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Abstract. Let Λ be an artin algebra or, more generally, a locally bounded
associative algebra, and S(Λ) the category of all embeddings (A ⊆ B) where
B is a finitely generated Λ-module and A is a submodule of B. Then S(Λ)
is an exact Krull-Schmidt category which has Auslander-Reiten sequences. In
this manuscript we show that the Auslander-Reiten translation in S(Λ) can

be computed within mod Λ by using our construction of minimal monomor-
phisms. If in addition Λ is uniserial, then any indecomposable nonprojective
object in S(Λ) is invariant under the sixth power of the Auslander-Reiten
translation.

Let Λ be an artin algebra, and mod Λ the category of finitely generated Λ-
modules (these are just the Λ-modules of finite length). The homomorphism cat-
egory H(Λ) has as objects the maps f in mod Λ, and morphisms are given by
commutative diagrams. In this paper, we draw attention to the full subcategory
S(Λ) of H(Λ) of all monomorphisms (or subobjects), but also to the corresponding
subcategory F(Λ) of H(Λ) of all epimorphisms (or factor objects). Categories of
the form S(Λ) are much more complicated than the underlying module categories
modΛ; for example, if Λ is a uniserial ring, then Λ is of finite representation type,
whereas the category S(Λ) may have finitely or infinitely many indecomposable
objects, or even be of wild representation type, depending on the Loewy length
of Λ. Since Garrett Birkhoff in 1934 proposed the study of such submodule cate-
gories, they have proven to provide a rich source for classification problems, and to
attract the use of methods from various areas of algebra including representations
of finite dimensional algebras, lattices over tiled orders, representations of posets,
and matrix classification. In this manuscript we intend to lay the foundation for
an Auslander-Reiten type theory of submodule categories. Here is a preview:

If we consider a map f : A → B of Λ-modules as an object of H(Λ), we will
write either (

A
f→ B

)
or

A
↓ f

B
,

but often also just f , whatever will be convenient and not misleading. The category
H(Λ) is an abelian category, in fact it is equivalent to the category of finitely
generated modules over the triangular matrix ring

(
Λ
0

Λ
Λ

)
, and hence S(Λ) as well

as F(Λ) are exact Krull-Schmidt categories. We determine the projective and the
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injective objects in S(Λ) and F(Λ). For example, if I is an indecomposable injective
Λ-module, then (

0 → I
)

and
(
I

1→ I
)

are both indecomposable injective objects in S(Λ), but clearly the first is not in-
jective in H(Λ) (Proposition 1.4).

In order to see that S(Λ) has Auslander-Reiten sequences, we only have to
show that S(Λ) is functorially finite in H(Λ), according to Auslander and Smalø
(Theorem 2.4 in [AS]). But this is easy: In the abelian category mod Λ, every map
f : A → B can be factorized as the composition of an epimorphism Epi(f) and
a monomorphism Mono(f). The factorization yields a morphism f → Mono(f)
in H(Λ), and this morphism is a minimal left S(Λ)-approximation for the object
f ∈ H(Λ). To obtain a minimal right S(Λ)-approximation for f , let e′ : Ker(f) →
IKer(f) be an injective envelope and choose an extension e : A → I Ker(f) of e′.
We call the map

Mimo(f) = [f e] : A → B ⊕ IKer(f)

a minimal monomorphism for f . In this way, we obtain a morphism Mimo(f) → f
in the category H(Λ), and this morphism turns out to be the desired minimal right
S(Λ)-approximation for f ∈ H(Λ) (Proposition 2.4). Thus, the category S(Λ) is
functorially finite in H(Λ) and hence has Auslander-Reiten sequences. Note that
S(Λ)-approximations provide recipes for calculating relative Auslander-Reiten se-
quences in the subcategory S(Λ) as soon as Auslander-Reiten sequences are known
in H(Λ).

In the module category H(Λ), Auslander-Reiten translates are computed via the
Nakayama functor, as usual. Using approximations and the equivalence between
S(Λ) and F(Λ) given by the kernel and cokernel functors, corresponding Auslander-
Reiten sequences are obtained for the categories S(Λ) and F(Λ); see Proposition
3.2. (Surprisingly the converse is also true: Auslander-Reiten sequences in S(Λ)
and F(Λ) give rise to such sequences in the category H(Λ); see Proposition 3.5.)

Revisiting the construction of minimal monomorphisms, we show that if two
morphisms f, g : A → B in mod Λ differ only by a map which factorizes through
an injective Λ-module, and if B has no nonzero injective direct summands, then
Mimo(f) and Mimo(g) are isomorphic objects in S(Λ) (Proposition 4.1).

Our key result is this: For an indecomposable nonprojective object
(
A

f→ B
)

in S(Λ), the Auslander-Reiten translate τS(f) can be computed directly within
the category mod Λ. This is done as follows: Let g : B → C be the cokernel of
f . Recall that the Auslander-Reiten translation in mod Λ gives rise to a functor
τΛ : mod Λ → modΛ where mod Λ and mod Λ denote the factor categories of mod Λ
modulo all maps which factorize through a projective or through an injective Λ-
module, respectively. Next take a representative h : D → E for the morphism
τΛ(g) such that D and E have no nonzero injective direct summands. As h is
determined uniquely, up to a map which factorizes through an injective module,
we will see that Mimo(h) is determined uniquely, up to isomorphism, as an object
in S(Λ). This is the Auslander-Reiten translate τS(f) for f in the category S(Λ)
(Theorem 5.1). Thus we may write:

τS(f) = Mimo τΛ Cok(f).
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If Λ is a self-injective algebra, the stable category mod Λ = modΛ has the

structure of a triangulated category. We observe that if A
f̄→ B

ḡ→ C
h̄→ Ω−1A

is a triangle (with Ω−1 the suspension functor) and f is a map representing f̄ ,
then a map g representing the rotate ḡ is obtained as g = CokMimo(f). The
functor τΛ commutes with Ω−1 and with the rotation f̄ �→ ḡ in a triangle, and as
a consequence, the formulae

τ3
S(f) ∼= −τ3

ΛΩ−1(f̄) and τ6
S(f) ∼= τ6

ΛΩ−2(f̄)

hold (Theorem 6.2). In particular, if τΛ coincides with Ω2, it follows that

τ3
S(f) ∼= −Mimo Ω5(f)

for any indecomposable nonprojective object f in S(Λ) (Corollary 6.4). For exam-
ple, in the special case that Λ is a commutative uniserial ring, all the functors τΛ,
Ω2 and Ω−2 are equivalent to the identity functor on modΛ and then the formula
yields

τ6
S(f) ∼= f

for f an indecomposable nonprojective object in S(Λ) (Corollary 6.5).
Let

(
C ′ c→ C

)
be an indecomposable nonprojective object in S(Λ). The Aus-

lander-Reiten sequence

0 −−−−→
A′
↓ a
A

f ′

−−−−→
f

B′
↓ b
B

g′

−−−−→
g

C′
↓ c
C

−−−−→ 0

in S(Λ) is made up from two short exact sequences in mod Λ given by the se-

quence 0 → A′ f ′

→ B′ g′

→ C ′ → 0 of the submodules and the sequence 0 →
A

f→ B
g→ C → 0 of the big modules. By Proposition 7.2, these two sequences

are “usually” split exact. We list the exceptions and collect our findings about the
structure of the middle term (b : B′ → B).

Let us stress that the categories mod Λ, H(Λ) and S(Λ) usually behave very
differently. Consider for example the case of Λ = Λn = k[T ]/Tn. These k-algebras
Λn are all of finite representation type: indeed, there is (up to isomorphism) pre-
cisely one indecomposable Λ-module of length i, for 1 ≤ i ≤ n, and these are all
the indecomposables. On the other hand, it is well-known that the matrix ring(

Λn
0

Λn

Λn

)
is representation finite only for n ≤ 3, thus, for n ≥ 4 there are infinitely

many isomorphism classes of indecomposable objects in H(Λn); see for example [S,
Section 2]. For n ≤ 5, the subcategory S(Λn) of H(Λn) consists of only finitely
many isomorphism classes of indecomposable objects, whereas there are infinitely
many isomorphism classes of indecomposable objects in S(Λn), for any n ≥ 6; see
[RS1]. One may consult these references and also [RS2] for proofs that the cate-
gories H(Λ4) and S(Λ6) are “tame”, whereas the categories H(Λn) for n ≥ 5 and
S(Λn) for n ≥ 7 are “wild”.

Notation. The condition that Λ is an artin algebra can be weakened to require
that Λ be a locally bounded associative k-algebra or a locally bounded k-spectroid
[GR]; then also coverings of finite dimensional algebras are included. We recall the
corresponding definitions:

Let k be a commutative local artinian ring and Λ an associative k-algebra which
need not have a unit element, but it is required that Λ equals the k-space Λ2 of all
possible linear combinations of products in Λ. By mod Λ we denote the category of
all Λ-modules B which have finite length when considered as k-modules and which
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are unitary in the sense that ΛB = B holds. The algebra Λ is said to be locally
bounded if there is a complete set {ei : i ∈ I} of pairwise orthogonal primitive
idempotents such that each of the indecomposable projective modules eiΛ and Λei

has finite length as a k-module, for i ∈ I. If Λ is locally bounded such that each
indecomposable projective Λ-module is injective and each indecomposable injective
Λ-module is projective, then we say that Λ is a self-injective algebra. An artin
algebra Λ is called uniserial if both modules ΛΛ and ΛΛ have unique composition
series. In this case, all one-sided ideals are two-sided, namely the powers of the
unique maximal ideal m = Rad Λ.

For the terminology around almost split morphisms we refer the reader to [ARS]
and [AS]. Here we use the term “Auslander-Reiten sequence” for “almost split
sequence” and abbreviate “left (right) minimal almost split map” to “source (sink)
map”. The Auslander-Reiten translation in a category C is denoted by τC , but in
case C = modΛ, we write τΛ.

Finally, we want to apologize that our use of brackets when applying functions
and functors is not at all consistent. We have inserted brackets whenever we felt
that this improves the readability, but we have avoided multiple brackets whenever
possible.

This paper was written in 2001 as a general introduction to a proposed volume
devoted to the Birkhoff problem (dealing with subgroups of finite abelian groups
as well as with invariant subspaces of linear operators). Unfortunately, we had to
delay the Birkhoff project. Since the paper seems of interest in its own right, we
now have decided to publish it independently. The authors are indebted to the
referee, and also to Aslak Bakke Buan and Øyvind Solberg, for helpful remarks
concerning the presentation of the results.

1. Projective and injective objects

In this section we determine the projective and the injective objects in the cat-
egories S(Λ) and F(Λ) and their associated sink and source maps. The injective
objects in S(Λ) are also called “relatively injective” or “Ext-injective”, as they may
not be injective in the category H(Λ). Dually, the projective objects in F(Λ) may
not be projective when considered as objects in H(Λ).

Let Λ be an associative locally bounded k-algebra, and let U(Λ) =
(

Λ
0

Λ
Λ

)
be

the associative k-algebra of upper triangular matrices with coefficients in Λ. First
we recall well-known facts about U(Λ) and about the category H(Λ) of morphisms
between Λ-modules of finite k-length.

Lemma 1.1 (Basic facts about H(Λ)).
1. The k-algebra U(Λ) is locally bounded.
2. The k-categories modU(Λ) and H(Λ) are equivalent.
3. H(Λ) is an abelian Krull-Schmidt category.
4. Each object in H(Λ) has a projective cover and an injective envelope.
5. The category H(Λ) has Auslander-Reiten sequences. �

The categories S(Λ) and F(Λ) are defined to be the full subcategories of H(Λ)

which consist of all objects
(
A

f→ B
)

in H(Λ) for which f is a monomorphism or
an epimorphism, respectively. These three categories are related by the kernel and
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THE AUSLANDER-REITEN TRANSLATION IN SUBMODULE CATEGORIES 695

cokernel functors:

Cok : H(Λ) → F(Λ), (A
f→ B) �→ (B can−→ Cok(f)),

Ker : H(Λ) → S(Λ), (B
g→ C) �→ (Ker(g) incl−→ B).

Lemma 1.2 (Basic properties of S(Λ) and F(Λ)).
1. With the exact structure given by the category H(Λ), the categories S(Λ) and

F(Λ) are exact Krull-Schmidt k-categories.
2. The category S(Λ) is closed under kernels while F(Λ) is closed under coker-

nels. Both categories are closed under extensions.
3. The restrictions of the kernel and cokernel functors

Ker : F(Λ) → S(Λ) and Cok : S(Λ) → F(Λ)

induce a pair of inverse equivalences. �
The equivalence between S(Λ) and F(Λ) is useful to deduce the structure of the

projective and the injective objects in either of the two categories from the structure
of the corresponding modules in H(Λ) which are described in the following

Lemma 1.3 (Projective and injective modules in H(Λ); the Nakayama functor).
P-1. Let P be an indecomposable projective Λ-module with radical Rad P . The

objects (0 → P ) and (1P : P → P ) are indecomposable projective objects and have
as sink maps the inclusions

(0 → Rad P ) → (0 → P ) and (Rad P
incl−→ P ) → (P 1→ P ),

respectively.
P-2. Each indecomposable projective object arises in this way.
I-1. Let I be an indecomposable injective Λ-module with socle Soc I. The inde-

composable injective objects (I → 0) and (1I : I → I) have as source maps the
canonical maps

(I → 0) → (I/ Soc I → 0) and (I 1→ I) → (I can−→ I/ Soc I),

respectively.
I-2. Each indecomposable injective object arises in this way.
N-1. The operation of the Nakayama functor νH on H(Λ) can be expressed in

terms of the Nakayama functor ν = νΛ in mod Λ. For P a projective Λ-module we
have

νH(0 → P ) = (νP
1→ νP ), νH(P 1→ P ) = (νP → 0).

N-2. On morphisms, the Nakayama functor νH is given in the obvious way; for
example if (0, f) : (0 → P ) → (1Q : Q → Q) is a morphism between projective
objects, then νH(0, f) = (νf, 0) : (1νP : νP → νP ) → (νQ → 0). �

We can now describe the projective and the injective objects in S(Λ).

Proposition 1.4 (Projective and injective objects in S(Λ)).
P. The projective objects in S(Λ) and their sink maps are as in Lemma 1.3-P.
I-1. Let I be an indecomposable injective Λ-module. Then the map (1I : I → I)

is an indecomposable injective object in S(Λ) and has as a source map the canonical
map (1I : I → I) → (1I/ Soc I : I/ Soc I → I/ Soc I).

I-2. If I is an indecomposable injective Λ-module, then (0 → I) is indecomposable
(relatively) injective in S(Λ) and has as a source map the inclusion (0 → I) →
(incl : Soc I → I).

I-3. Each indecomposable (relatively) injective object in S(Λ) arises in this way.
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Proof. The projective modules in H(Λ) and their sink maps are objects and mor-
phisms in the category S(Λ), hence the statement in Lemma 1.3-P holds for S(Λ).
Similarly, the injective modules in H(Λ) and their source maps are in the category
F(Λ), so the statement in 1.3-I holds for F(Λ). By applying the kernel functor from
item 3 in Lemma 1.2 we obtain the objects and morphisms in I-1 and I-2. Since
H(Λ) has sufficiently many projective and injective objects, so does S(Λ). �

Let us add the dual statement for the category F(Λ). Of course, we know from
Lemma 1.2 that the categories S(Λ) and F(Λ) are equivalent, thus there is no
intrinsic need to deal with both categories separately. On the other hand, it may
be useful for further references to have the precise formulations available.

Proposition 1.5 (Projective and injective objects in F(Λ)).
P-1. Let P be an indecomposable projective Λ-module. Then the map (1I :

P → P ) is an indecomposable projective object in F(Λ) and has as a sink map the
inclusion (1Rad P : Rad P → Rad P ) → (1P : P → P ).

P-2. If P is an indecomposable projective Λ-module, then (P → 0) is in-
decomposable (relatively) projective in F(Λ) with a sink map the canonical map
(can : P → P/ RadP ) → (P → 0).

P-3. Each indecomposable (relatively) projective object in S(Λ) arises in this
way.

I. The injective objects in F(Λ) and their source maps are as in Lemma 1.3-I.

Example. Consider the case that Λ is uniserial with maximal ideal m and Loewy
length n ≥ 2. In S(Λ), there are two projective indecomposable objects, namely
P1 = (Λ = Λ) and P2 = (0 ⊆ Λ); their sink maps are the inclusions

(m ⊆ Λ) → P1 and (0 ⊆ m) → P2,

respectively. One of them, the module P1 = I1 is also injective, both in H(Λ) and
in S(Λ), and has a source map the canonical map

I1 → (Λ/mn−1 = Λ/mn−1);

the second projective P2 = I2 is relatively injective in S(Λ), and its source map is
given by the inclusion

I2 → (mn−1 ⊆ Λ).

2. Left and right approximations

The categories S(Λ) and F(Λ) are functorially finite in H(Λ) and hence have
Auslander-Reiten sequences. To show this, we determine the left and the right
approximation for each object in H(Λ), in each of the subcategories S(Λ) and
F(Λ).

Definitions. Let S be a subcategory of a module category C, and C ∈ C. A
morphism f : C → S with S ∈ addS is a left approximation of C in S if the map

Hom(f, 1S′) : HomC(S, S′) → HomC(C, S′)

is onto for each S′ ∈ S. Moreover, f is left minimal if each endomorphism s ∈
EndC(S) which satisfies fs = f is an isomorphism. A minimal left approximation
is a left minimal left approximation. Similarly, minimal right approximations are
defined.
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In the abelian category mod Λ, a morphism f : A → B has a factorization A →
Im(f) → B over the image. The two maps f1 : A → Im(f) and f2 : Im(f) → B
are determined uniquely as objects in H(Λ), up to isomorphism, and give rise to
functors

Epi : H(Λ) → F(Λ),
(
A

f→ B
)
�→

(
A

f1→ Im(f)
)
,

Mono : H(Λ) → S(Λ),
(
A

f→ B
)
�→

(
Im(f)

f2→ B
)
.

There are functorial isomorphisms Epi ∼= Cok Ker and Mono ∼= KerCok.

Lemma 2.1 (Approximations given by Mono and Epi). Let (f : A → B) be an
object in H(Λ).

1. The map (f1, 1B) : f → Mono(f) is a minimal left approximation of f in
S(Λ).

2. The map (1A, f2) : Epi(f) → f is a minimal right approximation of f in
F(Λ).

The proof is immediate from the definitions. �
For the object (f : A → B) ∈ H(Λ) there is also a minimal right approximation

in S(Λ) and a minimal left approximation in F(Λ), as we are going to show.
First we define Mimo(f), the minimal monomorphism for f , as follows: Let

e′ : Ker(f) → I Ker(f) be an injective envelope and choose an extension e : A →
IKer(f) of e′; thus e′ = f ′e, where f ′ : Ker(f) → A is the inclusion map. Then
Mimo(f) is the map

Mimo(f) =
[
f e

]
: A → B ⊕ IKer(f).

Lemma 2.2 (Mimo is well-defined). Mimo(f) is independent of the choice of e,
up to isomorphism in H(Λ).

Proof. Let e1, e2 : A → I Ker(f) be two extensions of e′, thus e′ = f ′e1 = f ′e2.
We see that the difference e2 − e1 vanishes on Ker(f). Write f = f1f2 with f1 an
epimorphism and f2 a monomorphism. Since e2−e1 vanishes on Ker(f), it factorizes
through f1 = Cok(f ′), thus e2−e1 = f1ê for some map ê : Im(f) → IKer(f). Since
f2 is mono and the target I Ker(f) of ê is injective, we can extend ê to B: There is
ẽ : B → I Ker(f) such that f2ẽ = ê. Altogether we have fẽ = f1f2ẽ = f1ê = e2−e1.
It follows that the representations in S(Λ) given by

[
f e1

]
and by

[
f e2

]
are

isomorphic:

A
[f e1]−−−−→ B⊕I Ker(f)∥∥∥

⏐⏐�[ 1 ẽ
0 1 ]

A −−−−→
[f e2]

B⊕I Ker(f)

�
Dually one defines the minimal epimorphism, Mepi(f), for a map f : A → B

as follows. The projective cover of the cokernel of f , p′ : PCok(f) → Cok(f)
factorizes over the canonical map f ′′ : B → Cok(f) so there is p : P Cok(f) → B
such that p′ = pf ′′. Let Mepi(f) denote the map

Mepi(f) =
[
f
p

]
: A ⊕ P Cok(f) −→ B;

then the dual version of the above result holds for Mepi.
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Lemma 2.3 (Mepi is well-defined). Mepi(f) is independent of the choice of p, up
to isomorphism in H(Λ). �

There are canonical maps Mimo(f) → f and f → Mepi(f),

A
↓ [f e]

B ⊕ I

1−−−−→[
1
0

] A
↓ f
B

and
A
↓ f
B

[1 0]−−−−→
1

A ⊕ P
↓ [f p]t

B
,

which give rise to a “dual” version of Lemma 2.1:

Proposition 2.4 (Approximations defined by Mimo and Mepi). Let (f : A → B)
be an object in H(Λ).

1. The map Mimo(f) → f is a minimal right approximation of f in S(Λ).
2. The map f → Mepi(f) is a minimal left approximation of f in F(Λ).

Proof of the first statement. Let (g : C → D) be an object in S(Λ) and (u, v)
a morphism from g to f . We need to find (u′, v′) : g → Mimo(f) such that
the composition with the above map F : Mimo(f) → f is just (u, v). Since
g : C → D is a monomorphism, the composition C

u→ A
e→ I lifts to a map

v2 : D → I such that ue = gv2. Then the pair (u′, v′) = (u, [v, v2]) is a morphism
g → Mimo(f) which satisfies the condition that (u′, v′) F = (u, v). Thus, F is a
right approximation. It remains to show that F is right minimal. Let (u, v) be
an endomorphism of Mimo(f) such that F = (u, v) F holds and write the map
v : B ⊕ I → B ⊕ I as a matrix v =

[
v11
v21

v12
v22

]
. Since F = (u, v) F holds, it

follows that u = 1A, v11 = 1B , and v21 = 0. Now the condition that (u, v) is a
homomorphism amounts to [f e]

[
1
0

v12
v22

]
= 1A[f e], that is to say, fv12 + ev22 = e

must hold. Restricting both sides to the kernel of f (so that the composition fv12

vanishes) yields that the two maps ev22, e : Ker(f) → I are equal. Since I is the
injective envelope of Ker(f), minimality implies that v22 is an automorphism of I.
Hence v =

[
1B
0

v12
v22

]
is an automorphism of B ⊕ I. We have shown that F is right

minimal. �

As a consequence of Lemma 2.1 and Proposition 2.4 we obtain:

Theorem 2.5 (Existence of Auslander-Reiten sequences). The subcategories S(Λ)
and F(Λ) are functorially finite in H(Λ) and hence have Auslander-Reiten se-
quences.

Proof. According to the first statements in Lemma 2.1 and Proposition 2.4, each
object f in H(Λ) has a left and a right approximation in S(Λ), this is to say, S(Λ)
is functorially finite. Similarly it follows from the second statements in Lemma 2.1
and Proposition 2.4 that the category F(Λ) is functorially finite, too. According to
[AS, Theorem 2.4], those categories have Auslander-Reiten sequences. �

3. Transfer of Auslander-Reiten sequences

In this section we construct Auslander-Reiten sequences for the categories S(Λ)
and F(Λ) from corresponding sequences in the module category H(Λ). Surprisingly,
the converse is also possible: Auslander-Reiten sequences in S(Λ) and F(Λ) give
rise to Auslander-Reiten sequences in H(Λ). First we need a lemma.
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Lemma 3.1 (Kernels and Cokernels of Auslander-Reiten sequences). Suppose the
following Auslander-Reiten sequence in the category H(Λ) is given:

0 −−−−→
A
↓ a

A1

f−−−−→
f1

B
↓ b

B1

g−−−−→
g1

C
↓ c

C1
−−−−→ 0

If the kernel Ker(c) = (c′ : C ′ → C) of the end term is not a projective object, then
the sequence obtained by applying the kernel functor,

0 −−−−→
A′

↓ a′

A

f ′

−−−−→
f

B′

↓ b′

B

g′

−−−−→
g

C′

↓ c′

C
−−−−→ 0

is either split exact or almost split in S(Λ). Dually, if the cokernel

Cok(a) = (a′′ : A1 → A′′
1)

of the first term is not an injective object, then the sequence obtained by using the
cokernel functor,

0 −−−−→
A1
↓ a′′

A′′
1

f1−−−−→
f ′′
1

B1
↓ b′′

B′′
1

g1−−−−→
g′′
1

C1
↓ c′′

C′′
1

−−−−→ 0

is either split exact or almost split in F(Λ).

Proof. We only show the statement about the sequence in S(Λ), and for this se-
quence we only show that the map (g′, g) : (b′ : B′ → B) → (c′ : C ′ → C) is
either a split epimorphism or a right almost split morphism. Note that this implies
that g′ is onto.

Let (x′ : X ′ → X) be an object in S(Λ) and (t′, t) : x′ → c′ a morphism which
is not a split epimorphism. Let x : X → X1 be the cokernel for x′, factorize
c = c1c2 as the product of an epimorphism c1 : C → Im(c) and a monomorphism
c2 : Im(c) → C1, and let t1 : X1 → Im(c) be the cokernel map for (t′, t); this
map satisfies xt1 = tc1. Then (t, t1c2) : x → c is not a split epimorphism, since its
kernel is not, and hence factorizes over the map (g, g1): There is

(u, u1) : (x : X → X1) → (b : B → B1)

such that (t, t1c2) = (u, u1)(g, g1). If u′ : X ′ → B′ is the kernel map for (u, u1),
then (t′, t) = (u′, u)(g′, g) factorizes over (g′, g). �

Proposition 3.2 (Transfer of AR sequences from H(Λ) to S(Λ) and F(Λ)). Sup-
pose that 0 → a → b → c → 0 is an Auslander-Reiten sequence in H(Λ).

1. If c is an indecomposable nonprojective object in F(Λ), then

0 → Epi(a) → Epi(b) → c → 0

is an Auslander-Reiten sequence in F(Λ) and

0 → Ker(a) → Ker(b) → Ker(c) → 0

is an Auslander-Reiten sequence in S(Λ).
2. If a is an indecomposable noninjective object in S(Λ), then

0 → a → Mono(b) → Mono(c) → 0

is an Auslander-Reiten sequence in S(Λ) and

0 → Cok(a) → Cok(b) → Cok(c) → 0

is an Auslander-Reiten sequence in F(Λ).
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Proof. We show the first assertion. Note that the sequence 0 → Epi(a) → Epi(b) →
c → 0 in F(Λ) is the cokernel sequence for 0 → Ker(a) → Ker(b) → Ker(c) → 0
in S(Λ) since c ∈ F(Λ) satisfies c = Epi(c) = CokKer(c). By Lemma 3.1, both
sequences are either split exact or almost split in their respective categories. The
sequences are not split exact since the morphism Epi(b) → c is the composition of
the right approximation Epi(b) → b and the right almost split morphism b → c,
and hence is a right almost split morphism. �
Corollary 3.3 (The translation in H(Λ), S(Λ) and F(Λ)).

1. If c ∈ F(Λ) is indecomposable nonprojective, then τF (c) = Epi τH(c).
2. If c ∈ S(Λ) is indecomposable nonprojective, then τS(c) = Ker τH Cok(c).
3. If a ∈ S(Λ) is indecomposable noninjective, then τ−

S (a) = Mono τ−
H(a).

4. If a ∈ F(Λ) is indecomposable noninjective, then τ−
F (a) = Cok τ−

H Ker(a).

In the remainder of this section we describe how Auslander-Reiten sequences in
S(Λ) and F(Λ) give rise to Auslander-Reiten sequences in H(Λ).

Lemma 3.4 (The functors Epi and Mono reflect some split morphisms). Let (f, g) :(
A

a→ B
)
→

(
C

c→ D
)

be a morphism in H(Λ) and let h : Im(a) → Im(c) be the
induced map on the images:

A
a1−−−−→ Im(a)

a2−−−−→ B

f

⏐⏐� h

⏐⏐� ⏐⏐�g

C −−−−→
c1

Im(c) −−−−→
c2

D

1. If (f, g) is split monic (split epic), then Epi(f, g) = (f, h) and Mono(f, g) =
(h, g) are both split monic (split epic).

2. If a2 : Im(a) → B is an injective envelope, and if Epi(f, g) is split monic,
then so is (f, g).

3. If c1 : C → Im(c) is a projective cover, and if Mono(f, g) is split epic, then
so is (f, g).

Proof. The first assertion is clear since Epi and Mono are functors; the third asser-
tion is dual to the second, so we only consider the second assertion. Suppose that
(f, h) is split monic, so there are maps u : C → A and w : Im(c) → Im(a) such
that ua1 = c1w, fu = 1A, hw = 1Im(a). Since B is injective, the map wa2 extends
to D: There is v : D → B such that c2v = wa2. Since a2gv = hc2v = hwa2 = a2,
the left minimality of the injective envelope a2 implies that gv is an automorphism
of B. It follows that the morphism (f, g) is split monic. �
Proposition 3.5 (Transfer of AR sequences from S(Λ) and F(Λ) to H(Λ)).

1. Let (c : C → C ′′) be an indecomposable nonprojective object in F(Λ). If the
first two rows in the diagram

0 −−−−→ A
f−−−−→ B −−−−→ C −−−−→ 0

a

⏐⏐� ⏐⏐�b

⏐⏐�c

0 −−−−→ A′′ f ′′

−−−−→ B′′ −−−−→ C′′ −−−−→ 0

ι

⏐⏐�
⏐⏐�d

∥∥∥
0 −−−−→ I(A′′)

g−−−−→ D −−−−→ C′′ −−−−→ 0
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define an Auslander-Reiten sequence in F(Λ) and if the third row is obtained as
a push-out along the injective envelope ι : A′′ → I(A′′), then the first row and the
third row define an Auslander-Reiten sequence in H(Λ).

2. Let (a : A′ → A) be an indecomposable noninjective object in S(Λ). If the
two lower rows in the diagram

0 −−−−→ A′ −−−−→ D −−−−→
h

P(C′) −−−−→ 0∥∥∥ ⏐⏐�d

⏐⏐�π

0 −−−−→ A′ −−−−→ B′ −−−−→
g′

C′ −−−−→ 0

a

⏐⏐� ⏐⏐�b

⏐⏐�c

0 −−−−→ A −−−−→
f

B −−−−→ C −−−−→ 0

define an Auslander-Reiten sequence in S(Λ) and if the first row is obtained as
pull-back along the projective cover π : P(C ′) → C ′, then the first row and the
third row define an Auslander-Reiten sequence in H(Λ).

Proof of of the first statement. The map (f, g) in H(Λ) is not a split monomor-
phism since Epi(f, g) = (f, f ′′) is not, by Lemma 3.1. We show that (f, g) is left
almost split. Suppose

(r, s) :
(
A

aι−→ I(A′′)
)

−→
(
X

x→ Y
)

is a morphism in H(Λ) which is not a split monomorphism. Factorize x over the
image as X

x1→ Im(x) x2→ Y , so x = x1x2. Then there is t : A′′ → Im(x) such that
the two squares commute:

A
r−−−−→ X

a

⏐⏐�
⏐⏐�x1

A′′ t−−−−→ Im(x)

ι

⏐⏐�
⏐⏐�x2

I(A′′)
s−−−−→ Y

By Lemma 3.4, part 2, the morphism (r, t) is not split monic in F(Λ) and hence
factorizes over (f, f ′′): There are v : B → X, v′′ : B′′ → Im(x) such that

bv′′ = vx1, and (r, t) = (f, f ′′)(v, v′′).

Then f ′′(v′′x2) = tx2 = ιs, so we obtain w : D → Y such that dw = v′′x2 and
gw = s, by the push-out property for Y . Thus, (v, w) is a morphism in H(Λ)
and our test map (r, s) factorizes over (f, g): (r, s) = (f, g)(v, w). For the proof
that (f, g) is a source map in the module category H(Λ), it remains to check that
(f, g) is left minimal, and this follows from the indecomposability of the cokernel
(C → C ′′). �

4. Minimal monomorphisms and the stable category

Returning to the investigation of minimal monomorphisms, we show that if f, g :
A → B are two maps which differ by a morphism which factorizes through an
injective module, then Mimo(f) and Mimo(g) are isomorphic as objects in S(Λ).
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First we verify three claims.

Claim 1. Let f, g : A → B be maps in mod Λ such that g − f factorizes through
an injective module. Let h : A → I(A) be an injective envelope. Then the objects
in S(Λ) given by the monomorphisms [f h] and [g h] are isomorphic.

Proof. The map g − f factorizes through the injective envelope h, so there is u :
I(A) → B such that g − f = hu. The following commutative diagram shows that
[f h] and [g h] are isomorphic objects in H(Λ):

A
[f h]−−−−→ B⊕I(A)∥∥∥ ⏐⏐�[ 1 0

u 1 ]

A
[g h]−−−−→ B⊕I(A)

�
Claim 2. Given f : A → B and a map h : A → I with I injective such that
[f h] : A → B ⊕ I is a monomorphism, then there is an injective module J and a
commutative diagram

A
[f e 0]−−−−→ B⊕IKer(f)⊕J∥∥∥

⏐⏐�d

A
[f h]−−−−→ B⊕I

with d an isomorphism and e : A → IKer(f) an extension of the injective envelope
Ker(f) → I Ker(f).

The diagram shows that the maps given by the two rows are isomorphic as
objects in H(Λ). Note that in H(Λ), the object given by the upper row decomposes
as the direct sum of the two objects ([f e] : A → B ⊕ IKer(f)) and (0 → J). Up
to isomorphism, the first one is just Mimo(f).

Proof. Since [f h] is a monomorphism, the restriction of h to Ker(f) is injective.
Thus I contains a submodule isomorphic to Ker(f) and therefore I decomposes as
I = I Ker(f) ⊕ J for some injective Λ-module J . Then h has the form h = [e h2],
where e : A → I Ker(f) is an extension of the inclusion Ker(f) → I Ker(f), and
h2 : A → J satisfies h2 Ker(f) = 0. Write f = f1f2 with f1 an epimorphism and f2

a monomorphism. Since h2 vanishes on Ker(f), we can factorize h2 through f1, say
h2 = f1v for some map v : Im(f) → J . Since J is injective and f2 a monomorphism,
we obtain a lifting w : B → J of v to B, thus v = f2w. Altogether we see that
h2 = f1v = f1f2w = fw. This shows that the following diagram commutes:

A
[f e 0]−−−−→ B⊕IKer(f)⊕J∥∥∥ ⏐⏐�[

1 0 w
0 1 0
0 0 1

]

A
[f e h2]−−−−−→ B⊕IKer(f)⊕J

�
Claim 3. Suppose that B has no nonzero injective direct summands and that f, g :
A → B are maps such that g − f factorizes through an injective object. Then
IKer(f) = I Ker(g).
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Proof. (a) First we show that if a map h : A → B factorizes through an injective
object, say h = h1h2 where h1 : A → I and h2 : I → B, then SocKer(h) = Soc(A).
Indeed, if there were a simple submodule S of A such that the composition

S
incl−→ A

h1−→ I
h2−→ B

is nonzero, then we would obtain that B has a nonzero injective direct summand
— in contradiction to our assumption on B.

(b) As a consequence we obtain that if g − f factorizes through an injective
object, then Soc Ker(f) = SocKer(g) holds. By (a), Soc(A) ⊆ Ker(g − f) and
hence

Ker(f) ∩ Soc(A) = Ker(f + (g − f)) ∩ Soc(A) = Ker(g) ∩ Soc(A).

Thus, I Ker(f) = I Soc Ker(f) = I SocKer(g) = I Ker(g) holds. �

Proposition 4.1 (Mimo independent of maps which factorize through injective
modules). Suppose that B has no nonzero injective direct summands. Let f, g :
A → B be maps in mod Λ such that g− f factorizes through an injective Λ-module.
Then the objects Mimo(f), Mimo(g) are isomorphic in S(Λ).

Proof. Let h : A → I(A) be an injective envelope; then the objects [f h], [g h]
are isomorphic by Claim 1. According to Claim 2, there exist injective modules
J1, J2, extensions e1 : A → I Ker(f), e2 : A → IKer(g) of the inclusion maps
Ker(f) → I Ker(f), Ker(g) → IKer(g), respectively, and isomorphisms d1, d2 such
that the diagram below is commutative:

A −−−−−→
[f e1 0]

B⊕IKer(f)⊕J1∥∥∥ ⏐⏐�d1

A −−−−→
[f h]

B⊕I(A)

∥∥∥ ⏐⏐�∼=

A −−−−→
[g h]

B⊕I(A)

∥∥∥ 
⏐⏐d2

A −−−−→
[g e2 0]

B⊕I Ker(g)⊕J2

According to Claim 3, the Λ-modules IKer(f), I Ker(g) are isomorphic. By the
Krull-Remak-Schmidt theorem for Λ-modules, J1

∼= J2 follows. Note that the top
row in the diagram when considered as an object in H(Λ) is isomorphic to the direct
sum Mimo(f) ⊕ (0 → J1), while the bottom row is isomorphic to Mimo(g) ⊕ (0 →
J2). Applying the Krull-Remak-Schmidt theorem in the category H(Λ) we obtain
that Mimo(f) ∼= Mimo(g). �

The following example shows that the condition that B has no nonzero injective
direct summands cannot be omitted.

Example. Let Λ be a uniserial ring of Loewy length 2 with m a generator of
the maximal ideal m. Denote by µm : Λ → Λ the multiplication by m. With
f = 1 : Λ → Λ and g = µm : Λ → Λ, clearly g − f factorizes through an injective
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Λ-module, but Mimo(f) = f and Mimo(g) =
(
Λ

[µ2 1]−→ Λ ⊕ Λ
)

are not isomorphic
as Mimo(g) ∼= f ⊕ (0 → Λ).

The criterion in Proposition 4.1 for Mimo(f) ∼= Mimo(g) can be refined to obtain
an equivalent condition.

Theorem 4.2 (An equivalent condition for Mimo(f) ∼= Mimo(g)). Let f, g : A →
B be maps in mod Λ and suppose that B has no nonzero injective direct summands.
Then Mimo(f) and Mimo(g) are isomorphic in S(Λ) if and only if there are au-
tomorphisms a of A and b of B such that fb − ag factorizes through an injective
Λ-module.

Proof. Assume first that Mimo(f) : A
[f e1]−→ B ⊕ I and Mimo(g) : A

[g e2]−→ B ⊕ I

are isomorphic. Then there are maps a ∈ AutA and h =
(

b
h12

h21
h22

)
∈ Aut(B ⊕ I)

such that [f e1]h = a[g e2]. Thus, ag = fb + e1h12, so ag − fb factorizes through
the injective Λ-module I. Moreover, as B and I have no indecomposable direct
summands in common, it follows that the map h is an automorphism if and only if
both b and h22 are automorphisms.

For the converse, assume that fb− ag factorizes through an injective Λ-module.
By Proposition 4.1, the objects Mimo(fb) and Mimo(ag) are isomorphic; assume
they are given by maps

Mimo(fb) = [fb e1], Mimo(ag) = [ag e2] : A −→ B ⊕ I.

Thus, Mimo(f) ∼= Mimo(g), as indicated by the following diagram:

Mimo(f) : A
[f e1]−−−−→ B⊕I∥∥∥

⏐⏐�[
b
0

0
1

]

Mimo(fb) : A
[fb e1]−−−−→ B⊕I∥∥∥ ⏐⏐�∼=

Mimo(ag) : A
[ag e2]−−−−→ B⊕I

a

⏐⏐� ∥∥∥
Mimo(g) : A

[g a−1e2]−−−−−−→ B⊕I

For the last step note that if e2 : A → I is an extension to A of an injective
envelope for Ker(ag), then since Ker(ag) = a−1 Ker(g), one obtains that a−1e2 is
an extension to A of an injective envelope for Ker(g). By Lemma 2.2, the object
([g a−1e2] : A → B ⊕ I) is Mimo(g), up to isomorphism. �

There is the following dual result for minimal epimorphisms.

Theorem 4.3 (An equivalent condition for Mepi(f) ∼= Mepi(g)). Let f, g : A → B
be maps in mod Λ and suppose that A has no nonzero projective direct summands.
Then Mepi(f) and Mepi(g) are isomorphic in F(Λ) if and only if there are au-
tomorphisms a of A and b of B such that fb − ag factorizes through a projective
Λ-module. �
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5. The Auslander-Reiten translation

In Chapter 3 we have seen how the Auslander-Reiten translations in the cat-
egories H(Λ), S(Λ), and F(Λ) are related. Using this, we develop a formula to
compute the Auslander-Reiten translate τS(f) of an object (f : A → B) in S(Λ)
directly in the category mod Λ. Here is the main result:

Theorem 5.1 (The Auslander-Reiten translation in S(Λ)). For an object
(
A

f→ B
)

in S(Λ), the Auslander-Reiten translate is given by

τS(f) = Mimo τΛ Cok(f).

Note that this means the following: We start with the monomorphism f and
form its cokernel g. We apply τΛ to this map. Recall that τΛ(g) is only well-defined
in the category mod Λ (obtained from modΛ by factoring out all the maps which
factorize through an injective object). Represent τΛ(g) by a morphism h : D → E
in mod Λ such that D and E have no nonzero injective direct summands. Now
apply Mimo . As we have seen in Chapter 4, this yields a well-defined object in
S(Λ), up to isomorphism.

Proof. We proceed as follows. Let (f : A → B) be an object in S(Λ) with cokernel
(g : B → C). In Step 1 we obtain an exact sequence defining τΛ(g); in Step 2
we construct an exact sequence involving τH(g), from which τS(f) is computed as
Ker τH(g) by Corollary 3.3. The formula for the computation of a kernel in Step 3
is used in Step 4 to relate the two exact sequences, and finally, in Step 5, we obtain
our result.

Step 1. For an epimorphism g : B → C in mod Λ we determine τΛ(g). We start
with a minimal projective presentation of B, say

Q
d−→ P

e−→ B −→ 0,

and a projective presentation of C using the map eg : P → C and a projective
cover t : R → Ker(eg) to obtain the following commutative diagram with exact
rows:

Q
d−−−−→ P

e−−−−→ B −−−−→ 0

s

⏐⏐� ⏐⏐�1

⏐⏐�g

R −−−−→
t

P −−−−→
eg

C −−−−→ 0

By applying the Nakayama functor νΛ = ν = D HomΛ(−, ΛΛ) in mod Λ to the left
square we arrive at the diagram defining τΛ(g):

0 −−−−→ τΛB
v−−−−→ νQ

νd−−−−→ νP

τΛ(g)

⏐⏐� ⏐⏐�νs

⏐⏐�1

0 −−−−→ τΛC −−−−→
w

νR −−−−→
νt

νP

(Since eg is not necessarily a projective cover, νt is not necessarily an injective
envelope.)

Step 2. From a projective presentation for g in the category H(Λ) we construct
an exact sequence which involves τH(g): Being an epimorphism, the object g has
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a projective cover given by (1P : P → P ) with P as in Step 1. Using the maps d
and t we obtain the following projective presentation for g in H(Λ):

Q
↓ 1
Q

⊕
0
↓
R

[ d
0 ]

−−−−→
[ d

t ]

P
↓ 1
P

e−−−−→
eg

B
↓ g
C

−−−−→ 0

Note that this differs in general from a minimal projective presentation; in order
to obtain a minimal one, we would have to split off a direct summand of the form
(0 → S) where S is a direct summand of R (and S is also a direct summand of Q).
Applying the Nakayama functor νH (see Lemma 1.3-N) to the morphism between
the projective modules, we obtain the following sequence:

0 −−−−→ τH

( B
↓ g
C

)
⊕

νS
↓ 1

νS
−−−−→

νQ
↓
0

⊕
νR
↓ 1

νR

[ νd
νt ]

−−−−→
0

νP
↓
0

in which the additional projective summand (0 → S) gives rise to the injective
direct summand (1νS : νS → νS).

Step 3. For the computation of the kernel of a map u : U → V we observe that
if

0 −−−−→
U ′
↓
0

u′
−−−−→

0

U
↓ u
V

−−−−→
W ′
↓ w
W

is an exact sequence in H(Λ) with (w : W ′ → W ) in S(Λ), then Keru = u′.
Step 4. In the following diagram, the right two columns are split exact and form

a commutative diagram in H(Λ); the left column is just the kernel sequence. Note
that the sequence in Step 2 involving τH(g) occurs as the middle row, while the
sequence in Step 1 defining τΛB occurs as the sequence of source modules in the
top row.

0 0 0⏐⏐�
⏐⏐�

⏐⏐�
0 −−−−→

τΛB
↓
0

v−−−−→
0

νQ
↓
0

νd−−−−→
0

νP
↓
0⏐⏐� γ

0

⏐⏐� [1 0]
0

⏐⏐� 1
0

0 −−−−→ τH

( B
↓ g
C

)
⊕

νS
↓ 1

νS
−−−−→

νQ
↓
0

⊕
νR
↓ 1

νR

[ νd
νt ]

−−−−→
0

νP
↓
0⏐⏐� ⏐⏐� [ 01 ]

[ 01 ]

⏐⏐�
0 −−−−→

νR
↓ 1

νR

1−−−−→
1

νR
↓ 1

νR
−−−−→ 0⏐⏐� ⏐⏐�

0 0

Since the object 1νR : νR → νR is in S(Λ), we can use the left hand column for
the computation of Ker τH(g), using Step 3:

Ker (τH(g) ⊕ (1νS : νS → νS)) = γ.
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In order to identify γ, only the first entries in the above diagram play a role, thus
we have to deal with the following diagram:

(∗)

0 −−−−→ τΛB
v−−−−→ νQ

νd−−−−→ νP⏐⏐�γ

⏐⏐�[1 0]

∥∥∥
0 −−−−→ X −−−−→ νQ⊕νR −−−−→

[ νd
νt ]

νP

where X is the first component of τH(g) ⊕ (1νS : νS → νS). Compare this with
the following diagram:

(∗∗)

0 −−−−→ τΛB
v−−−−→ νQ

νd−−−−→ νP⏐⏐�[τΛ(g) v]

⏐⏐�[1 0]

∥∥∥
0 −−−−→ τΛC⊕νQ −−−−−−→

[ 01
w

−νs ]
νQ⊕νR −−−−→

[ νd
νt ]

νP

A glance back to Step 1 shows that the diagram is commutative and has an exact
upper row. It only has to be confirmed that the lower row is exact. Clearly, the
2× 2-matrix is a monomorphism, and the composition of the last two maps is zero.
Now, given (x, y) ∈ νQ ⊕ νR with (x)νd + (y)νt = 0, then νd = νs νt yields that
((x)νs + y)νt = 0, therefore (x)νs + y is in the image of w: There is z ∈ τΛC such
that (z)w = (x)νs + y and hence

(z, x)
[

0 w
1 −νs

]
= (x, (z)w − (x)νs) = (x, y).

Comparing the two diagrams labelled (∗) and (∗∗) we obtain the following isomor-
phism:

τΛB
↓ γ

X

∼=
τΛB
↓ [τΛ(g) v]

τΛC ⊕ νQ

Step 5. Write τH(g) = (h : E → F ), so τS(f) = Ker τH(g) = (j : D → E)
where j = Ker(h). Thus the object given by γ = Ker(τH(g)⊕ (1νS : νS → νS)) in
the previous step has the form

D
↓ j

E
⊕

0
↓

νS

∼=
τΛB
↓ γ

X

∼=
τΛB
↓ [τΛ(g) v]

τΛC ⊕ νQ
,

where the second isomorphism has been established in Step 4. By Claim 2 in the
previous section, the right hand side is isomorphic to Mimo τΛ(g), up to an injective
direct summand. Since neither j nor Mimo τΛ(g) has an injective direct summand
— recall that j is a τS-translate — the Krull-Remak-Schmidt theorem in S(Λ)
implies that τS(f) = j = Mimo τΛ(g). �

There is also the following dual version.

Theorem 5.2 (The Auslander-Reiten translation in F(Λ)). For
(
A

g→ B
)

an
object in F(Λ) the Auslander-Reiten translate is given as

τ−
F (g) = Mepi τ−

Λ Ker(g).

�
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Example. Let Λ be a uniserial ring with maximal ideal m, Loewy length n and
socle k = mn−1, as in the Example in Chapter 1. Recall that the projective-injective
indecomposable (0 → Λ) in the category S(Λ) has as a sink map the inclusion
(0 → m) → (0 → Λ) and as a source map the inclusion (0 → Λ) → (k → Λ), so
τS(k → Λ) = (0 → m). We illustrate the formula in Theorem 5.1 by computing
the powers of the Auslander-Reiten translation for the module (k → Λ). First,

τS

( k
↓
Λ

)
= Mimo τΛ Cok

( k
↓
Λ

)
= Mimo τΛ

( Λ
↓

Λ/k

)
= Mimo

( 0
↓

Λ/k

)
=

( 0
↓

Λ/k

)
∼=

( 0
↓
m

)

confirming the above result. Further translates are computed easily:

τS

( 0
↓
m

)
= Mimo τΛ Cok

( 0
↓
m

)
= Mimo τΛ

( m
↓
m

)
=

( m
↓
m

)
,

τS

( m
↓
m

)
= Mimo τΛ

( m
↓
0

)
= Mimo

( m
↓
0

)
=

( m
↓
Λ

)
,

τS

( m
↓
Λ

)
= Mimo τΛ

( Λ
↓

Λ/m

)
= Mimo

( 0
↓

Λ/m

)
∼=

( 0
↓
k

)
,

τS

( 0
↓
k

)
= Mimo τΛ

( k
↓
k

)
=

( k
↓
k

)
,

τS

( k
↓
k

)
= Mimo τΛ

( k
↓
0

)
=

( k
↓
Λ

)
.

So after six steps we are back to where we started. This is not a coincidence, as we
will see in the next chapter.

Definition. Let S(Λ)I be the full subcategory of S(Λ) consisting of all objects
which have no nonzero injective direct summands.

Corollary 5.3. Every object in S(Λ)I has the form Mimo(f) for some morphism
f : A → B where the Λ-modules A and B have no nonzero injective direct sum-
mands.

Definition. By H′(Λ) we denote the morphism category for mod Λ. Thus, the
objects are the morphisms (f̄ : A → B) in mod Λ, and a morphism in H′(Λ) from
(f̄ : A → B) to (f̄ ′ : A′ → B′) is given by a pair (ā, b̄) where ā : A → A′,
b̄ : B′ → B are morphisms such that f̄ b̄ = āf̄ ′ holds in modΛ.

Corollary 5.4. The functor

F : S(Λ)I −→ H′(Λ), f �→ f̄ ,

is dense, preserves indecomposables, and reflects isomorphisms. Thus, F is a rep-
resentation equivalence.

Proof. Clearly, F is dense: If the object f̄ in H′(Λ) is represented by f , then
F Mimo(f) and f̄ are isomorphic in H′(Λ).

The functor F preserves indecomposables: Let a be an indecomposable nonin-
jective object in S(Λ). Then a occurs as the first term of an Auslander-Reiten
sequence and hence has the form a = τS(c) for some indecomposable nonprojec-
tive object c ∈ S(Λ). In particular, F (a) = F Mimo

(
τΛ Cok(c)

)
is isomorphic to

τΛ Cok(c) in H′(Λ) which is an indecomposable object since Mimo is additive.
To show that F reflects isomorphisms, let two objects f, g ∈ S(Λ) be given such

that F (f) and F (g) are isomorphic in H′(Λ). By Corollary 5.3, f = Mimo(f1)
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and g = Mimo(g1), where f1 : A1 → B1 and g1 : C1 → D1 are maps between Λ-
modules with no nonzero injective direct summands. Since f̄1 and ḡ1 are isomorphic
in H′(Λ) there are isomorphisms of Λ-modules u : A1 → C1 and v : B1 → D1

such that f1v − ug1 factorizes through an injective Λ-module. By Theorem 4.2,
f = Mimo(f1) and g = Mimo(g1) are isomorphic. �

One can go a little bit further.

Definition. Let I be the ideal in the category S(Λ) of all morphisms which factor-
ize through an injective object in S(Λ). By S(Λ)/I we denote the factor category
of S(Λ) modulo I. Clearly, the functor F : S(Λ) → H′(Λ), f �→ f̄ , annihilates
every morphism in I and hence defines a functor F̄ : S(Λ)/I → H′(Λ).

Lemma 5.5. The functor F̄ is full and dense.

Proof. Since the dense functor F from Corollary 5.4 factorizes over F̄ , then F̄ is
also dense. To show that F̄ is full, let f : A → B and g : C → D be objects in
S(Λ), let e : A → I be an injective envelope and e′ : B → I an extension of e. If
(ū, v̄) is a morphism in HomH′(f̄ , ḡ), then there are maps u : A → C, v : B → D,
w : I → D such that ug − fv = ew. The following diagram is commutative:

A
f−−−−→ B∥∥∥ ⏐⏐�[1 e′]

A
[f e]−−−−→ B ⊕ I

u

⏐⏐� ⏐⏐�[
v
w

]
C −−−−→

g
D

and hence represents two morphisms f

(
1A,[1B e′]

)
−−−−−−−−→ [f e]

(
u,

[
u
w

])
−−−−−−→ g in the cate-

gory S(Λ). (Note that the first is a split monomorphism, so that f and [f e] become
isomorphic objects in the factor category S(Λ)/I.) By applying the functor F to
the composition of the two morphisms, we obtain (ū, v̄). �

Remark. The following example shows that the functor F̄ is not a categorical equiv-
alence in general. Let Λ be a uniserial ring of Loewy length 3 and m a genera-
tor of the maximal ideal m. Let f be the object in S(Λ) given by the inclusion
f : m/m2 → Λ/m2. Then the multiplication µm by m is a nonzero nilpotent
endomorphism of f which does not factorize through an injective object in S(Λ),
but for which F (µm) = 0 holds. Thus, the functor F̄ is not faithful.

6. Morphisms in the stable category

In this section we assume that Λ is a self-injective algebra. Then the stable
category mod Λ modulo all morphisms which factorize through a projective-injective
object, together with the suspension functor Ω−1, becomes a triangulated category.
We recall the construction of triangles in this category, observe that the assignment
f �→ CokMimo(f) for a morphism f : A → B is related to the rotation of a triangle
in the stable category, and retrieve the formula τ6

S(f) ∼= f for the case that Λ is a
uniserial algebra.
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We recall from [H, Chapter I] that the stable category mod Λ has the following
standard triangles. For a morphism f : A → B in mod Λ, take the short exact
sequence given by the inclusion of A in its injective envelope, i : A → I(A), and
the cokernel map c : I(A) → Ω−1A, and form the push-out diagram along f :

0 −−−−→ A
i−−−−→ I(A) c−−−−→ Ω−1A −−−−→ 0

f

⏐⏐� ⏐⏐�j

∥∥∥
0 −−−−→ B −−−−→

g
C −−−−→

h
Ω−1A −−−−→ 0

Then the standard triangle corresponding to f is

T (f) : A
f̄−→ B

ḡ−→ C
h̄−→ Ω−1A

and each triangle in the stable category is isomorphic to a standard one [H, Theorem
I.2.6].

A morphism between triangles T : A → B → C → Ω−1A and T ′ : A′ → B′ →
C ′ → Ω−1A′ consists of morphisms ā, b̄, c̄ in the stable category which make the
following diagram commutative:

A
f̄−−−−→ B −−−−→ C −−−−→ Ω−1A

ā

⏐⏐� b̄

⏐⏐� c̄

⏐⏐� ⏐⏐�Ω−1ā

A′ −−−−→
f̄ ′

B′ −−−−→
ḡ′

C ′ −−−−→ Ω−1A′

The two triangles are isomorphic if ā, b̄, and c̄ are isomorphisms. From [H, I.1.2
and I.1.6] we recall that for the existence of a morphism between the triangles it
is sufficient to have a map b : B → B′ such that fbg′ = 0. Moreover, a mor-
phism (ā, b̄, c̄) is an isomorphism if ā and b̄ are isomorphisms in mod Λ. Thus, iso-
morphisms between triangles are obtained from pairs (ā, b̄) of isomorphisms which
make the left square in the above diagram commutative. This is to say that if

(ā, b̄) :
(
A

f̄→ B
)
→

(
A′ f̄ ′

→ B′) is an isomorphism in the category H′(Λ) of
morphisms in the stable category mod Λ, then the triangles T (f) and T (f ′) are
isomorphic.

Given a triangle T : A
f̄→ B

ḡ→ C
h̄→ Ω−1A, then the rotation of T below is

also a triangle, as required by the axioms of a triangulated category.

TR : B
ḡ→ C

h̄→ Ω−1A
−Ω−1f̄−→ Ω−1B.

This operation T (f) �→ T (f)R in the triangulated category gives rise to a self-
equivalence f̄ �→ f̄R on the category H′(Λ) of morphisms in the stable category.
According to the following lemma, a map g in mod Λ representing f̄R in mod Λ is
obtained as g = CokMimo f .

Lemma 6.1. For a map f : A → B in mod Λ, the two morphisms f̄R and
CokMimo f are isomorphic in H′(Λ).
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Proof. In the following diagram with exact rows, the top row defines the cokernel
map for Mimo(f) = [f e], while the third row is given by the push-out diagram
defining T (f):

0 −−−−→ A
[f e]−−−−→ B ⊕ I Ker(f) Cok−−−−→ C ′ −−−−→ 0∥∥∥ [

1
0

0
1

0
0

]⏐⏐� [1 0]

⏐⏐�
0 −−−−→ A

[f e 0]−−−−→ B ⊕ I Ker(f) ⊕ I ′ −−−−→ C ′ ⊕ I ′ −−−−→ 0∥∥∥ d

⏐⏐�∼= d′
⏐⏐�∼=

0 −−−−→ A
[f i]−−−−→ B ⊕ I(A)

[ g
−j

]
−−−−→ C −−−−→ 0[

1
0

]⏐⏐� ∥∥∥
B

g−−−−→ C

All squares with the possible exception of the square at the bottom are commuta-
tive: Since the map [f i] is a monomorphism, it follows from Claim 2 in Chapter 4
that there is an injective module I ′ and an isomorphism d such that the left square
between the second and third row is commutative; if d′ is the cokernel map, then
both squares are commutative. Here the exact sequence in the first row is a direct
summand of the sequence in the second row, the complement being the sequence
0 → 0 → I ′

1→ I ′ → 0. Finally, the map g which represents the second map in the
triangle T (f) occurs as a restriction of the cokernel map in the third row.

Note that all vertical maps become isomorphisms when considered in the stable
category. Thus, the two morphisms Cok : B ⊕ IKer(f) → C ′ and ḡ : B → C are
isomorphic when considered as objects in H′(Λ). �

Since Λ is a self-injective algebra, there is a third self-equivalence on the mor-
phism category H′(Λ) (besides the suspension and the rotation) given by the
Auslander-Reiten translation τΛ. According to [ARS, Proposition IV.3.7], the func-
tors τΛ and NΩ2 from mod Λ to mod Λ are isomorphic, where N = D HomΛ(−, Λ)
is the Nakayama automorphism. It follows that the Auslander-Reiten translation
τΛ preserves triangles. As a consequence, the functor τΛ commutes with the rota-
tion f̄ �→ f̄R, and also with the suspension Ω−1 in the sense that for each morphism
f : A → B there is a commutative diagram in which the vertical maps are isomor-
phisms:

τΛΩ−1A
τΛΩ−1f−−−−−→ τΛΩ−1B

η′(f)

⏐⏐�∼= η′′(f)

⏐⏐�∼=

Ω−1τΛA −−−−−→
Ω−1τΛf

Ω−1τΛB

The self-equivalence on the triangulated category given by the rotation T �→ TR

yields isomorphisms T 3R ∼= −Ω−1T and T 6R ∼= Ω−2T . We obtain the following
consequence for the Auslander-Reiten translation τS in the submodule category.
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Theorem 6.2. Suppose Λ is a self-injective algebra. If (f : A → B) is an inde-
composable nonprojective object in S(Λ), then there are the following isomorphisms
in the morphism category H′(Λ):

τS(f) ∼= τΛ

(
Cok f

)
,(1)

τ3
S(f) ∼= −τ3

ΛΩ−1(f̄), and(2)

τ6
S(f) ∼= τ6

ΛΩ−2(f̄).(3)

Corollary 6.3. Under the assumptions of the theorem, there are the following
isomorphisms in the submodule category S(Λ):

τ3
S(f) ∼= −Mimo τ3

ΛΩ−1(f), τ6
S(f) ∼= Mimo τ6

ΛΩ−2(f).

Proof of Corollary 6.3. The functor S(Λ)I → H′(Λ), f �→ f̄ in Corollary 5.3 reflects
isomorphisms, so the assertion follows from Theorem 6.2. �

Proof of Theorem 6.2. The first statement (1) follows from Theorem 5.1 since any
map g is stably equivalent to Mimo(g). For the proof of assertion (2) we use
Theorem 5.1 to compute

τ3
S
(
A

f→ B
)

= Mimo τΛ CokMimo τΛ CokMimo τΛ Cok(f).

Then we obtain the following isomorphisms of objects in H′(Λ):

τ3
S(f) ∼= τΛ

(
CokMimo τΛ CokMimo τΛ Cok f

)
∼= τΛ

(
τΛ Cok Mimo τΛ Cok f

R)
∼= τ2

Λ

(
CokMimo τΛ Cok f

R)
∼= τ2

Λ

(
τΛ Cok f

2R)
∼= τ3

Λ

(
Cok f

2R)
∼= τ3

Λ

(
f̄3R

)
∼= τ3

Λ

(
− Ω−1(f̄)

)
where the first isomorphism is justified by (1), the second, fourth, and sixth iso-
morphisms follow from Lemma 6.1, the third and fifth equalities come from the
commutativity of τΛ with the rotation, and the last map is an isomorphism since a
threefold rotation of a triangle is obtained by applying the functor −Ω−1.

In order to deduce the third assertion from the second, pick a representative map
g : Ω−1A → Ω−1B in mod Λ for the morphism τ3

S(f) in mod Λ such that Ω−1A
and Ω−1B have no nonzero injective direct summands. Then Mimo(g) is an inde-
composable nonprojective object in S(Λ), and by Proposition 4.1 its isomorphism
class does not depend on the choice of the map g. The following morphisms in
modΛ are isomorphic objects in H′(Λ):

τ6
S(f) ∼= τ3

S Mimo(g) ∼= −τ3
ΛΩ−1(ḡ) ∼= −τ3

ΛΩ−1
(
− τ3

ΛΩ−1(f̄)
) ∼= τ6

ΛΩ−2(f̄).

�

We conclude this section with three applications.
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Corollary 6.4. Suppose Λ is a self-injective algebra such that τΛ coincides with
Ω2. If (f : A → B) is an indecomposable nonprojective object in S(Λ), then there
is an isomorphism of objects

τ3
S(f) ∼= −Mimo Ω5(f)

in S(Λ).

Proof. Since τΛ coincides with Ω2, we can simplify the expression in formula (2) of
Theorem 6.2 and see that

τ3
S(f) ∼= −τ3

ΛΩ−1(f̄) ∼= −Ω6Ω−1(f̄) ∼= −Ω5(f̄)

in H′(Λ). The functor S(Λ)I → H′(Λ), f �→ f̄ , in Corollary 5.3 reflects isomor-
phisms, so τ3

S(f) and −Ω5(f) are isomorphic in S(Λ). �

Note that for any symmetric algebra, the functors τΛ and Ω2 coincide (see for
example [ARS, Proposition IV.3.8]); thus we can apply Corollary 6.4 in this case.

Corollary 6.5. Let Λ be a commutative uniserial algebra. Then for an indecom-
posable nonprojective object (f : A → B) in S(Λ), there is an isomorphism of
objects

τ6
S(f) ∼= f

in S(Λ).

Proof. Since Λ is a commutative uniserial algebra, all the functors τΛ, Ω2 and Ω−2

are equivalent to the identity functor on modΛ, thus Corollary 6.4 shows that τ6
S(f)

and Ω10(f) ∼= f are isomorphic objects of S(Λ). �

Definition. By A
∞
∞ we denote the doubly infinite linear quiver

· · · α←− •−1 α←− •0 α←− •1 α←− · · · .

The path algebra kA
∞
∞ of this quiver is the associative k-algebra with basis the

paths in A
∞
∞. If αn denotes the ideal spanned by all paths of length at least n,

then the factor algebra Λ = kA
∞
∞/αn is a locally bounded associative k-algebra. A

Λ-module A consists of a sequence (Ai)i∈Z of k-modules together with a sequence
(αi : Ai → Ai−1)i∈Z of linear maps. By A[�] we denote the shifted module given
by the spaces (Ai−�)i and the maps (αi−�)i.

Corollary 6.6. Let Λ be the associative algebra kA
∞
∞/αn where k is a field. For an

indecomposable nonprojective object (f : A → B) in S(Λ), the following formula
holds:

τ6
S(f) ∼= f [n − 6].

Proof. The Auslander-Reiten translation τΛ is given by the shift A �→ A[−1] along
the arrow α, hence the functor τΛ on the stable category mod Λ preserves triangles.
Also, τΛ commutes with Ω−1 and with the rotation in a triangle. Moreover, for a
nonprojective indecomposable Λ-module A, the process of taking the cokernel of
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the injective envelope twice yields the module A[n]. With these adjustments, the
claim follows from (3) in Theorem 6.2 as in the proof of Corollary 6.4. �

7. Auslander-Reiten sequences

In this section we show that “most” Auslander-Reiten sequences in the category
S(Λ) become split exact sequences in the category mod Λ, when restricted to the
short exact sequence of the submodules, or to the short exact sequence of the big
modules. We describe the exceptions in detail. The remaining sink and source
maps are associated with the projective and the injective objects and have been
specified in Chapter 1. We only need to assume here that Λ is a locally bounded
associative algebra. First we deal with the exceptions.

Proposition 7.1 (Auslander-Reiten sequences with components not split exact).

Let 0 → A
f→ B

g→ C → 0 be an Auslander-Reiten sequence in mod Λ.
1. The Auslander-Reiten sequence in S(Λ) ending at (0 → C) has the form

0 −−−−→
A
↓ 1
A

1−−−−→
f

A
↓ f
B

0−−−−→
g

0
↓
C

−−−−→ 0.

2. With e : A → I(A) an injective envelope, the Auslander-Reiten sequence in
S(Λ) ending at (1C : C → C) has the form

0 −−−−→
A
↓ e

I(A)

f−−−−→
[1 0]

B
↓ b

I(A) ⊕ C

g−−−−→
[ 01 ]

C
↓ 1
C

−−−−→ 0

where b is the map [e′ g] with e′ : B → I(A) an extension of the map e.

Proof. 1. We show that the map (0, g) is minimal right almost split. Clearly,
this map is right minimal and not a split epimorphism. In order to show that
(0, g) :

(
A

f→ B
)
→

(
0 → C

)
is right almost split, let (t′, t) : (x′ : X ′ → X) →

(0 → C) be a test map which is not a split epimorphism. Then t : X → C is not
a split epimorphism in mod Λ, so there is u : X → B such that t = ug. Since

the composition X ′ x′
→ X

u→ B
g→ C is zero, there is u′ : X ′ → A such that

x′u = u′f . Thus, (u′, u) is a morphism which satisfies (t′, t) = (u′, u)(0, g).
2. A straightforward argument shows that the map (g, [ 0

1 ]) is right minimal. We
verify that a test map (t′, t) : (x′ : X ′ → X) → (1C : C → C) which is not a split
epimorphism factorizes over (g, [ 0

1 ]). Since t′ : X ′ → C is not a split epimorphism,
there is u′ : X ′ → B such that t′ = u′g. Let u1 : X → I(A) be an extension of
u′e′ : X ′ → I(A) to X and put u = [u1 t] : X → I(A) ⊕ C. Then (u′, u) is a
morphism in S(Λ) such that (t′, t) = (u′, u)(g, [ 0

1 ]). �

The remaining Auslander-Reiten sequences in S(Λ) are made up from two split
exact sequences.

Proposition 7.2 (Auslander-Reiten sequences with components split exact). Sup-
pose that (c : C ′ → C) is an indecomposable object in S(Λ) such that the morphism
c in modΛ is not split monic. If

0 −−−−→
A′
↓ a
A

f ′

−−−−→
f

B′
↓ b
B

g′

−−−−→
g

C′
↓ c
C

−−−−→ 0
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is an Auslander-Reiten sequence in S(Λ), then both sequences in mod Λ,

0 → A′ f ′

→ B′ g′

→ C ′ → 0 and 0 → A
f→ B

g→ C → 0,

are split exact.

Proof. Since the map c is not a split monomorphism, the test maps

(0, 1) : (0 → C) → (C ′ c→ C) and (1, c) : (C ′ 1→ C ′) → (C ′ c→ C)

are not split epimorphisms and hence factorize over (g′, g). Thus, both g and g′ are
split epimorphisms. �

We combine this result with Theorem 5.1.

Corollary 7.3 (The middle term of an Auslander-Reiten sequence). Let (c : C ′ →
C) be an indecomposable object in S(Λ) such that the morphism c in mod Λ is not
split monic.

1. The Auslander-Reiten sequence ending in (c : C ′ → C) has the form

0 −−−−→
A′
↓ a
A

[
1
0

]
−−−−→[

1
0

] A′ ⊕ C′

↓ b
A ⊕ C

[0 1]−−−−→
[0 1]

C′
↓ c
C

−−−−→ 0.

2. The map b defining the middle term is given as follows by a map h : C ′ → A:

b =
(

a 0
h c

)
: A′ ⊕ C ′ → A ⊕ C.

3. The first term
(
A′ a→ A

)
= τS

(
C ′ c→ C

)
of the Auslander-Reiten sequence

ending in (c : C ′ → C) is isomorphic to Mimo τΛ Cok(c), in particular, A′ = τΛC
and A = τΛC ′′ ⊕ I where I is an injective Λ-module and C ′′ = Cok(c).

To conclude this chapter, we state the following dual results for the category
F(Λ).

Proposition 7.4 (AR-sequences in F(Λ) with components not split exact). Sup-
pose that 0 → A → B → C → 0 is an Auslander-Reiten sequence in mod Λ.

1. The Auslander-Reiten sequence in F(Λ) starting at (A → 0) has the form

0 −−−−→
A
↓
0

f−−−−→
0

B
↓ g
C

g−−−−→
1

C
↓ 1
C

−−−−→ 0.

2. The Auslander-Reiten sequence in F(Λ) starting at (1A : A → A) has the
form

0 −−−−→
A
↓ 1
A

[1 0]−−−−→
f

A ⊕ P
↓ b
B

[ 01 ]
−−−−→

g

P
↓ π
C

−−−−→ 0

where π : P → C is a projective cover, and where the map b has the form b = [f π̂]t

with π̂ : P → B a lifting of π to B.

Proposition 7.5 (AR-sequences in F(Λ) with split exact components). Suppose
that (a : A → A′′) is indecomposable in F(Λ) such that the epimorphism a is not
a split epimorphism. If

0 −−−−→
A
↓

A′′
f−−−−→

f ′′

B
↓

B′′
g−−−−→

g′′

C
↓

C′′ −−−−→ 0
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is an Auslander-Reiten sequence in F(Λ), then both sequences in mod Λ,

0 → A
f→ B

g→ C → 0 and 0 → A′′ f ′′

→ B′′ g′′

→ C ′′ → 0,

are split exact.

Corollary 7.6 (The middle term of an AR-sequence in F(Λ)). Let (a : A → A′′)
be an indecomposable object in F(Λ) such that the map a in modΛ is not a split
epimorphism.

1. The Auslander-Reiten sequence starting at (a : A → A′′) has the form

0 −−−−→
A
↓ a

A′′

[
1
0

]
−−−−→[

1
0

] A ⊕ C
↓ b

A′′ ⊕ C′′
[0 1]−−−−→
[0 1]

C
↓ c

C′′ −−−−→ 0.

2. The morphism b defining the middle term is given as follows by some map
h : C → A′′:

b =
(

a 0
h c

)
: A ⊕ C → A′′ ⊕ C ′′.

3. The last term
(
C

c→ C ′′) = τ−
F

(
A

a→ A′′) of the Auslander-Reiten sequence
starting in (a : A → A′′) is isomorphic to Mepi τ−

Λ Ker(a), in particular, C =
τ−
Λ A′ ⊕ P and C ′′ = τ−

Λ A where P is a projective Λ-module and A′ = Ker(a).
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