccini, A. Bertolino, and P. Inverardi. Using software
architecture for code testing.IEEE Transaction on Software
Engineering, 30(3):160–171, March 2004.

[17] A. Orso, M. J. Harrold, and D. Rosenblum. Component
metadata for software engineering tasks. InProc. EDO
2000, LNCS 1999, pages 129–144, 2000.

[18] W. Tsai et al. Verification of web services using an enhanced
UDDI server. InProc. of WORDS 2003, pages 131–138,
Jan., 15-17 2003. Guadalajara, Mexico.

[19] W. T. Tsai et al. Scenario-based web service testing with
distributed agents.IEICE Transaction on Information and
System, E86-D(10):2130–2144, 2003.

9

